In: Journal on Multimodal User Interfaces, 8:97—108, 2014, DOI[10.1007/s12193-013-0130-3
The final publication is available at|link.springer.com

An Architecture for Fluid Real-time Conversational Agents:
Integrating Incremental Output Generation and Input Processing

Stefan Kopp - Herwin van Welbergen -
Ramin Yaghoubzadeh - Hendrik Buschmeier

Abstract Embodied conversational agents still do not achieve
the fluidity and smoothness of natural conversational interac-
tion. One main reason is that current system often respond
with big latencies and in inflexible ways. We argue that to
overcome these problems, real-time conversational agents
need to be based on an underlying architecture that provides
two essential features for fast and fluent behavior adaptation:
A close bi-directional coordination between input processing
and output generation, and incrementality of processing at
both stages. We propose an architectural framework for con-
versational agents (ASAP) providing these two ingredients
for fluid real-time conversation. The overall architectural con-
cept is described, along with specific means of specifying
incremental behavior in BML and technical implementations
of different modules. We show how phenomena of fluid real-
time conversation, like adapting to user feedback or smooth
turn-keeping, can be realized with ASAP and we describe in
detail an example real-time interaction with the implemented
system.

S. Kopp - H. van Welbergen - R. Yaghoubzadeh - H. Buschmeier
Sociable Agents Group, CITEC and Faculty of Technology,
Bielefeld University

PO-Box: 1001 31, 33501 Bielefeld, Germany

E-mail: skopp@techfak.uni-bielefeld.de

ORCID: http://orcid.org/0000-0002-4047-9277

H. van Welbergen
E-mail: hvanwelbergen @techfak.uni-bielefeld.de
ORCID: http://orcid.org/0000-0002-4122-062X

R. Yaghoubzadeh
E-mail: ryaghoubzadeh @uni-bielefeld.de
ORCID: http://orcid.org/0000-0002-3918-6725

H. Buschmeier
E-mail: hbuschme @uni-bielefeld.de
ORCID: http://orcid.org/0000-0002-9613-5713

Keywords Embodied Conversational Agents Architecture -
Fluid Real-time Interaction - Generation—Interpretation
Coordination - Incremental Processing - ASAP - BMLA

1 Introduction

Embodied Conversational Agents (ECAs) aim to enable hu-
man-like face-to-face interaction between a human user and
an artificial agent. Cassell and colleagues [6] define them to
have abilities for (1) “recognizing and responding to verbal
and nonverbal input,” (2) “generating verbal and nonverbal
output,” (3) “dealing with conversational functions such as
turn taking, feedback, and repair mechanisms,” and (4) con-
tributing “signals that indicate the state of the conversation or
contribute new propositions to the discourse”. A large body
of work has been directed to developing approaches to these
individual challenges. Still, interacting with today’s ECAs is
for the most part characterized by noticeable latencies and
slow response times, resulting in an unnatural clumsiness.
In other words, ECAs often fall short of the fluidity and
smoothness of natural human conversational interaction.
One cornerstone of human conversation is the high inter-
activity and real-time responsiveness with which cooperative
interactants co-construct their contributions. For example,
while producing communicative actions, speakers attend to
and even elicit reactions from the addressee. Depending on
this instant feedback, speakers can re-plan the remaining
part(s) of their communicative plan, adapt it to the addressees’
needs, put it on hold, insert a sub-dialogue, and continue at
the point of interruption. All this is done in such an effortless,
smoothly coordinated and seemingly natural way that it is not
even apparent that difficulties were payed attention to or that
plans were changed mid way. That is, acting in a conversation
can only partially be based on extensive planning ahead and
deep representational models. Instead, interaction partners,
while being guided by overall goals and strategies, are also

PREPRINT

http://dx.doi.org/10.1007/s12193-013-0130-3
http://link.springer.com/
http://orcid.org/0000-0002-4047-9277
http://orcid.org/0000-0002-4122-062X
http://orcid.org/0000-0002-3918-6725
http://orcid.org/0000-0002-9613-5713

S. Kopp et al.

Jane and put it on the right hand
half of the-
1 O T
1 .
Ken :bloclj] : [poises block] .
4 mmrm————— o
of the green
Jane yes
rectangle
. —I_.
1[attacheslt
Ken block] 1
Is 2s 3s 4s

Fig. 1 Example of a speaker monitoring the addressee’s feedback and
adapting her utterance (redrawn from [7, p. 74]).

highly sensitive to the the partner’s verbal and nonverbal
feedback and are able to alter their utterances in progress
accordingly [7]. Fig. [T] shows an example from this study, in
which Jane (the speaker) suspends her utterance in response
to Ken’s (the addressee) feedback, inserts a short feedback
utterance herself, and then resumes her initial delivery. These
abilities are crucial for human-like, real-time interactivity
and conversational fluidity, but they exceed the abilities of
current ECAs.

We argue that, to achieve these abilities in ECAs, what
is needed are two pivotal features at the architectural level:
(1) incremental processing and (2) bi-directional, multi-level
interaction between input processing and output generation.
In this paper, we discuss in detail the requirements that imply
such an architecture (Sect.[2), discuss related work (Sect.[3)),
and propose the ASAP (Artificial Social Agent Platform) ar-
chitectural framework (Sect.[d). ASAP is as a dedicated ECA
middleware specifically tailored to real-time conversation.
It lays down at a technical but also a semantic-conceptual
level how the input and output processing modules need to
interact with each other. It thus extends the BML/FML output
generation framework [23148]] and goes beyond, on the one
hand, technical software architectures for multi-component
ECA systems (as the Virtual Human Toolkit [15]) and, on
the other hand, standard multi-agent communication archi-
tectures (e.g., blackboard systems). We will demonstrate how
ASAP enables the fluid production and adaptation of mul-
timodal output under the presence or absence of different
kinds of input from the addressee or the environment, respec-
tively. Section [5 presents a prototype implementation of a
conversational agent based on ASAP and explicates how it
allows for achieving more fluid real-time interaction.

2 Architecture Requirements

Being able to have a conversational interaction with a hu-
man raises challenging demands from an artificial system.
Many have noted the most obvious requirements, namely,

sophisticated abilities for recognition of verbal and nonver-
bal input, generation of convincing multimodal output, and
dealing with behavior in terms of its many conversational
functions and based on an understanding of dialogue state. To
cope with these demands, Cassell and colleagues [6] derive
a number of architectural constraints that generalize from
the multilayer, multimodal Ymir architecture [45]]. The most
relevant ones here are that an architecture should support
receiving and transmitting multimodal information, should
allow to track different threads of communication running at
different timescales, and should be symmetric.

While we agree with these constraints, there are other less
obvious, but nonetheless important requirements. They arise
from the fact that fluid conversation hinges upon fast adap-
tation and coordination taking place between interlocutors.
It is well known that interlocutors coordinate their behavior
at very fine grained levels to collaboratively manage their
interaction. For example, listeners signal their current degree
of understanding or agreement, and speakers monitor this
feedback and adapt their utterance flexibly and rapidly to
the listener’s needs. Adaptations range from different lexical
choice, direct references, elaborations, or slower speech rate,
to interruptions and continuation with a completely new ut-
terance [[7]]. Speakers actively monitor for information about
their addressee’s state, and they fluently added cues to elicit
such information from the listener [12].

