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Abstract The Switching Wizard of Oz (SWOZ) is a setup
to evaluate human behavior synthesis algorithms in online
face-to-face interactions. Conversational partners are repre-
sented to each other as virtual agents, whose animated behav-
ior is either based on a synthesis algorithm, or driven by
the actual behavior of the conversational partner. Human
and algorithm have the same expression capabilities. The
source is switched at random intervals, which means that the
algorithm’s behavior can only be identified when it deviates
from what is regarded as appropriate. The SWOZ approach
is especially suitable for the controlled evaluation of syn-
thesis algorithms that consider a limited set of behaviors.
We evaluate a backchannel synthesis algorithm for speaker–
listener dialogs using an asymmetric version of the frame-
work. Human speakers talk to virtual listeners, that are either
controlled by human listeners or by an algorithm. Speak-
ers indicate when they feel they are no longer talking to a
human listener. Analysis of these responses reveals patterns
of inappropriate behavior in terms of quantity and timing of
backchannels. These insights can be used to improve synthe-
sis algorithms.
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1 Introduction

Advances in animation and sensor technology allow humans
to engage in face-to-face conversations with virtual agents.
One challenge is to generate the agents’ appropriate, human-
like behavior contingent with that of their human conver-
sational partners. We focus on the nonverbal conversational
behavior of a virtual agent, which can be specified by hand
using response rules, or by machine learning models learned
from annotated corpus data. In either case, there is a need
to evaluate the behavior synthesis model. Offline, corpus-
based analyses can be performed to determine how the model
matches the data it was derived from. Such studies have led
to insights in the features and models that can predict the
production of behaviors in the context of a conversation. For
virtual agents, it also needs to be determined how the behavior
generated by these models is perceived by human observers.
Initial steps have been taken in this direction, but using offline
stimuli. The approach introduced in this paper targets the
evaluation of behavior synthesis algorithms in online dialogs.

Humans are particularly sensitive to flaws in the displayed
behavior, both in form and timing [16], also when virtual
agents are used [19]. This effect also occurs when certain
behaviors are not animated (e.g. eye gaze or respiration),
which makes the behavior of the virtual agent more sta-
tic. Consequently, a virtual agent’s behavior is typically per-
ceived as rather unrealistic. This is especially true in exper-
imental settings where the behavior of the agent is varied
systematically along one or a limited number of modalities.
We argue that the current lack of good perceptual evaluation
methods hampers progress in the design and implementation
of behavior synthesis algorithms.

To this end, we propose a methodology that combines
ideas behind the Turing test with those of a wizard of Oz
(WOZ) setup. A behavior generation algorithm passes the

123



110 J Multimodal User Interfaces (2014) 8:109–117

human Turing test when, given limited expression channels,
a human observer is not able to make out whether behavior
originates from an algorithm or from a fellow human [27].
In a Wizard of Oz setup, tasks that are to be carried out by
a machine are actually performed by a human, without the
interacting subjects’ awareness [7]. Such a setup is common
during the design and evaluation of complex algorithms, for
example those that produce human-like behavior.

At the heart of the Switching Wizard of Oz (SWOZ) is a
distributed video-conferencing setting with two human sub-
jects. Each subject is observed with a camera and a micro-
phone and algorithms are employed to analyze the nonverbal
behavior in real-time. These observations are used as input
to a behavior synthesis model. Both subjects are shown a vir-
tual representation of the other, animated based on one of two
sources: (1) directly on the observed behavior of the other, or
(2) on the output of a behavior synthesis model. Both sources
share the same expression capabilities and limitations in
terms of the type and animation of the behaviors. Subjects
are not informed of the source of their partner’s virtual repre-
sentation. However, especially when the synthesis algorithm
is less sophisticated, subjects might be aware that the behav-
ior does not originate from their human partner. To prevent
that they will not pay attention to the dialog and the behavior
of the virtual representation, the system switches between
the sources at random times. This forces the subjects to stay
focused and to evaluate behavior in a slightly larger context.

When the displayed behavior deviates from what is
regarded as human-like, the observer should press a button.
The behavior preceeding a button press can be compared with
the behavior that is not judged as inappropriate, to reveal
patterns of (un)human-like behavior. The ratings can thus be
used to evaluate and improve the behavior synthesis models.
In principle, one could even learn or adapt these models in an
online fashion. The SWOZ methodology lends itself well for
the evaluation of synthesis algorithms that focus on a limited
number of distinct behaviors. As observations of the subjects
are continuously recorded, the framework doubles as a tool
for the study into nonverbal behavior.

We will discuss learning and evaluation of behavior syn-
thesis models in the next section. The SWOZ framework is
introduced in Sect. 3. In Sect. 4, we demonstrate the frame-
work in the context of backchannel behavior in speaker–
listener dialogs, and present results in Sect. 5. We outline
directions for further research and application in Sect. 6.

