Skip to main content
Log in

Super-quasiorthogonal space-time trellis codes for four transmit antennas with rectangular signal constellations

  • Original Paper
  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

In this paper, we present the first super-quasiorthogonal space-time trellis codes (SQOSTTCs) for systems with four transmit antennas using various types of rectangular signal constellations to increase the spectral efficiency up to 5 bits/s/Hz. In our wireless communications system, we define an eight-dimensional (8D) signal constellation as Cartesian product of four two-dimensional (2D) rectangular signal sets. The transmission of an 8D point from the first antenna is achieved by transmitting four concatenated 2D points in four consecutive channel uses. The 2D symbols transmitted from the other three antennas are not independent but so chosen as to form, together with the symbols transmitted from the first antenna, the entries of a 4×4 quasiorthogonal transmission matrix. The union of two sets of quasiorthogonal transmission matrices forms a so-called super-quasiorthogonal signal set. With the 4×4 quasiorthogonal transmission matrices, we then label the state transitions of a trellis diagram describing the operation of the encoder. The simulation results of the frame error rate and the bit error rate demonstrate the excellent performance of our proposed SQOSTTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tarokh V, Seshadri N, Calderbank AR (1998) Space-time codes for high data rate wireless communications: performance criterion and code construction. IEEE Trans Inf Theory 44:744–765

    Article  MathSciNet  MATH  Google Scholar 

  2. Alamouti SM (1998) A simple transmit diversity technique for wireless communications. IEEE J Sel Areas Commun 16:1451–1458

    Article  Google Scholar 

  3. Siwamogsatham S, Fitz MP (2002) Robust space-time codes for correlated Rayleigh fading channels. IEEE Trans Signal Process 50:2408–2416

    Article  Google Scholar 

  4. Ungerboeck G (1982) Channel coding with multilevel/phase signals. IEEE Trans Inf Theory IT-28:55–67

    Article  Google Scholar 

  5. Ionescu DM, Mukkavilli KK, Yan Z, Lilleberg J (2001) Improved 8- and 16-state space-time codes for 4 PSK with two transmit antennas. IEEE Commun Lett 5:301–303

    Article  Google Scholar 

  6. Siwamogsatham S, Fitz MP (2001) Improved high-rate space-time trellis codes via orthogonality and set partitioning. In: Proc. 4th Int. Symp. on Wireless Personal Multimedia Communications, WPMC’01. Aalborg, 9–12 September 2001, pp 1439–1444

  7. Ionescu DM (2003) On space-time code design. IEEE Trans Wirel Commun 2:20–28

    Article  MathSciNet  Google Scholar 

  8. Jafarkhani H, Seshadri N (2003) Super-orthogonal space-time trellis codes. IEEE Trans Inf Theory 49:937–950

    Article  MathSciNet  MATH  Google Scholar 

  9. Divsalar D, Simon MK (1988) The design of trellis coded MPSK for fading channels: performance criteria. IEEE Trans Commun 36:1004–1012

    Article  Google Scholar 

  10. Sterian CED, Laue F, Pätzold M (1999) Trellis-coded quadrature amplitude modulation with 2N-dimensional constellations for mobile radio channels. IEEE Trans Veh Technol 48:1475–1487

    Article  Google Scholar 

  11. Sterian CED, Wang C-X, Johnsen R, Pätzold M (2004) Rotationally invariant space-time trellis codes with 4-D rectangular constellations for high data rate wireless communications. J Commun Netw 6:258–268

    Google Scholar 

  12. Sterian CED, Singh H, Pätzold M, Hogstad BO (2006) Super-orthogonal space-time codes with rectangular constellations and two transmit antennas for high data rate wireless communications. IEEE Trans Wirel Commun 5:1857–1865

    Article  Google Scholar 

  13. Tarokh V, Jafarkhani H, Calderbank AR (1999) Space-time block codes from orthogonal designs. IEEE Trans Inform Theory 45:1456–1467

    Article  MathSciNet  MATH  Google Scholar 

  14. Tarokh V, Jafarkhani H, Calderbank AR (1999) Space-time block coding for wireless communications: performance results. IEEE J Sel Areas Commun 17:451–460

    Article  Google Scholar 

  15. Jafarkhani H (2001) A quasi-orthogonal space-time block code. IEEE Trans Commun 49:1–4

    Article  MATH  Google Scholar 

  16. Tirkkonen O, Boariu A, Hottinen A (2000) Minimal nonorthogonality rate 1 space-time block code for 3+Tx antennas. In: Proc. of IEEE 6th international symposium on spread spectrum techniques and applications 2000, vol 2. IEEE, Piscataway, pp 429–432

    Google Scholar 

  17. Sharma N, Papadias CB (2003) Improved quasi-orthogonal codes through constellation rotation. IEEE Trans Commun 51:332–335

    Article  Google Scholar 

  18. Su W, Xia X (2004) Signal constellation for quasi-orthogonal space-time block codes with full diversity. IEEE Trans Inf Theory 50:2331–2347

    Article  MathSciNet  Google Scholar 

  19. Jafarkhani H, Hassanpour N (2005) Super-quasi-orthogonal space-time trellis codes for four transmit antennas. IEEE Trans Wirel Commun 4:215–227

    Article  Google Scholar 

  20. Wang D, Wang, H, Xia XG (2007) Space-time trellis code design based on super quasi-orthogonal block codes with minimum decoding complexity. IEEE Trans Commun 55:1441–1447

    Article  Google Scholar 

  21. Ferre G, Cances JP, Meghdadi V, Dumas JM (2007) STBC-based (Turbo) STTC codes built by set partitioning for three transmit antennas: construction and performances. IEEE Trans Wirel Commun 6:827–832

    Article  Google Scholar 

  22. Shiu D-S, Foschini GJ, Gans MJ, Kahn JM (2000) Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Trans Commun 48:502–513

    Article  Google Scholar 

  23. Abdi A, Kaveh M (2002) A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE J Sel Areas Commun 20:550–560

    Article  Google Scholar 

  24. Pätzold M, Hogstad BO (2004) A space-time channel simulator for MIMO channels based on the geometrical one-ring scattering model. Wirel Commun Mob Comput 4:727–737 (special issue on multiple-input multiple-output (MIMO) communications)

    Article  Google Scholar 

  25. Pätzold M (2002) Mobile fading channels. Wiley, Chichester

    Google Scholar 

  26. Abdi A, Barger JA, Kaveh M (2002) A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station. IEEE Trans Veh Technol 51:425–434

    Article  Google Scholar 

  27. Sterian CED (1997) Exact formulas for computing the energy of “square” and “cross” two-dimensional rectangular signal constellations. Eur Trans Telecommun 8:547–549

    Article  Google Scholar 

  28. Wang C-X, Pätzold M, (2003) Methods of generating multiple uncorrelated Rayleigh fading processes. In: Proc. 57th IEEE semiannual veh. technol. conf., VTC 2003-Spring, Jeju, 22–25 April 2003, pp 510–514

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their positive criticism and for their valuable comments, which greatly helped to improve the paper and to make it more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sterian, C.E.D., Wu, Y. & Pätzold, M. Super-quasiorthogonal space-time trellis codes for four transmit antennas with rectangular signal constellations. Ann. Telecommun. 63, 331–350 (2008). https://doi.org/10.1007/s12243-008-0031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-008-0031-8

Keywords

Navigation