Coordination becomes particularly visible at the moments
of floor changes [33]]. Turn-overlap situations are assessed on
the fly and either the turn is yielded or grabbed/kept “forci-
bly”, e.g., by adjusting the volume of speaking or the speak-
ing rate to be sufficiently interruptive or non-interruptible,
respectively [35]. In addition, interlocutors are also found
to entrain (synchronize) their behavior timing or align their
behaviors with regard to form and meaning (cf. [21]]). Re-
ported examples of this are the convergence of speech rate or
response latency [43]], and the alignment in lexical choice or
of grammatical forms [[11].

These fast adaptations rest on speakers producing their
speech incrementally [19]. Often, utterances are started with
appositional beginnings (“uh”, “well”, ...), e.g., to secure the
turn while not having planned out already the full contribu-
tion [33]]. Likewise, listeners process an incoming utterance
incrementally based on predictions about likely continuations
and the speaker’s intended meaning [44]]. We argue that if
we want to build ECAs that can engage in these fast and
real-time coordinations, they need to be based on dedicated
design principles as discussed in the following.

2.1 Incremental processing

Input processing must yield first results with minimal latency.
To this end, it must run incrementally and form hypotheses
from the so-far-perceived input. Hypotheses must be passed

An Architecture for Fluid Real-time Conversational Agents

on for other modules to work on them. Competing hypotheses
along with their respective probabilities must be managed
and continuously updated. Likewise, output generation must
run incrementally, implying that incremental units are not
finalized until necessary. Real-time and fluidity requirements
will demand that responses be pre-planned and initiated once
start conditions are meﬂ However, plans of not yet executed
incremental units must be kept flexible and adaptable to
minimize time-consuming re-planning. Output plans that are
only partially realized (but not discarded) must be stored and
be re-usable pending adaptations to ensure coherence with
the unfolding discourse (as in Fig[T).

2.2 Top-down and bottom-up interaction

Incremental processing need to be combined with bi-direc-
tional information flow. Partial (bottom-up) interpretation
hypotheses must be combined with the formulation and eval-
uation of (top-down) predictions about the interlocutor’s pos-
sible next contributions. In output generation, higher-level
processes must work on incremental units at larger timescales
than lower-level processes. Control signals from running in-
cremental units must be passed top-down immediately and
continuously, while status updates need to be sent back bot-
tom-up.

2.3 Linking input processing and output generation

Classically treated separately, input processing and output
generation must run concurrently but with bi-directional in-
formation transfer between them. Generation of output must
be not only planned top-down but must also have access to
low-level information from input processing, e.g., to connect
a running behavior with specific perceptual information (as
classically done via a reactive route to enable gaze-tracking a
moving target [45]]). For example, if own actions are currently
running or are already prepared, attention must be focused
on those input features that need to be assessed as to whether
(pre-)conditions for these actions are being fulfilled or vio-
lated. Likewise, input processing must be informed about
concurrent behavior generation, e.g., to be able to focus on
subtle cues that would normally be not salient or hidden in
noise, to tune in to expected input patterns or those patterns
that have been used previously by the output production sys-
tems, to compensate for self-induced sensory noise, or to
provide additional context that can help to resolve ambigui-
ties between parallel, competing hypotheses.

! Technically it may also be advantageous to prepare possible alter-
native responses in parallel.

3 Related Work

A large number of ECAs have been developed based on archi-
tectures that in some way integrate input processing, output
planning, and output generation. The architecture proposed
by Cassell and colleagues [6] consisted of an input manager
that fuses audio, speech and gestural inputs and sends them to
a deliberative module in charge of creating behavior based on
proper input interpretation and output planning. In addition,
a reaction module realizes a direct pathway from input to
output processing to implement hardwired quick reactions.
Processing along both pathways operates upon self-contained
plans or specifications of whole input or output behavior sets.
For example, output generation produces a schedule of be-
haviors, either in absolute-time based or event-based ways,
that specifies in advance how a number of extended behavior
are to unfold over time.

Almost all existing ECAs have followed this general ar-
chitecture layout, which is characterized by a modular struc-
ture and non-incremental, strictly sequential processing along
a deliberative or a reactive route (e.g., Max [22]], Greta [16],
Virtual Justina [[20]). Very recent systems still adopt this struc-
ture: In the Thalamus architecture [32]], perception is simply
a unidirectional information link from the body interface to
the mind interface; in de Kok and Heylen’s feedback-giving
system [9] input arrives in a module which determines the
appropriateness of a listener response; in Crook et al.’s ‘How
Was Your Day?’ prototype [8]] for coping with barge-ins, a
‘long’ loop is used for intent planning and a shorter loop
is used to handle interruptions, back-channel feedback and
emotional mirroring. Like others, this agent does not process
input or generate output incrementally and the authors note
that the use of incrementality would have made their design
more elegant.

Some first attempts to overcome this rigid style of pro-
cessing have been made. Nijholt et al. [28] proposed a first
approach to directly link the timing of ongoing behavior to
the timing predictions of interlocutor events. This enabled a
finer degree of temporal coordination with the user’s motion,
as demonstrated in a dancer agent, a virtual orchestra con-
ductor and a virtual fitness trainer. Incremental processing
is also increasingly assumed to be a key principle for natu-
ral dialogue modeling. Schlangen and Skantze [38]] propose
that the internal mechanisms in incremental dialogue agents
can be described in terms of abstract modules that communi-
cate by passing around and holding incremental units (IUs).
Several implementations of this model have been developed
[37] and many aspects of dialogue agents have been success-
fully modeled within this incremental processing framework
(speech recognition, natural language understanding [1]], dia-
logue management [5.46], natural language generation [41}
3[|, speech synthesis [2]]). However, implementations of the [U

S. Kopp et al.

architecture have been uni-modal so far (typically speech/text
only).

Incremental realization of multimodal behavior by au-
tomatically connecting chunks that retain their internal syn-
chrony, was first proposed in the ACE system [24]. The real-
izer component in our ASAP architecture [47] extends this
approach by providing more fine-grained behavioral units
that can be linked to anticipated input events, following [28]].

Much effort has been put on standardizing the output
generation of ECAs in a way that allows for architectural
modularity and flexibility of generated behavior. The SAIBA
initiative [23]] has put forth three main stages (content plan-
ning, behavior planning, behavior realization) with standard-
ized XML interface representations in-between (BML, FML).
This has now become the de facto standard for behavior gen-
eration in ECAs. However, this model is deliberately left
coarse and does not make any assumptions about input/output
coordination nor incremental processing. Recent work has
started to extend this framework to also include a represen-
tation of nonverbal input behavior (the Perception Markup
Language, PML) [36]. In contrast to BML, PML handles mul-
tiple hypothesis on three levels of input processing (sensing,
behaviors and functions) along with probabilities to represent
uncertainties. In a first example architecture, the different lev-
els of PML are used to inform dialogue state update, intent
planning or behavior generation.