2 Related work

We first discuss the offline learning and evaluation of non-
verbal behavior synthesis models, with a focus on those tar-
geting listening behavior. Next, we turn to online evaluation
in Sect. 2.3.

2.1 Learning behavior models

Nonverbal behavior models are predominantly learned from
annotated corpora of dialogs between human subjects [18],
or based on simple observations from literature such as
(co)occurrence statistics. The annotation of these corpora
typically involves manual labeling of the occurrences of spe-
cific nonverbal behaviors such as nodding, pose shifts and
smiles. Particularly for listening behavior, such models for
the listener are conditioned on the observed behavior of the
speaker [12]. The aim of behavior modeling is then to deter-
mine when behaviors occur within the context of the inter-
action, for example at the end of a speaker turn. This results
in a (probabilistic) mapping from observed behavior of the
speaker to a likeliness of the production of the behavior for
the listener. These mappings are commonly learned using
machine learning algorithms [21], but can also be specified
by hand [24,30].

For the synthesis of listening behavior models, research
typically focuses on backchannels, signals from the listener
to indicate continued attention, interest and comprehension
without the aim of taking the floor [32]. Xudong [31] and
Duncan [8] discuss backchannels and their nonverbal forms.
Bavelas et al. [2] distinguish between generic and specific
backchannels. The latter are more accurately timed and tai-
lored to the speaker’s discourse, e.g. a surprised face or a
“wow!” utterance. Generic backchannels are signals of con-
tinued attention, and are typically communicated with nods
or “uh-huh” utterances. There are differences in the quantity,
type and timing of backchannels between cultures and sub-
jects [9,17]. Apart from a few recent studies (e.g. [29]), cur-
rent work on synthesis models of listening behavior mainly
focuses on generic backchannels.

Linguistic features such as the end of a grammatical clause
[32] or part-of-speech tags [5] have been found to be good
predictors of backchannel production in the listener. In online
conversations, such features cannot be obtained robustly in
real-time. Therefore, researchers have focussed on low-level
features from the speaker’s speech and gaze. A region of
rising pitch [30], a period of pause [26] and mutual gaze
[2,21] have been found to cue backchannels in the listener.
These features can be obtained in real-time and therefore are
suitable as input to online behavior synthesis algorithms.

2.2 Evaluation of behavior models

The quality of behavior synthesis models is typically mea-
sured by comparing generated behaviors to those actually
performed in the corpus. Objective measures such as preci-
sion and recall are used, but these do not take into account
the optionality of social behavior. We argue that social behav-
ior performed differently from that in the corpus can also be
regarded as appropriate. However, objective measures will
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discredit such alternative behavior which hinders general-
ization of behavior synthesis models. Moreover, there is no
guarantee that the generated behavior is also perceived as less
appropriate should it be performed by a virtual agent. This is
due to their limited or adapted animation possibilities.

Perceptual evaluation, where human observers provide
subjective ratings, is used to determine whether the generated
behavior is perceived as human-like. It requires that humans
can perceive the behavior naturally, e.g. using virtual agents
[3]. Huang et al. [15] and Poppe et al. [24] use subjective rat-
ings to perceptually evaluate generated sequences of behav-
ior. While such ratings give a general idea of the performance
of the model, they suffer from three main drawbacks.

First, it cannot be determined how aspects of the synthesis
model (e.g. quantity, type and timing of specific nonverbal
behaviors) affect the rating. There is a need for evaluation
on a shorter time-scale. Second, the fact that many modal-
ities are not animated has been found to decrease the per-
ceptual ratings as the resulting behavior is more static. As
a consequence, systematic variation of generated behavior
is also affected by factors that are not controlled. This hin-
ders the understanding which aspects of a behavior synthe-
sis algorithm require adaptation. Third, the evaluations are
performed offline. We argue that online evaluation is more
ecological valid as the dialogs are then contingent.

The first issue was addressed by Poppe et al. [24], who had
human observers watch a video of a speaker and an animation
of a listener side-by-side. The listener produced backchan-
nels at predetermined moments. Observers were instructed to
press a button when they judged the produced social behav-
ior as inappropriate. With this approach, subjective ratings
were obtained at the level of individually generated nonverbal
behaviors. While this gives insight in when not to produce a
behavior, characteristics of the behavior over time (e.g. num-
ber of backchannels, time between two backchannels) are
not explicitly taken into account. The work presented in this
paper addresses this issue, while at the same time dealing with
the limited animation capabilities of a systematic perceptual
evaluation approach. Moreover, we focus on online dialogs.

2.3 Online synthesis and evaluation

Engaging in a face-to-face conversation with a virtual agent
requires that behavior can be generated in real-time contin-
gent with the observed behavior of a human conversational
partner. These observations can be obtained from micro-
phones or cameras and encoded as low-level features. Behav-
ior synthesis models use the features as input to generate
sequences of behavior. A final step in this process is to ani-
mate these sequences on a virtual agent and display them to
the human conversational partner.

