Skip to main content
Log in

Extension of the FDTD Huygens subgridding to frequency dependent media

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

A wide range of wireless system developments require knowledge of the distribution of electromagnetic fields from various sources in humans. As experimental assessment is ethically unacceptable, high-resolution numerical dosimetry is needed. The finite-difference time-domain method is the most appropriate due to its simplicity and versatility. Reduction in demands on computational resources can be achieved using subgridding techniques. This paper rigorously introduces frequency dependency to one of the most promising subgridding techniques, Huygens subgridding. The validity of the Huygens surface in lossy media, as well as on the physical interface, is intensively studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simicevic N (2007) Exposure of biological material to ultra-wideband electomagnetic pulses: dosimetric implications. Health Phys 92:574–583

    Article  Google Scholar 

  2. Lin JC (2007) Dosimetric comparison between different quantities for limiting exposure in the RF band: rationale and implications for guidelines. Health Phys 92:547–553

    Article  Google Scholar 

  3. Kopecky R, Persson M (2004) Subgridding method for FDTD modeling in the inner ear. Proc SPIE 5445:398–401

    Article  Google Scholar 

  4. Zakharian AR, Brio M, Dineen C, Moloney J (2006) Second-order accurate FDTD space and time grid refinement method in three space dimensions. IEEE Photonics Technol Lett 11:1237–1239

    Article  Google Scholar 

  5. Donderici B, Teixeira FL (2006) Domain-overriding and digital filtering for 3-D subgridded simulations. IEEE Microw Wirel Compon Lett 16:10–12

    Article  Google Scholar 

  6. Kulas L, Mrozowski M (2005) Low-reflection subgridding. IEEE Trans Microwave Theor Tech 53:1587–1592

    Article  Google Scholar 

  7. Vaccari A, Pontalti R, Malacarne C, Cristoforetti L (2004) A robust and efficient subgridding algorithm for finite-difference time-domain simulations of Maxwell’s equations. J Comput Phys 194:117–139

    Article  MATH  Google Scholar 

  8. Venkatarayalu NV, Lee R, Gan YB, Li LW (2007) A stable FDTD subgridding method based on finite element formulation with hanging variables. IEEE Trans Antennas Propag 55:907–915

    Article  MathSciNet  Google Scholar 

  9. Chilton RA, Lee R (2007) Conservative and provably stable FDTD subgridding. IEEE Trans Antennas Propag 55:2537–2548

    Article  MathSciNet  Google Scholar 

  10. Marrone M, Mittra R (2005) A new stable hybrid three-dimensional generalized finite difference time domain algorithm for analyzing complex structures. IEEE Trans Antennas Propag 53:1729–1737

    Article  MathSciNet  Google Scholar 

  11. Xiao K, Pommerenke DJ, Drewniak JL (2007) A three-dimensional FDTD subgridding algorithm with separated temporal and spatial interfaces and related stability analysis. IEEE Trans Antennas Propag 55:1981–1990

    Article  MathSciNet  Google Scholar 

  12. Kulas L, Mrozowski M (2004) Stability of the FDTD scheme containing macromodels. IEEE Microw Wirel Compon Lett 14:484–486

    Article  Google Scholar 

  13. Bérenger JP (2006) A Huygens subgridding for the FDTD method. IEEE Trans Antennas Propag 54:3797–3804

    Article  Google Scholar 

  14. Bérenger JP (2005) A FDTD subgridding based on Huygens surfaces. In: IEEE int symp antennas propagat, pp 98–101

  15. Huygens C (1690) Treatise on light. http://www.gutenberg.org/etext/14725

  16. Taflove A, Hagness SC (2005) Computational electrodynamics. The finite-difference time-domain method. Artech House, Boston, MA

    Google Scholar 

  17. Kong JA (1975) Theory of electromagnetic waves. Wiley, New York

    Google Scholar 

  18. Debye P (1929) Polar molecules. Dover, New York

    MATH  Google Scholar 

  19. Gabriel S, Lau R, Gabriel C (1996) The dielectric properties of biological tissues: Iii. parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  Google Scholar 

  20. Costa J, Costen F, Bérenger JP, Brown A (2007) Inclusion of frequency dependency in the Huygens subgridding FDTD for UWB systems. In: IEEE int symp antennas propagat, pp 3077–3080

  21. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comp Physiol 114:185–200

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumie Costen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costen, F., Bérenger, JP. Extension of the FDTD Huygens subgridding to frequency dependent media. Ann. Telecommun. 65, 211–217 (2010). https://doi.org/10.1007/s12243-009-0131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-009-0131-0

Keywords

Navigation