The question how different stages of input processing
and output generating should ideally interact within conversa-
tional agents has received only little attention so far. In princi-
ple, this includes horizontal (between input/output modules)
as well as vertical (bottom-up and top-down) interactions. It
is well known that in humans perception influences action
via direct links that can bypass cognition, that perception and
action share common representations, or that action planning
influences perception (see e.g. [49]). Cognitive robotics has
adopted this view more extensively than research on ECAs,
while focusing on the control of manipulative or locomotive
actions [18]. Haazebroek, van Dantzig and Hommel [14]
presented a computational model which uses shared repre-
sentations between perception and action for cognitive robots.
Sadeghipour and Kopp [34] have presented a probabilistic
model for learning, recognizing and producing communica-
tive gestures based on shared sensorimotor representations.
Hoffman and Breazeal [17] implement task anticipation for
collaborative robotic systems and use knowledge about past
events as a top-down bias in perception, allowing for more
accurate and rapid ‘sensing’ decisions. This is recently par-
alleled in the field of human language technology (speech
recognition or language understanding) which has started
to build dynamic language models (vocabularies, grammars,
recognition weights) in order to increase accuracy and adap-
tivity [39]]. Such models are adjusted at runtime, e.g., when

dialogue context changes [40Q], certain entities become salient
[26], or conversation threads are switched [25]].

In sum, promising approaches are increasingly put for-
ward for incremental language processing as well as for more
flexible perception-action integration. However, to the best
of our knowledge, a comprehensive concept of how to com-
bine these methods in an ECA architecture that enables fast
responses and incremental adaptation as needed for fluid,
real-time multimodal conversation is still lacking.

4 The ASAP Framework

We are developing a framework for embodied agents that are
to engage in human-like fluid conversation, with a degree of
real-time flexibility and smooth interactivity similar to what
humans are used to and expect from each other—the Artificial
Social Agent Platform (ASAP). We want to have a princi-
pled architectural basis that provides the necessary degree of
incremental processing as well as integration of output gener-
ation and input processing in a conceptually well-defined and
technically sound way. ASAP can be seen as an extension
of the SAIBA framework to a full input-output architecture
with incremental processing. This includes an extension of
the representational models (most notably, BML) to the spe-
cific problems of incremental specification and generation;
for the description of perception events we aim to make use
of a standardized representation language like the recently
initiated Perception Markup Language (PML) [36]. In the
remainder of this section, the overall architecture as well
as our approach to incremental behavior specification and
processing are explained.

4.1 Integrated architecture

The architectural requirements we have pointed out above re-
quire incremental processing in a strongly linked architectural
layout. That is, modules are connected with bi-directional
links, both “horizontally” between input processing and out-
put generation as well as “vertically” between different stages
of processing. The ASAP architecture (see Fig.[2) is designed
as such an architecture. This enables input processing to tune
in on specific output patterns (priming) or to be sensitized for
specific time windows. The use of bi-directional, multi-layer
links also allows us to cover the SAIBA framework with our
architecture and thus to profit from the reusability it affords.

The overall architecture layout is shown in Fig. [2] The
left-hand side comprises the behavior generation sub-system,
the right-hand side the behavior processing sub-system. All
modules are supposed to run concurrently and to commu-
nicate by means of asynchronous, incremental messages as
described in the next section. During generation the Intent
Planner specifies communicative goals, intended messages

An Architecture for Fluid Real-time Conversational Agents

€——PML < functionLayer Function
Intent Planner Interpretation
priming————— (slow)
FML FML priming/activation PML
+ feedback < behaviorLayer
1 1
< Behavior
Behavior Planner Interpretation
priming—————— (fast)
BML BML (predictive) priming/activation PML
feedback sensinglayer
I — I
Behavior Realizer Anticipation .
Sensing

(AsapRealizer) priming——————|

Fig. 2 Outline of the ASAP integrated architecture.

and interactional goals in FML and is in charge of keeping
track of the discourse state including the grounding status of
propositions. A Behavior Planner translates intentions into
surface behaviors specified in BML. The Behavior Realizer
takes BML behavior specifications and transforms them into
overt behavior of an ECA.

As the behavior is planned and executed by the Realizer,
predictive feedback on the current state of the ongoing behav-
iors is sent back to the Behavior Planner. Such information
is essential for continuing after an interruption (e.g., to not
repeat what has already been said) or deciding whether to
yield the turn (e.g., if the essential information has been deliv-
ered) or use some strategies to keep it. The Behavior Planner
provides the Intent Planner with FML feedback to inform it
of the ongoing progress in achieving the requested intentions.

The Sensing Module receives sensory data and turns them
into descriptions at the PML sensing layer [36]. This steps
involves, e.g., speech recognition or the extraction of signifi-
cant features of a gesture. The results are processed first by
(fast) Behavior Interpretation processes and subsequently by
(slower) Function Interpretation module. Fast interpretation
map distinct and unique behavioral patterns (e.g., nodding,
blushing) onto fixed interpretations. Such observed behav-
iors directly inform the Behavior Planner in its selection of
new behavior or the modification of ongoing output behavior.
For example, the Behavior Planner may use this information
to instruct the Realizer to stop speaking when receiving a
long (but otherwise unanalyzed) speech fragment from the
user. PML behaviors are sent to the Function Interpretation
component, which integrates them into higher-level functions
(e.g., agreement, shame). These functions inform the Intent
Planner.

The architecture explicitly enables top-down informa-
tion flow in the input processing subsystem: The Function
Interpretation module can prime the observation of certain
behaviors in the Behavior Interpretation module, based on the
functional state the user is observed or predicted to be in. For
example, if the user is listening, attending to typical listening
behaviors (e.g., nodding, saying “uh huh”) may be primed.

To this end, the Behavior Interpretation module can activate
or adjust sensing processes. This accommodates dynamic lan-
guage models in speech recognition, which can be activated
to specifically facilitate the early and robust recognition of
missing parts of different hypothesized user contributions (as
in 23 A

Furthermore, the ASAP architecture explicitly allows in-
formation to flow from output generation to input processing
and back, at all stages. Input processing modules can thus
profit from “priming” through the generation modules. For
example, the Realizer may prime the recognition of certain
words in a keyword spotter or speech recognizer in the Sens-
ing Module if these words have previously been used by
the ECA itself (if coordination occurs between speaker and
listener, a human listener will likely adopt the terminology
used by the virtual speaker [[11]]). The Behavior Planner can
prime the recognition of feedback behaviors (e.g., nodding,
saying “uh huh”) that are expected to complement an ad-
jacency pair opened by the agent, or whenever the agent
decides to execute feedback eliciting behavior. Finally, the
Intent Planner may prime the interpretation of behavior in
terms of task-related functions (as in [17]).

4.2 Incremental generation and processing middleware

A pivotal feature of ASAP is its inherently incremental out-
put generation and input processing. This ability rests upon
a middleware (IPAACA) for exchanging linked incremental
units (IUs) between processing components, following the
general abstract model proposed for incremental dialogue
processing [38]]. IUs can be established and categorized by
any module, and are immediately available to all modules
that have registered for their category. Once established, IUs
persist as a bi-directional communication link until one of
the modules retracts them. Modules fill IUs incrementally
with their output, thus allowing the receiving modules to
operate concurrently on uncompleted input. In addition, IUs
can be connected using specific links. That way, lower level
constructs (e.g., behaviors) are grounded in the top level
constructs that caused and specified them (e.g., intentions).
This allows for changes to the lower level constructs in a top-
down fashion, using commands that act upon the top-level
constructs, while at the same time propagating information
from the lower-level constructs (such as the self-monitored
state of execution) to their higher-level correlates. In addition
to cross-level grounding links, intra-level relations between
constructs can be captured using other links, such as depen-
dence on the intent planning level or, analogously, sequence
on the behavior planning level.