Several systems have been introduced that combine online
observation and behavior generation. Recently, Huang et al.

[15] implemented a virtual agent with the aim of maximizing
the feeling of rapport between the agent and a human conver-
sational partner. The agent produces speech, smiles and head
nods based on observed speech, smiles, nods and eye gaze
of the human subject. Authors have investigated mediated
conversations in which the representation of the conversa-
tional partner is controlled. MushyPeek is a real-time system
where the lip synchronization and head orientation of a vir-
tual agent are generated based on detected voice activity [11].
Different head orientation strategies are evaluated, based on
the speech/no-speech state of both conversational partners.

Evaluation of these systems is carried out over entire con-
versations by looking at the amount of speaking [11] or sub-
jective ratings of rapport [15]. In this paper, we describe a
framework specifically aimed at online evaluation of gener-
ated behavior on a shorter time-scale, involving one or only
a few modalities. The framework is based on the nonverbal
Turing test [27], in which human observers have to indicate
whether their conversational partner is operated by a human
or by an algorithm. Our work shares some similarities with
the work of Bailenson et al. [1], who presented a speaker with
an animation of a listener based on either the listener’s head
movements or the speaker’s own time-delayed head move-
ments. The work described in this paper is different as we
focus on behavior synthesis algorithms in a fully interactive
setting. Moreover, we aim at online evaluation on a shorter
time scale, in order to gain insight into the (generation of)
appropriate listening behavior.

3 Switching Wizard of Oz

The symmetric SWOZ framework is schematically depicted
in Fig. 1. Two human subjects A and B, seated at distrib-
uted locations, are shown virtual representations of each
other. The representation of B displays either the behav-
ior performed by B, or behavior synthesized by an algo-

A
Virtual B

Virtual A

Behavior
synthesis

model

Behavior
synthesis

model

B

Switch

Switch

Fig. 1 Schematic representation of the Switching Wizard of Oz frame-
work with two subjects A and B. They are shown a virtual representation
of the other either animated directly based on the observed behavior, or
based on a behavior synthesis algorithm
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rithm, based on observations of A. These observations can
be obtained using camera and microphone, or from sensors
such as Kinects or gaze trackers. The behaviors displayed by
the virtual representations can be discrete (e.g. nods, smiles)
or continuous behaviors (e.g. head movement).

To evaluate the quality of behavior synthesis models, both
subjects are presented with a yuck button which they press
whenever they believe the displayed behavior does not origi-
nate from the other subject. The concept of a yuck button was
also used as a post-check in [20] and for quantitative analysis
in [24]. Given that both human and algorithm use the same
modalities for communication, we can compare the behavior
and the yucks to identify how quantity, type and timing of the
behaviors influences the perception. During a conversation,
the source (i.e. human or algorithm) of the virtual agent is
switched at random time intervals. This forces the subjects
to continuously evaluate the behavior, also on a shorter time-
scale compared to when presented with stimuli originating
from a single source. Consequently, we can evaluate more
behavior data in less time.

The three components subject observation, behavior syn-
thesis and behavior switching are discussed subsequently. In
Sect. 3.4, we describe how the framework could be used in
an experimental setting.

3.1 Subject observation

The conversational partners are observed via sensors, whose
outputs are encoded into features in real-time. For cameras,
head tracking, body pose estimation or gesture recognition
software could be used. For microphones, acoustic analysis
software could be used to obtain speech features such as
pitch and intensity level. Keyword spotting and (incremental)
speech recognition could be used as additional sources. It
should also be possible to regenerate the observed behavior
on the virtual representation of the subject. For example, the
virtual agent’s head movement and facial expressions can
be animated based on the output of head tracker and facial
expression analysis software. In addition, the human’s speech
can be replayed directly.

3.2 Behavior synthesis

The extracted features are subsequently used in a behav-
ior synthesis algorithm, to determine whether or not certain
behaviors should be animated. These algorithms can be man-
ually engineered sets of classification rules or machine learn-
ing classifiers trained on previously recorded corpus data. We
treat the algorithm as a black box and only assume that its
output is a (confidence) score or classification. Based on this
output or the observations of the actual conversational part-
ner, the behavior is animated on a virtual agent. Behaviors
can be discrete or continuous.

3.3 Behavior switching

An important aspect of the framework is the switching
between the two sources at random time intervals. The dura-
tion of an interval can differ between research questions.
Some behaviors can be analyzed at a smaller time scale than
others. It is important that the switching is not noticeable
for the subjects. For discrete events, this implies that the cur-
rently animated behavior should be finished and a new behav-
ior should not be directly animated. For continuous behav-
iors, it should also be ensured that the displayed behavior is
continuous. As the switching component of the framework is
presented with the behavior of both the conversational part-
ner and the algorithm, the switching time can be selected
when the two sources are more similar, to allow for inter-
polation between the two. For example, the source could be
switched when the difference in head orientation and move-
ment between both sources is small.