2 Such activations can be realized via priming by the Intent Planner
and Function Interpretation.

S. Kopp et al.

Since incremental input processing has received a sig-
nificant amount of attention in the spoken dialogue systems
community [38/[1]], and we have successfully started to inte-
grate this work into ASAP (see Sect. E]) we focus on how
IPAACA can be used to model and control the incremen-
tal generation of multimodal output across the levels of the
ASAP architecture: Intentions, behavior plans, and motor
control units of realized behaviors are modeled as IUs resid-
ing at the corresponding level. Top-down information flow is
realized asynchronously, by registering specifications, mod-
ifications and retractions (of intentions, plans, behaviors)
by top-level modules. Bottom-up information is shaped by
dedicated update mechanisms. Generation progress on the
realization layer, monitored on a fine-grained timescale, is
mapped to status information for behaviors at the behavior
planning level. These states are mapped onto success infor-
mation at the intent level, while checking the constraints set
forth by same-level links, e.g., that a conversational intention
is fulfilled with maximum probability when all the behav-
iors originally planned as a sequence have been reported
completed.

4.3 Behavior Specification

BML messages and BML feedback messages are used as
incremental interface representation between the levels of
output generation. However, several extensions to BML are
needed to allow for fluent, on-the-fly changes to ongoing
behavior. We have defined the following extension BMLA,
which subsumes regular BML and is realized in the current
implementation of our ASAP realizer [47].

BMLA messages can be used to either construct a new in-
crement (possibly as one of several execution alternatives), to
(gracefully) interrupt an ongoing increment, to activate a pre-
viously pre-planned increment, or to partly adapt an ongoing
increment (e.g., speak louder). BMLA feedback messages
inform the Behavior Planner of the predicted timing and
shape of planned increments and (once they are executed)
of the timing and content of their actual realization. Execu-
tion failures are also communicated through these bottom-up
messages. To allow perception to directly inform behavior
generation, BMLA further allows a direct link between the
timing of a behavior and anticipated timing of events sensed
by the Sensing Module.

Table [T] provides an overview of the proposed extensions
(see the BMLA Wikﬂ for a more extensive treatment of their
syntax and semantics). Since BML was originally designed
for self-contained specifications, which contradicts the idea
of incremental composition, we choose BMLA blocks of
appropriate size to be our incremental units of behavior plan-
ning (typically an intonation phrase and one or more aligned

3 lhttp://asap-project.org/wiki/BMLA

Intention 1

COMPLETED
AR

................. g

grounde/dfin grounded_in
’ AN

/

/COMPLETED /,I»A—-\»——COMPLETED————>C)

BML1 BML2 State

“after’

<blockProgress id="bml2:end"
globalTime="10" />

<bml id="bm12"

bmla:appendAfter="bml1"">
<gesture id="gl" lexeme="BEAT"

stroke="speechl:sync"/>

completion
signal

</bml>

Speech Gesture

Fig. 3 Updating of multi-level incremental units of generated output.

gestures and facial expressions), and we introduce additional
means of specifying inter-block relations that arise in incre-
mental generation (Table[I] row 5). Furthermore, we provide
a pre-planning mechanism (Table[T] row 1) that allows us to
prepare BML blocks that contain likely execution paths given
current input increments. These blocks can then be instantly
activated when required, enabling smooth and fluid reactions
to user behavior.

As we have already seen (Fig. [T), behavior can be in-
terrupted or modified instantaneously, and later be resumed,
even in the midst of a syntactic unit. That is, modification
of executed behavior may well happen with finer granular-
ity than that provided by BML blocks. The ASAP realizer
therefore allows for flexible top-down modification (Table [I]
row 3) and interruption of running BMLA blocks (see Ta-
ble[T] row 2, for the BMLA specification mechanisms for this;
cf. [47] for an implementation of graceful gesture interrup-
tion). Moreover, we extend BML to enable direct integration
between Sensing and Behavior Realization by way of syn-
chronizing BML behavior elements to anticipated events in
the interlocutor’s behavior (e.g., to let the agent start speaking
slightly before the anticipated end of the interlocutor’s turn;
see Table E], row 4). Likewise, BMLA feedback is provided
at a finer granularity, e.g., containing the (possibly predicted
and later updated) timing of gesture phases and words. Such
detailed feedback informs the Behavior Planner about when
what information will be delivered to the user and which
information has already been delivered.

To illustrate this functionality, let us consider the exam-
ple in Fig. [3] Intention 1 as well as behavior blocks BML1,
BML2 are processed as IUs and connected using grounded_in
links. BML2 is to be executed after BML1 (indicated by the
same-level after link). This after link is represented in the
BML block by the appendAfter attribute. The BML2 mes-

http://asap-project.org/wiki/BMLA

An Architecture for Fluid Real-time Conversational Agents

Table 1 BMLA extensions to BML for on-the-fly behavior construction and modification.

Specification el t E 1

Description

1 preplan bml attribute:
activate behavior:
onStart bml attribute:

<bml id="bml1l" bmla:preplan="true">...</bml>
<bmla:activate id="al" target="bml1l" />
<bml id="bml1l" bmla:onStart="bml2">...</bml>

Preplan BML block bml1 for potential later activation.
Activate preplanned BML block bml1.
Activate preplanned BML block bml2 when bml1 starts.

2 interrupt behavior:
exclude="bmll:gl"/>
interrupt bml attribute:

<bmla:interrupt id="il" target="bml1l"

<bml id="bml2" bmla:interrupt="bmli">...</bml>

Gracefully interrupt all behaviors but g1 in bml1.

Gracefully interrupt all behaviors in bml1.

3 parametervaluechange be-
havior:
end="bmll:speechl:s1+1">

<bmla:parametervaluechange target="bmll:speechl"
paramId="volume" start="bmll:speechl:si"

Change the volume of the bmll:speechl from its current
value to 90, over a linear trajectory.

<bmla:trajectory type="linear" targetValue="90"/>

</bmla:parametervaluechange>

4 alignment to predicted events
using anticipators:

<speech id="speechl" start=

</speech>

"anticipators:speechStopAnt:stop-0.1">...

Eagerly start speaking 0.1 seconds before the predicted end
of the turn of the interlocutor.

5 appendAfter bml attr:
chunkAfter bml attr:
prependBefore bml attr:
chunkBefore bml attr:

<bml id="bml2" bmla:appendAfter="bmli">...</bml>
<bml id="bml2" bmla:chunkAfter="bml1l">...</bml>

<bml id="bml1l" bmla:prependBefore="bml2">...</bml> Prepend bmll before bml2, no co-articulation.
<bml id="bml1l" bmla:chunkBefore="bml2">...</bml>

Append bml2 after bml1, no co-articulation.
‘Chunk’ bml2 after bmll, co-articulation allowed.

‘Chunk’ bml1 before bml2, co-articulation allowed.

sage (Fig.[3] Lh.s.) is used to construct a plan in the Realizer
that contains the motor control units (including speech and
gesture) that compose BML2. These motor control units are
again grounded in BML2, so that new BML messages can
refer to them (e.g., to adapt the motor plan or interrupt ele-
ments of it). The Realizer uses the grounding information to
provide feedback messages to inform the Behavior Planner
that the execution of BML2 is completed. Since the Behav-
ior Planner knows (by means of the grounded_in links) that
all IUs required to satisfy Intention 1 are completed, it can
now inform the Intent Planner that this intention is achieved
(using FML feedback).

The IU information structure also allows a direct response
to arriving or even missing feedback from the addressee (via
links from the input processing modules), as we have seen in
the early example in Fig. [T} For example, after referring to
an object in the environment, the recognition of a lack of ac-
ceptance by the addressee can be viewed as an obstruction to
successful plan execution. In terms of our generation architec-
ture, this is modeled as a retraction of a hypothesis node that
arose from an assumed high probability of the referenced ob-
ject being in the common ground. The retraction event would
spread to those plans grounded in it, which in turn would
notify the currently planned behaviors, which in turn would
notify those in execution, eventually interrupting them. How-
ever, the interrupted plan need not be fully discarded. After
the new intention (here: to make sure the object of the ac-
tion is in the common ground) has been fulfilled, those plans
that were interrupted can be resumed without complete re-
planning. Continuous estimation of such status information
and mapping it onto different measures, e.g., of complete-
ness on the behavior planning level or failure/success on the
intent planning level, can only be done locally within one
component, but becomes possible through the IU information
structure.

The next section describes in detail how these mecha-
nisms enable a number of phenomena of fluid, real-time
conversational interaction in an implemented system.

5 Implementation and Results

The ASAP framework has been implemented in a first ECA
prototype system, with different components being realized
in different depth and detail. It is based on the incremental
processing middleware IPAACA [37] and comprises an in-
cremental language generation system [3]], and an advanced
BML Behavior Realizer [47]]. The other components are
operational as prototype implementations to allow evaluat-
ing the framework. Several third party (incremental) input
processing and behavior generation components have been
embedded in this and other prototypes: Microsoft Speech
SDK used in incremental input processing mode, the Mary-
based incremental TTS inpro_iSS [2], and the openSmile
audio feature extractor [[10]. We have incrementalized the
SPUD sentence planner [42]] so that—given an appropriately
structured specification of a communicative intention—it
generates natural language sentences in chunks of the size of
intonation units; see [3]] for details.

The ASAP behavior realizer drives our virtual agent BIL-
LIE (Fig. [§) enabling a face-to-face conversation setting.
Predecessors of this realizer have already been used in others
tightly coordinated interactional settings, in which conversa-
tion played only a minor role, including dancing [31]], con-
ducting an orchestra [30] and performing fitness exercises
together with a human user [29]. Here, using the extended
version of the realizer [47] within the ASAP architecture im-
plementation, we have realized and tested different use cases
to demonstrate some of the requirements of fast, incremental
behavior adaptation in fluid conversation (cf. Sect. [2).

8 S. Kopp et al.
4. anticipated .
increase volume) noise-free moment(s) BehaVIOlj
‘ - Behavior Planner 3b. activation Interpretation
noisehandler ‘hsoft background noise___| t——of noise free moment—y»| (fast)
BML Realizer Sensing sem: , I 4 predictor
. currently speaking—p»| activate 5) .
(AsapReallzer) preplanned prepl;n BML feedback: . .
. . . £ ti il noise properties
Fig. 4 Handling soft background noises. ik ¢ execution faiure (e.g. predicted PML
origin, velocity) current noise level,
2a. interrupt origin
.)
5.1 Reacting to background noise rofsehandler [€—pqckground noise___|
BML Realizer Sensing
. —1 tly kil
Suppose an ECA is to operate in a noisy environment and has (AsapRealizer) currently speaking=—>"
to rapidly adapt to the external disturbance. In the simplest gy 5 Handling masking background noises.
case, the agent should simply adjust its speaking volume
to the noisy environment (thus implementing the Lombard Function
effect). This can readily be accommodated by ASAP via ‘ Intent Planner F—PMUL;:::';;Z";?ZE’— Interpretation
the direct coupling between the Behavior Realizer and the | (slow)
. . - . 5 FML:
Se'nsmg Module as 1llust.rated in F1g. Here, 'Fhe Realizer oo turn /|<bml_id="speechchange”>
primes a background noise sensor in the Sensing Module, /| <bmla:parametervaluechange
hich in t inf the Reali fth t ise 1 1)/ target="bml1l:speechl”
which in turn informs the Realizer of the current noise level. ‘ Behavior Planner ‘ Y piraTd;--\l,(l,.umen N .
. , ’ start="bml1l:speechl:syncl"
Ifa sofF noise occurs, the Realizer adjusts its speaking volume e y onaTDmIL 2 Specohl-Synelel™>
accordlng]y, increase volume of speech1 ¢ <bmla:trajectory type="linear”
. AN targetValue="90"/>
A more interesting case is when the noise is so loud that BMIL Realizer \ </bmla:paranetervaluechange>
. . . . N[</bml>
- . \
it masks the speech even with an increased speaking vol (AsapRealizer) .

ume. The agent should notice this masking, interrupt itself
instantly, and then smoothly initiate a repair by repeating the
masked part after the disturbance has disappeared. We have
implemented this as follows (see Fig. [5 for illustration): The
Realizer decides to graciously interrupt the ongoing speech
and gesture (see [47] for implementation details) and to in-
form the Behavior Planner (through BML warning feedback)
of its failure to produce (part of) the ongoing utterance in
a clear enough manner. This feedback (2b), combined with
knowledge of previous status updates about which parts of
the utterance have already been delivered, provide the Be-
havior Planner with enough information to pre-plan (3a) a
new BML block. This new block contains an adapted version
of the interrupted intonational phrase, and may omit part of
the already presented utterance (see [3]] for implementation
details). Fast Behavior Interpretation is then told to anticipate
anoise free moment (3b) and signals Behavior Planning once
it occurs (4). The adapted BML block has been pre-planned
and is then activated in the BML Realizer (5). In result, the
system stops speaking instantaneously when interrupted and
resumes immediately with an appropriately adapted repeti-
tion as soon as the disturbance disappeared. This also shows
that ASAP allows for handling external events on different
levels and via different perception-action loops, depending
on the needed adaptation.

5.2 Keeping the turn

Suppose that the ECA wants to keep the turn at the end of one
BML block, but the user displays a (polite non-interruptive)

Fig. 6 Keeping the turn.

turn-wanting signal. This can be readily handled in ASAP
as demonstrated in Fig. [6} the Intent Planner is informed
by the Function Interpretation module that the user would
like to get the turn. The Intent Planner decides to keep the
turn. The Behavior Planner now continues to incrementally
produce the next BML block, but with the additional adap-
tation of an additional parametervaluechange behavior,
which increases the speaking volume and is synchronized
with the speech1 behavior of BML block bm11 (here: from
its starting value to target value 90 along a linear trajectory,
the target value is to be reached 1 second after the custom
sync synchronization point in speech1).