3.4 Implementation of the framework

The framework is general and several adaptations are pos-
sible to focus on specific situations. First, we presented the
framework as symmetric, with both conversational partners
being observed and animated. In the next section, we will
present an asymmetric variant that is well suited for speaker–
listener dialogs in which only the behavior of the listener is
animated and evaluated. In this case, the audio and video
of the speaker are directly shown to the listener. Only the
speaker provides perceptual ratings. An asymmetric setup is
suitable for behavior where the two subjects have different
(conversational) roles or modalities of expression.

Another implementation consideration is whether to ani-
mate discrete or continuous behavior. In the latter case, the
behavior of the conversational partner and the algorithm are
required to be continuously measured and generated. In the
former case, discrete events need to be recognized from the
observations. Instead of recognizing these from sensors, we
can also use a keyboard. Conversational partners then have
to press a button whenever they would give a certain nonver-
bal signal. While this seems artificial, the use in Parasocial
Concensus Sampling [14] demonstrates that the distributions
in the number and timing of backchannels are comparable to
actual performance of the behavior. We will use this idea in
the next section.

At each moment in time, the framework receives behavior
specifications from the human subject and the behavior syn-
thesis algorithm. The behavior of both can be recorded, and
used later for offline evaluation or for training the algorithms.
For example, one can analyze in which multimodal context
the human subject produced a smile, or one can adjust a
threshold for the production of nods based on the confidence
scores obtained from evaluating the machine learning algo-
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Fig. 2 Asymmetric setting of the Switching Wizard of Oz framework
with a speaker and listener. The speaker is shown a virtual representation
of the listener, while the listener sees the video of the speaker

rithm. In addition, the recorded data can be used for human
perception studies.

4 SWOZ for backchannel synthesis evaluation

To demonstrate the use of the SWOZ framework, we applied
it to the evaluation of backchannel behavior in speaker–
listener dialogs [12]. Given the nature of such dialogs, we use
an asymmetric setting (see Sect. 3.4, and Fig. 2). Only the
behavior of the speaker is observed, and used as input to ani-
mate the behavior of the virtual listener. Consequently, only
the speaker makes perceptual judgements about the behav-
ior of the virtual listener. We discuss the setup, procedure
and participants in the subsequent sections, followed by a
summary and discussion of the results in Sect. 5.

4.1 Setup

Speaker and listener are seated at distributed locations. The
setup at the speaker’s side is shown in Fig. 3. A one-way
mirror is used to record the speaker through the projection
of a virtual listener, to achieve a better sense of eye-contact.
The listener sees a video of the speaker on a screen, and
generates discrete backchannel events by pressing the space
bar on a keyboard. It circumvents the recognition of nods
and vocalizations from video and audio, respectively, which
would add an additional delay. Also, incorrect recognition of
the backchannels would introduce noise into the analyses.

4.1.1 Subject observation

Currently, we do not analyze the video of the speaker and
only focus on the speaker’s speech, recorded with a micro-
phone. Previous work (e.g. [15,26,30]) has demonstrated that
there are differences in the acoustics of the speaker’s speech
prior to the production of a backchannel in the listener. This

Fig. 3 Experiment setup at speaker side. The setup at the listener’s
side is similar, but displays the video of the speaker instead of a virtual
representation. A camera is placed behind the one-way mirror

makes acoustic features good predictors for backchannels.
We obtain the first 12 mel-frequency cepstrum coefficients
(MFCC) and speech intensity at 30 frames per second using
the CoMIRVA toolkit [25]. As different speakers might have
very different acoustic speech profiles, we calculate z-scores
instead of the raw MFCC and intensity features. Our process-
ing largely follows that of De Kok et al. [10]. Specifically,
when a new measurement is available, we calculate the mean
and slope over the past 3, 6 and 15 measurements, which cor-
respond to intervals of approximately 100, 200 and 500 ms,
respectively. Additionally, we use one feature to indicate the
time since the last change from speaking to pause and vice
versa. We calculate the relative offset in milliseconds to the
moment where the speaker starts or stops talking, based on
thresholded energy values. When the speaker stopped talk-
ing, we negate the time difference. We combine all features
into a 79-dimensional vector (2 × 3 × (12 + 1)+ 1) per time
instant.

4.1.2 Behavior synthesis and model learning

The observed features are used as input for a support vector
machine (SVM), a machine learning classifier that gives a
score for each individual feature vector. The temporal dimen-
sion is not taken into account in the classifier, only in the fea-
ture encoding through the use of windows and offsets. We
apply a threshold on the classifier scores. If the score is above
the threshold, we animate a backchannel for the virtual lis-
tener, provided that no backchannel has been performed in
the previous second. In this paper, we treat the synthesis algo-
rithm as a black box, i.e., we do not analyze the contribution
of individual features, nor do we validate the model that is
learned.