5.3 Adapting to user feedback

Finally, let us consider a case similar to the one discussed
in Sect. [T} monitoring the user and adapting an utterance in
progress to feedback from the user. This has been tackled in a
previous implementation [4], but can be modeled more easily
now using the ASAP framework (see Fig. : Here, the Intent
Planner decides on a communicative goal that consists of
two propositions p; and p», where p, presupposes p; to be
understood (1). The Behavior Planner decides to realize both
propositions in one utterance, consisting of two increments
(BML blocks, intonational phrases), ip; and ip;. Based on
the presupposition condition, the Behavior Planner plans ip;
and decides to append a feedback inviting cue (e.g., a pause,

An Architecture for Fluid Real-time Conversational Agents

Function
8a. non-understanding .
(of ip1) Interpretation

(slow)

Intent Planner |[«—

ey

understanding

5. delivered p1
7a. non-acknowledgement

9.

v
Behavior Planner |understanding

Behavior

;
| 7b. non-acknowledgement— Interpretation
handler (fast)

2 8b. hold

2
atiished |
[A [4

fbel

10.
after after v after after

BML Realizer
(AsapRealizer)

6. user feedback

3. currently speaking

Fig. 7 Adapting to user feedback.

an attempt to achieve mutual gaze) to seek information on the
user’s understanding (2). ip; and ip; are grounded in p; and
p»> respectively. The Behavior Planner stores this grounding
links internally. The BML Realizer starts uttering ip; and in-
forms the Sensing Module that it is currently speaking, which
primes feedback sensors. ip; and the following planned feed-
back inviting cue are realized and the BML Realizer notifies
the Behavior Planner of this using BML feedback (4). The
Behavior Planner in turn informs the Intent Planner that p; is
delivered (but not necessarily understood or heard). Now the
user provides feedback indicating problems in understanding
(6). A feedback classifier in the Behavior Interpreter inter-
prets the feedback as a non-acknowledgment (7a, 7b) and
informs the Function Interpreter and the Behavior Plannerﬂ
Based on the grounding information of ip; and ip, and the
request from the Intent Planner to only try to achieve p;
when p; is understood, the feedback handler in the Behavior
Planner decides to postpone the realization of ip, until more
information on the feedback is available (8b). Such infor-
mation is later provided by the Function Interpreter, which
interprets the feedback as non-understanding (8a). It then
starts planning an alternative for p; to adapt to the user’s lack
of understanding, for example by providing information a
second time instead of an anaphoric reference (9). Finally,
this adapted p; is transferred in a BML behavior pl,,, and
submitted to the BML Realizer (10). Note that by allowing
flexible insertion of increments, no re-planning of p; nor ip;
is required.

5.4 Handling interruptions in interaction

As a final result, we analyze an actual interaction with the
running prototype system (see Fig. [§] for a screenshot). In this

4 Here we follow the incremental feedback processing design of [27]
where feedback is handled through a cascade of incremental classi-
fiers: the first classifier of this cascade is a rapid acknowledgment/non-
acknowledgment classifier, which we place in the Behavior Interpreter.
Slower function classifiers (e.g., for non-understanding, non-agreement,
etc.) are placed in the Function Interpreter.

[coughing]

Fig. 8 Interacting with the prototype.

interaction, BILLIE is presenting information and is inter-
rupted by a user’s coughing. Fig.[§]shows an annotation of the
interaction, highlighting how the construction and adaptation
of the behavior plan is achieved using our BMLA extensions.
First a behavior plan, consisting of several concatenated BML
blocks is constructed (1). As an acknowledgment of the user
is detected, the agent responds with a head nod (using BML
block nod1) and continues speaking (2). Once a cough (or
other noise) is detected, the system interrupts the running
BML block(s) (here using BML block remove) and holds
the execution of the next block, by prepending a pause BML
block in front of it (3). The pause block is realized using a
preplanned BML block (see also Table [I). While the user
is still coughing, the agent plans a possible continuation to
be executed after the cough (4). This continuation is an al-
ternative to bm14 and is inserted in between the pause block
and bml5. As the end of the cough is detected, the agent
instantly makes use of the already planned continuation by
simply activating (starting) the pause behavior (5). Another
user acknowledgement is met by a head nod in (6).

In (7), a typical situation in incremental processing is
encountered. A user interrupt is first wrongly detected as an
acknowledgement and met by a head nod. The incremental
detector later adjusts its classification of this user response
to a stop request, which immediately interrupts the ongoing
behavior. The agent then asks the user what is going on
(8). This is realized using BML blocks interruptl and
breakup, respectively.

6 Conclusion

Achieving the fluidity, responsiveness and adaptiveness of
human conversational interaction is still a key challenge for
ECA research, both with regard to the technical enablement
of such machine abilities as well as with regard to the even-
tual acceptance of these systems as face-to-face conversation
partners. Based on a growing body of recent work—Dby others
as well as by ourselves—and based on an analysis of human
conversational behavior and phenomena, we have argued that

10 S. Kopp et al.

0:01 0:02 0:04 0:05 0:06 0:07 0:08 0:11 0:12 0:13
| | | | | | | | | 5
I I I I I I I I I "
A: morgen um zehn ist das treffen mit deinem bruder und um zwei uhr gehst du[INT] also, denn gehst du einkaufen und abends ab 8 ist der stamm[INT] was gibt es denn?
tomorrow at ten is the meeting with your brother and at two o’clock you'll go[INT] so, then you’ll go shopping and from 8pm there is the get-to[INT] what's the issue?
U: (coughing)
©) bmi1 bmi2 bmi3 bml4 bmis bml6 bmi7
Y —d— —d—
morgen um zehn ist das treffen mit . gehst du Und abends ab inder
\—‘ ‘ deinem bruder und um zwei uhr einkaufen 8 ist der stammtisch Kneipe
ack detected
¢ <bml id="nodl1l"><head id="nl1" lexeme="NOD"/></bml>
@ nod1
V— —A—
morgen um zehn ist das treffen mit und um zwei uhr gehst du Und abends ab ist der stammisch in der
deinem bruder einkaufen 8 Kneipe
cough start detected
<bml id="pause’ bmla:preplan="true” ¢
@ bmla:chunkBefore="bml5"/>
<bml id="remove” bmla:interrupt="bml4”/>
Und abends ab inder
‘ 8 ‘ ist der stammtisch ‘ ‘ Kneipe ‘

cough start detected

¢ bml4c

also dann gehst
du einkaufen

<bml id="bml4c” bmla:chunkBefore="bml5"

Und abends ab
bmla:chunkAfter="pause”/>..</bml> 8

ist der stammtisch

cough end detected

© v

<bml id="activate” bmla:onStart="pause”/>

in der
Kneipe

also dann gehst Und abends ab
du einkaufen

ist der stammtisch ‘

. activate

ack detected

(e) nodz[e |
<bml id="nod2"><head id="n1" lexeme="NOD"/></bml> — —__ X\

Und abends ab st der stammiisch in der

8 ! . Kneipe
ack detected
<bml id="nod3"><head id="n1" lexeme="NOD"/></bml> n0d3

P— |
ist der stammtisch ‘ ‘ n dve' ‘
Kneipe
stop request detected
<bml i interruptl” bmla:interrupt="bml6,bml7”/> ist def mﬁisch‘ ﬂe'
<bml id="breakup'>

<speech id="speechl" start="0.3"><text>Was gibt es denn?</text></speech> breakup

</bml>

Fig. 9 Annotated example interaction.