123



114 J Multimodal User Interfaces (2014) 8:109–117

The SVM is trained on data gathered using a similar setup
but without the switching component, behavior synthesis
algorithm and yuck button. Effectively, this renders the setup
to a Wizard of Oz setting where the speaker always sees
a virtual representation of the human listener. We recorded
six conversations and extracted feature vectors at moments
where backchannels were produced by the human listener.
These are used as positive samples. In addition, we sam-
pled the same number (312) of negative samples at moments
where no backchannel was produced within a window of 1 s
(500 ms before and after). The first 15 s of each interaction
were used to determine the mean and standard deviation of
each feature. For the remainder of the recordings, these were
used to calculate the z-scores. We trained the SVM using Lib-
SVM [6] with the default parameters. We then empirically
determined the value of the threshold on the classification
scores. This threshold was fixed for all experiment sessions.

For the animation of the virtual agent, we used the Elck-
erlyc virtual human platform [28]. Backchannels can have
many forms, including nods, short vocalizations, smiles and
other facial expressions [8]. For experimental control, and
in line with recent research (e.g. [21]), we use head nods
together with a “uh-huh” vocalization. These are regarded as
discrete generic feedback [2]. Backchannel animations were
planned and animated directly on the virtual listener when
prompted by the human listener or algorithm. The delay due
to network and planning time was estimated at a maximum
of 50 ms.

4.1.3 Behavior switching

We switched the source of the virtual listener at random time
intervals, sampled from a normal distribution with mean 30 s
and a standard deviation of 10 s. Sampled lengths shorter than
10 s and longer than 50 s were set to 10 and 50 s, respectively.

The nods and vocalizations we performed in this experi-
ment are discrete behaviors. To ensure that the moment of the
switch was not perceptible to the speakers, we again enforced
a minimum of 1 s between subsequently generated backchan-
nels.

4.2 Procedure

Participants were explained the aim of the study. The lis-
tener was seated in front of a 21 in. screen and instructed to
press the space bar on a keyboard whenever he would give a
backchannel to the speaker. The listener was unaware of the
source of the virtual listener. The speaker was seated in the
adjacent room and told explicitly that the displayed behavior
of the listener could originate either from the actual listener or
from an algorithm, and that these would switch occasionally.
Nothing was revealed about the switching interval. Speakers
were instructed to press the yuck button if they thought the

displayed behavior was not human-like. They were explained
that pressing the button would switch the source of the virtual
listener to the actual listener. Speakers were given a list of
possible conversation topics, including their favorite dishes
and their opinion on societal issues. They were free to discuss
any topic for any length of time. To avoid speech disfluen-
cies due to language difficulties, we deliberately chose to
have all conversations in Dutch, the native language of most
of our staff and students. Recordings were stopped by the
experimenter when the speaker ran out of conversation top-
ics or made an indicative remark about this. In other cases,
we stopped recording when a topic change occurred after
more than 7.5 min of conversation.

Before the start of the conversation, speakers were asked
to introduce themselves briefly. We recorded their speech and
calculated the average and standard deviation of the MFCC
and speech intensity features over this interval. These were
used to calculate the z-scores for use in the algorithm.

4.3 Participants

In total, we recruited 24 participants (5 female, mean age
27.25) in 12 pairs. For each pair, the first speaker was chosen
randomly. The roles were switched after the first conversa-
tion.

5 Results and discussion

We recorded 24 conversations with a total duration of
192 min. In 60.22 % of the time, the virtual listener was oper-
ated by the human listener. This above-average percentage
is partly due to the fact that the source of the virtual listener
started with and switched to the human listener when the
yuck button was pressed.

First, we take a look at the yuck presses in relation to the
source of the virtual listener. Of all 138 yucks, 96 (69.57 %)
were given when the virtual listener was operated by the algo-
rithm. Corrected for the unequal distribution of time over the
two sources, one would expect only 55 yucks (39.78 % of
138). Apparently, the behavior from the synthesis algorithm
is more often regarded as inappropriate. To investigate this
further, we analyze segments, intervals between two switches
(possibly due to a yuck). In total, 45.93 % of the algorithm
segments received a yuck, compared to 15.91 % of the seg-
ments originating from the human listener. Of course, some
of the yucks might have been given because of the behavior
shown before a switch. Just before the speaker pressed the
button, the framework might have switched, causing the yuck
to be attributed to the other source. This is likely to be the
case for both sources. We will not try to compensate for these
yucks as it an arbitrary task to determine why the yuck button
was pressed. In the following, we will discuss the quantity
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(b) Segments with yuck

Fig. 4 Frequency histograms of backchannels per minute, calculated per segment. Yuck presses typically follow quickly the display of a backchannel

and timing of the backchannels in relation to whether a yuck
was issued.

5.1 Backchannel quantity

About one third of the yucks has been performed when
the virtual listener was operated by the human listener. We
investigate whether there are characteristics of the displayed
behavior are perceived as inappropriate, independent of the
source of the virtual listener. As a first analysis, we looked
at the average number of backchannels per minute for those
segments that were yucked. We calculated this number by
dividing the number of backchannels between the last switch
(or yuck) and the yuck, divided by the length of this inter-
val. Initially, we distinguished only between the segments
that received a yuck and those that did not, independent of
the source of the virtual listener. The frequency histograms
appear in Fig. 4.

The backchannel frequency of segments that did not
receive a yuck peaks between 4 and 6 backchannels per
minute. Yucks have been given especially for segments with
very low (including zero) and very high frequencies. In line
with [24], the more the frequency deviated from 4 to 6, the
more likely it is that the segment received a yuck. This num-
ber is informative for the design of backchannel synthesis
algorithms. We subsequently analyzed the source of these
frequencies, and found that many of these corresponded to the
algorithm. This was noted by the participants in the record-
ings as well. In several cases, the algorithm produced many
nods in sequence while in other cases, it rarely produced a
nod. This shows in the data, where 74.03 % of the segments
without any backchannel corresponded to the setting where
the virtual listener was operated by the algorithm.

This effect is partly due to the fixed threshold on the clas-
sification score of the algorithm. Another cause could be the
normalization of the features, based on the speech recorded
prior to the actual conversation. The nature of this speech

could be different from that of the remainder of the conver-
sation. Especially when the standard deviation of features
was either lower or higher, this typically caused more or less
backchannels in the conversation, respectively. Both issues
could be solved by applying an adaptive threshold, for exam-
ple by continuously considering the last 15 or 30 s of speech.
While this still depends on the characteristics of the discourse
(e.g. topic, involvement), differences between subjects can be
mitigated to some extent.

5.2 Backchannel timing

Besides differences in backchannel frequency, the produc-
tion or omission of a backchannel at a certain moment in time
could be regarded as inappropriate. Next, we turn to this tim-
ing of individual backchannels. We noticed that many yucks
were given directly after the display of a backchannel. Inap-
propriate timing probably has caused the subject to press the
yuck button. To analyze this, we calculated the time between
the last backchannel and the end of the segment. We distin-
guished between segments that ended with a yuck and those
that did not. Frequency histograms appear in Fig. 5. Many
yuck presses follow shortly after a backchannel has been
produced. This is probably a response to an inappropriately
timed backchannel. Again, the virtual listener was driven by
the backchannel synthesis algorithm in the majority of these
cases.

We compare the backchannel timings of the human lis-
tener and the backchannel synthesis algorithm. The better
the timings match, the more the algorithm approximates the
backchannel behavior of a human listener. In the SWOZ
setup, we stored the key presses of the actual listener and
the predictions of the algorithm, also when they were not ani-
mated. As such, we can compare the timings of both sources.
To investigate how well the timings matched, we considered
them matching if they were produced within a margin of 1
s (500 ms earlier or later). Of all backchannels shown to the
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Fig. 5 Frequency histograms of time between the last backchannel and segment end. Segments with very few (0–2) or many (10+) backchannels
per minute more often receive a yuck

speaker, 19.61 % matched a backchannel produced by the
other source. However, from the backchannels performed
in a segment that received a yuck, only 15.65 % matched
(compared to 20.74 % when the segment ended without a
yuck). Apparently, the backchannel behavior is perceived as
more appropriate when the timings produced by the algo-
rithm and actual listener are more similar. It should be noted
that these percentages appear rather low. This is mainly due
to the optionality of backchannels. They can be produced
at various places within the speaker’s discourse and still be
perceived as human-like.

We noted that both the human listener and the algo-
rithm occasionally produced backchannels when the speaker
just started a sentence, halfway a sentence and after filled
pauses (e.g. “uhm”). Given that we obtained speech state
estimates using the CoMIRVA toolkit [25], we analyzed
whether backchannels were performed during the speaker’s
discourse. It shows that none of the backchannels produced
by the algorithm were made while speech was detected.
This might be due to the training of the SVM. In compar-
ison, the human listener made 22.25 % of the backchan-
nels while speech was detected. Closer analysis revealed
that the speech/non-speech estimates were not always accu-
rate. Still, speech was detected in 46.97 % of the time,
which means that backchannels are more often produced in
pauses.

6 Conclusion and future work

We introduced the SWOZ, a framework to evaluate and
record nonverbal behavior in an online mediated setting. The
setup combines ideas from the Turing test with those of a
Wizard of Oz setup. In a distributed setup, two conversational
partners are shown, on a virtual agent, either the behavior of
the other or behavior generated by an algorithm. The system
switches between the two at random time intervals. Each con-
versational partner can indicate (by pressing a button) that he
perceives the behavior as inappropriate. Humans and algo-

rithm use the same limited set of modalities, which eliminates
any bias in the perceptual judgements due to modalities or
behaviors that are not animated. This allows for the quality
of the algorithm to be expressed in terms of characteristics
such as the quantity, type and timing of the behaviors.