An Architecture for Fluid Real-time Conversational Agents

incremental processing and a closer integration of concurrent
output generation and input processing are two indispens-
able requirements for these qualities. Both, however, raise
research questions that are relatively new to the field of ECA
research and that need to be met at a basic architectural level
of behavior processing.

We have presented the ASAP framework that aims to
provide a unified basis for exploring those questions, both
conceptually and technically. The models we have devised
and the agents we have developed using this framework by
bringing together several previous implementations onto a
coherent architectural basis have yielded promising results
that—to the best of our knowledge—exceed existing systems.
Technical evaluation of the systems we have built (e.g., see
[3]) reveal that incremental processing allows for faster and
more fluid interactional behavior and that this behavior is
perceived as significantly more natural.

It stands to reason that there are numerous open chal-
lenges and questions with this kind of architectural ECA
design. For example, an incrementally steered ECA inher-
ently may correct itself more than a non-incremental ECA.
In extreme cases, this might lead to the ECA being perceived
as unreliable, insecure, etc. and the interaction being less
efficient. It will thus be important to develop models to as-
sess whether input information is reliable enough to start
generating output based on it (cf. the recent work on Dia-
logue State Tracking). Such models may be dynamic based
on learning and, e.g., adjust their thresholds based on the
amount of repairs in the ongoing conversation. Another is-
sue is the question of what the best size for an incremental
unit is. Theoretically, this size emerges from the internal pro-
cesses that are triggered into activity by a minimal amount
of characteristic input and produce output as soon as a mini-
mal amount of output is available [[13]. In practice, it is not
clear what sizes at the different levels provide the most fluid
and most natural conversational behavior of an ECA. Again,
an approach that allows for dynamically adjusting the incre-
ment size based on both internal processing measures and
external measures of dialogue success (or problems) would
seem attractive. Future work will need to combine the further
development of the framework with empirical evaluations,
in order to clarify these questions and to endow ECAs with
increasingly advanced abilities of real-time conversation.

Acknowledgements This research is supported by the Deutsche For-
schungsgemeinschaft (DFG) in the Center of Excellence EXC 277
in ‘Cognitive Interaction Technology’ (CITEC) as well as the Ger-
man Federal Ministry of Education and Research (BMBF) within the
Leading-Edge Cluster ‘it’s OWL’, managed by the Project Management
Agency Karlsruhe (PTKA). The authors are responsible for the content
of this publication.

References

1. M. Atterer, T. Baumann, and D. Schlangen. No sooner said than
done? Testing incrementality of semantic interpretations of spon-
taneous speech. In Proceedings of INTERSPEECH 2009, pages
1855-1858, Brighton, UK, 2009.

2. T. Baumann and D. Schlangen. Inpro_iSS: A component for just-
in-time incremental speech synthesis. In Proceedings of the ACL
System Demonstrations, pages 103—108, Jeju Island, Korea, 2012.

3. H. Buschmeier, T. Baumann, B. Dosch, S. Kopp, and D. Schlangen.
Combining incremental language generation and incremental
speech synthesis for adaptive information presentation. In Pro-
ceedings of the 13th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 295-303, Seoul, South Korea,
2012.

4. H. Buschmeier and S. Kopp. Towards conversational agents that at-
tend to and adapt to communicative user feedback. In Proceedings
of the 11th International Conference on Intelligent Virtual Agents,
pages 169-182, Reykjavik, Iceland, 2011.

5. O. Buss and D. Schlangen. DIUM — An incremental dialogue
manager that can produce self-corrections. In SemDial 2011: Pro-
ceedings of the 15th Workshop on the Semantics and Pragmatics
of Dialogue, pages 47-54, Los Angeles, CA, 2011.

6. J. Cassell, T. Bickmore, L. Campbell, H. Vilhjadlmsson, and H. Yan.
Human conversation as a systems framework: Designing Embodied
Conversational Agents. In J. Cassell, J. Sullivan, S. Prevost, and
E. Churchill, editors, Embodied Conversational Agents, pages 29—
63. The MIT Press, Cambridge, MA, 2000.

7. H. H. Clark and M. A. Krych. Speaking while monitoring ad-
dressees for understanding. Journal of Memory and Language,
50:62-81, 2004.

8. N. Crook, D. Field, C. Smith, S. Harding, S. Pulman, M. Cavazza,
D. Charlton, R. Moore, and J. Boye. Generating context-sensitive
ECA responses to user barge-in interruptions. Journal on Multi-
modal User Interfaces, 6:13-25, 2012.

9. I. de Kok and D. Heylen. Integrating backchannel prediction mod-
els into embodied conversational agents. In Proceedings of the
12th International Conference on Intelligent Virtual Agents, pages
268-274, Santa Cruz, CA, 2012.

10. F. Eyben, M. Woellmer, and B. Schuller. openSMILE — the Munich
versatile and fast open-source audio feature extractor. In Proceed-
ings of the 18th International Conference on Multimedia, pages
1459-1462, Florence, Italy, 2010.

11. S. Garrod and M. J. Pickering. Why is conversation so easy? Trends
in Cognitive Sciences, 8:8—11, 2004.

12. A. Gravano and J. Hirschberg. Turn-taking cues in task-oriented
dialogue. Computer Speech and Language, 25:601-634, 2011.

13. M. Guhe. Incremental Conceptualization for Language Production.
Lawrence Erlbaum Associates, Mahwah, NJ, 2007.

14. P. Haazebroek, S. van Dantzig, and B. Hommel. A computational
model of perception and action for cognitive robotics. Cognitive
Processing, 12:355-365, 2011.

15. A. Hartholt, D. Traum, S. C. Marsella, A. Shapiro, G. Stratou,
and A. Leuski. All together now. In Proceedings of the 13th
International Conference on Intelligent Virtual Agents, pages 368—
381, Edinburgh, UK, 2013.

16. B. Hartmann, M. Mancini, and C. Pelachaud. Formational param-
eters and adaptive prototype instantiation for MPEG-4 compliant
gesture synthesis. In Computer Animation, pages 111-119, 2002.

17. G. Hoffman and C. Breazeal. Anticipatory perceptual simulation
for human-robot joint practice: Theory and application study. In
Proceedings of the 23rd AAAI Confererence for Artificial Intelli-
gence, pages 1357-1362, Chicago, Illinois, 2008.

18. H. Hoffmann. Perception through visuomotor anticipation in a
mobile robot. Neural Networks, 20:22-33, 2007.

19. C. Howes, M. Purver, P. G. T. Healey, G. Mills, and E. Gre-
goromichelaki. On incrementality in dialogue: Evidence from
compound contributions. Dialogue & Discourse, 2:297-311, 2011.