To demonstrate the potential of the SWOZ framework,
we conducted a user experiment on backchannel behavior
in online speaker-listener dialogs. We used the asymmetric
SWOZ framework with only the speaker’s voice recorded.
Based on the pitch, intensity and speech state, we evalu-
ated a trained SVM and thresholded the output. The vir-
tual listener displayed a nod and short vocalization to the
speaker, based either on the algorithm or on button presses
of the actual listener. Speakers judged the listener’s behavior
with too many or too few backchannels per minute as inap-
propriate. In the majority of the cases, the virtual listener’s
behavior then originated from the algorithm. The high and
low backchannel frequencies were mainly due to the fixed
threshold used to decide whether a backchannel should be
produced. These findings give rise to the adaptation of the
way in which the threshold is set for different individuals. In
addition, we found that backchannels were more often found
inappropriate when the human listener and the algorithm’s
generated timings did not match.

The SWOZ methodology has some unique advantages
over corpus-based evaluation and offline perceptual evalu-
ation studies. First, evaluation in online dialogs is more eco-
logically valid, and enables us to obtain more data in less
time. Second, the fact that both human listener and algo-
rithm have the same expression capabilities ensures that the
omission of certain modalities or behaviors does not lead to
a bias in the perception of the animated behavior. Third, the
switching ensures that we can evaluate behavior at a suitable
time-scale, typically shorter than a conversation and, when
needed, longer than an individual behavior.

Future work will consider larger-scale evaluation of
behavior synthesis models, initially in a similar asymmet-
ric setting. We plan to replace the listener’s button with mod-
ules that recognize nods and vocalizations from the listener’s
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head movements and voice. This requires that these events
are detected at an early stage, to avoid delays between the
detection and generation of the backchannel [13]. In addi-
tion, we plan to incorporate other modalities such as facial
expressions (e.g. smiles and frowns) and head movement as
these can also have a backchannel function [4,8]. A second
avenue for future work is to make the behavior synthesis mod-
els more flexible. For the type of backchannel behavior that
we evaluated in this paper, we will look at ways to automati-
cally adapt the threshold for the generation of backchannels.
Also, we consider using machine learning models that take
into account the time dimension in the classification.

The SWOZ framework can also be used as a recording
tool, and we intend to use the yucks to adapt the behavior
synthesis models. We can use the yuck moments as negative
samples in the training of machine learning algorithms, for
example using the iterative approach by De Kok et al. [10].

References

1. Bailenson JN, Yee N, Patel K, Beall AC (2008) Detecting digital
chameleons. Comput Hum Behav 24(1):66–87

2. Bavelas JB, Coates L, Johnson T (2002) Listener responses as a
collaborative process: the role of gaze. J Commun 52(3):566–580

3. Bente G, Krämer NC, Petersen A, de Ruiter JP (2001) Com-
puter animated movement and person perception: methodologi-
cal advances in nonverbal behavior research. J Nonverbal Behav
25(3):151–166

4. Brunner LJ (1979) Smiles can be back channels. J Pers Soc Psychol
37(5):728–734

5. Cathcart N, Carletta J, Klein E (2003) A shallow model of
backchannel continuers in spoken dialogue. In: Proceedings of the
conference of the European chapter of the association for compu-
tational linguistics, Budapest, Hungary, vol 1, pp 51–58

6. Chang CC, Lin CJ (2011) LibSVM: a library for support vector
machines. ACM Trans Intell Syst Technol 2(3):1–27

7. Dahlbäck N, Jönsson A, Ahrenberg L (1993) Wizard of Oz studies:
why and how. In: Proceedings of the international conference on
intelligent user interfaces (IUI), Orlando, FL, pp 193–200

8. Duncan S Jr (1974) On the structure of speaker–auditor interaction
during speaking turns. Lang Soc 3(2):161–180

9. de Kok I, Ozkan D, Heylen D, Morency LP (2010) Learning and
evaluating response prediction models using parallel listener con-
sensus. In: Proceedings of the international conference on multi-
modal interfaces (ICMI), Beijing, China

10. de Kok I, Poppe R, Heylen D (2012) Iterative perceptual learning
for social behavior synthesis. Technical report, TR-CTIT-12-01,
University of Twente

11. Edlund J, Beskow J (2009) Mushypeek: a framework for online
investigation of audiovisual dialogue phenomena. Lang Speech
52(2–3):351–367

12. Heylen D, Bevacqua E, Pelachaud C, Poggi I, Gratch J, Schröder
M (2011) Generating listening behaviour. In: Cowie R, Pelachaud
C, Petta P (eds) Emotion-oriented systems cognitive technologies.
Springer, Berlin, pp 321–347

13. Hoai M, la Torre FD (2012) Max-margin early event detectors.
In: Proceedings of the conference on computer vision and pattern
recognition (CVPR), Providence, RI, pp 2863–2870

14. Huang L, Morency LP, Gratch J (2010) Learning backchannel pre-
diction model from parasocial consensus sampling: a subjective
evaluation. In: Proceedings of the international conference on inter-
active virtual agents (IVA), Philadelphia, PA, pp 159–172

15. Huang L, Morency LP, Gratch J (2011) Virtual rapport 2.0. In:
Proceedings of the international conference on interactive virtual
agents (IVA), Reykjavik, Iceland, pp 68–79

16. Krauss RM, Garlock CM, Bricker PD, McMahon LE (1977) The
role of audible and visible back-channel responses in interpersonal
communication. J Pers Soc Psychol 35(7):523–529

17. Li HZ (2006) Backchannel responses as misleading feedback in
intercultural discourse. J Intercult Commun Res 35(2):99–116

18. Martin JC, Paggio P, Kuehnlein P, Stiefelhagen R, Pianesi F (2008)
Introduction to the special issue on multimodal corpora for model-
ing human multimodal behavior. Lang Resour Eval 42(2):253–264

19. McDonnell R, Ennis C, Dobbyn S, O’Sullivan C (2009) Talking
bodies: sensitivity to desynchronization of conversations. ACM
Trans Appl Percept 6(4):A22

20. McKeown G, Valstar M, Cowie R, Pantic M, Schröder M (2012)
The SEMAINE database: annotated multimodal records of emo-
tionally colored conversations between a person and a limited
agent. IEEE Trans Affect Comput 3(1):5–17

21. Morency LP, de Kok I, Gratch J (2010) A probabilistic multi-
modal approach for predicting listener backchannels. Auton Agents
Multi-Agent Syst 20(1):80–84

22. Poppe R, ter Maat M, Heylen D (2012) Online backchannel syn-
thesis evaluation with the Switching Wizard of Oz. In: Joint pro-
ceedings of the intelligent virtual agents (IVA) 2012 workshops,
Santa Cruz, CA, pp 75–82

23. Poppe R, ter Maat M, Heylen D (2012) Online behavior evaluation
with the switching wizard of Oz. In: Proceedings of the interna-
tional conference on interactive virtual agents (IVA), Santa Cruz,
CA, pp 486–488

24. Poppe R, Truong KP, Heylen D (2013) Perceptual evaluation of
backchannel strategies for artificial listeners. J Auton Agents Multi-
Agent Syst 27(2):235–253

25. Schedl M (2006) The CoMIRVA toolkit for visualizing music-
related data. Technical report, Department of Computational Per-
ception, Johannes Kepler University Linz

26. Truong KP, Poppe R, de Kok I, Heylen D (2011) A multimodal
analysis of vocal and visual backchannels in spontaneous dialogs.
In: Proceedings of interspeech, Florence, Italy, pp 2973–2976

27. Turing AM (1950) Computing machinery and intelligence. Mind
59(236):433–460

28. van Welbergen H, Reidsma D, Ruttkay Z, Zwiers J (2010)
Elckerlyc—a BML realizer for continuous, multimodal interaction
with a virtual human. J Multimodal User Interfaces 3(4):271–284

29. Wang Z, Lee J, Marsella S (2013) Multi-party, multi-role com-
prehensive listening behavior. J Auton Agents Multi-Agent Syst
27(2):218–234

30. Ward N, Tsukahara W (2000) Prosodic features which cue back-
channel responses in English and Japanese. J Pragmat 32(8):1177–
1207

31. Xudong D (2009) The pragmatics of interaction. chap. Listener
response. John Benjamins Publishing, Amsterdam, pp 104–124

32. Yngve VH (1970) On getting a word in edgewise. In: Papers from
the sixth regional meeting of Chicago Linguistic Society. Chicago
Linguistic Society, Chicago, pp 567–577

123


	Switching Wizard of Oz for the online evaluation of backchannel behavior
	Abstract 
	1 Introduction
	2 Related work
	2.1 Learning behavior models
	2.2 Evaluation of behavior models
	2.3 Online synthesis and evaluation

	3 Switching Wizard of Oz
	3.1 Subject observation
	3.2 Behavior synthesis
	3.3 Behavior switching
	3.4 Implementation of the framework

	4 SWOZ for backchannel synthesis evaluation
	4.1 Setup
	4.1.1 Subject observation
	4.1.2 Behavior synthesis and model learning
	4.1.3 Behavior switching

	4.2 Procedure
	4.3 Participants

	5 Results and discussion
	5.1 Backchannel quantity
	5.2 Backchannel timing

	6 Conclusion and future work
	References