S. Kopp et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

P. G. Kenny, T. D. Parsons, C. Pataki, M. Pato, C. St. George,
J. Sugar, and A. Rizzo. Virtual Justina: A PTSD virtual patient for
clinical classroom training. Annual Review of CyberTherapy and
Telemedicine, 6:113-118, 2008.

S. Kopp. Social resonance and embodied coordination in face-to-
face conversation with artificial interlocutors. Speech Communica-
tion, 52:587-597, 2010.

S. Kopp, L. Gesellensetter, N. C. Kramer, and I. Wachsmuth. A
conversational agent as museum guide — Design and evaluation of
a real-world application. In Proceedings of the 5th International
Working Conference on Intelligent Virtual Agents, pages 329-343,
Kos, Greece, 2005.

S. Kopp, B. Krenn, S. C. Marsella, A. N. Marshall, C. Pelachaud,
H. Pirker, K. R. Thérisson, and H. H. Vilhjalmsson. Towards
a common framework for multimodal generation: The behavior
markup language. In Proceedings of the 6th International Working
Conference on Intelligent Virtual Agents, volume 4133, pages 205—
217, Marina del Rey, CA, 2006.

S. Kopp and I. Wachsmuth. Synthesizing multimodal utterances
for conversational agents. Computer Animation and Virtual Worlds,
15:39-52, 2004.

O. Lemon and A. Gruenstein. Multithreaded context for robust
conversational interfaces: Context-sensitive speech recognition
and interpretation of corrective fragments. ACM Transactions
on Computer—-Human Interaction, 11:241-267, 2004.

P. Lison and G.-J. Kruijff. Salience-driven contextual priming of
speech recognition for human-robot interaction. In Proceedings
of the 18th European Conference on Artificial Intelligence, pages
636640, Patras, Greece, 2008.

D. Neiberg and K. P. Truong. Online detection of vocal listener
responses with maximum latency constraints. In International
Conference on Acoustics, Speech, and Signal Processing, pages
5836-2539, 2011.

A. Nijjholt, D. Reidsma, H. van Welbergen, H. op den Akker, and
Z. M. Ruttkay. Mutually coordinated anticipatory multimodal inter-
action. In A. Esposito, N. G. Bourbakis, N. Avouris, and I. Hatzi-
lygeroudis, editors, Verbal and Nonverbal Features of Human-
Human and Human-Machine Interaction, pages 70-89, Berlin,
Germany, 2008. Springer Verlag.

D. Reidsma, E. Dehling, H. van Welbergen, J. Zwiers, and A. Ni-
jholt. Leading and following with a virtual trainer. In Proceedings
of the 4th International Workshop on Whole Body Interaction in
Games and Entertainment, Lisbon, Portugal, 2011.

D. Reidsma, A. Nijholt, and P. Bos. Temporal interaction between
an artificial orchestra conductor and human musicians. Computers
in Entertainment, 6:1-22, 2008.

D. Reidsma, H. van Welbergen, R. Poppe, P. Bos, and A. Nijholt.
Towards bi-directional dancing interaction. In Proceedings of the
5th International Conference on Entertainment Computing, pages
1-12, Cambridge, UK, 2006.

T. Ribeiro, M. Vala, and A. Paiva. Thalamus: Closing the mind-
body loop in interactive embodied characters. In Proceedings of
the 12th International Conference on Intelligent Virtual Agents,
pages 189-195, Santa Cruz, CA, 2012.

H. Sacks, E. A. Schegloff, and G. Jefferson. A simplest systematics
for the organization of turn-taking for conversation. Language,
50:696-735, 1974.

A. Sadeghipour and S. Kopp. Embodied gesture processing: Motor-
based perception—action integration in social artificial agents. Cog-
nitive Computation, 3:419-435, 2011.

E. Schegloff. Overlapping talk and the organization of turn-taking
for conversation. Language in Society, 29:1-63, 2000.

S. Scherer, S. Marsella, G. Stratou, Y. Xu, F. Morbini, A. Egan, A. S.
Rizzo, and L.-P. Morency. Perception Markup Language: Towards
a standardized representation of perceived nonverbal behaviors. In
In Proceedings of the 12th International Conference on Intelligent
Virtual Agents, pages 455-463, Santa Cruz, CA, 2012.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

D. Schlangen, T. Baumann, H. Buschmeier, O. Buf}, S. Kopp,
G. Skantze, and R. Yaghoubzadeh. Middleware for incremental
processing in conversational agents. In Proceedings of the 11th
Annual SIGdial Meeting on Discourse and Dialogue, pages 51-54,
2010.

D. Schlangen and G. Skantze. A general, abstract model of incre-
mental dialogue processing. Dialogue & Discourse, 2:83—111,
2011.

W. Schuler, S. Wu, and L. Schwartz. A framework for fast in-
cremental interpretation during speech decoding. Computational
Linguistics, 35:313-343, 2009.

S. Seneff, C. Wang, L. Hetherington, and G. Chung. A dynamic
vocabulary spoken dialogue interface. In Proceedings of INTER-
SPEECH 2004, pages 321-324, Jeju Island, Korea, 2004.

G. Skantze and A. Hjalmarsson. Towards incremental speech
generation in dialogue systems. In Proceedings of the 11th Annual
SIGdial Meeting on Discourse and Dialogue, pages 1-8, 2010.
M. Stone, C. Doran, B. Webber, T. Bleam, and M. Palmer. Mi-
croplanning with communicative intentions: The SPUD system.
Computational Intelligence, 19:311-381, 2003.

R. L. Street. Speech convergence and speech evaluation in fact-
finding interviews. Human Communication Research, 11:139-169,
1984.

M. K. Tanenhaus, M. J. Spivey-Knowlton, K. M. Eberhard, and
J. C. Sedivy. Integration of visual and linguistic information in
spoken language comprehension. Science, 268:1632-1634, 1995.
K. R. Thérisson. Communicative Humanoids. A Computational
Model of Psychosocial Dialogue Skills. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1996.

D. Traum, D. DeVault, J. Lee, Z. Wang, and S. Marsella. Incremen-
tal dialogue understanding and feedback for multiparty, multimodal
conversation. In Proceedings of the 12th International Conference
on Intelligent Virtual Agents, pages 275-288, Santa Cruz, CA,
2012.

H. van Welbergen, D. Reidsma, and S. Kopp. An incremental
multimodal realizer for behavior co-articulation and coordination.
In Proceedings of the 12th International Conference on Intelligent
Virtual Agents, pages 175-188, Santa Cruz, CA, 2012.

H. H. Vilhjalmsson, N. Cantelmo, J. Cassell, N. E. Chafai, M. Kipp,
S. Kopp, M. Mancini, S. C. Marsella, A. N. Marshall, C. Pelachaud,
Z. M. Ruttkay, K. R. Thérisson, H. van Welbergen, and R. J. van der
Werf. The Behavior Markup Language: Recent developments and
challenges. In Proceedings of the 7th International Conference on
Intelligent Virtual Agents, pages 99—120, Paris, France, 2007.

A. Wykowska, A. Schubo, and B. Hommel. How you move is what
you see: action planning biases selection in visual search. Journal
of Experimental Psychology: Human Perception and Performance,
35:1755-1769, 2009.

	Introduction
	Architecture Requirements
	Related Work
	The ASAP Framework
	Implementation and Results
	Conclusion

