
ar
X

iv
:1

00
2.

28
27

v2
 [

cs
.N

I]
 2

8
Ju

n
20

11

When Should I Use Network Emulation?

Emmanuel Lochin1,2, Tanguy Pérennou1,2, Laurent Dairaine2

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

firstname.lastname@isae.fr

Abstract

The design and development of a complex system requires an adequate methodology and ef-
ficient instrumental support in order to early detect and correct anomalies in the functional and
non-functional properties of the tested protocols. Among the various tools used to provide ex-
perimental support for such developments, network emulation relies on real-time production of
impairments on real traffic according to a communication model, either realistically or not.

This paper aims at simply presenting to newcomers in network emulation (students, engineers,
...) basic principles and practices illustrated with a few commonly used tools. The motivation
behind is to fill a gap in terms of introductory and pragmatic papers in this domain.

The study particularly considers centralized approaches, allowing cheap and easy implemen-
tation in the context of research labs or industrial developments. In addition, an architectural
model for emulation systems is proposed, defining three complementary levels, namely hardware,
impairment and model levels. With the help of this architectural framework, various existing tools
are situated and described. Various approaches for modeling the emulation actions are studied,
such as impairment-based scenarios and virtual architectures, real-time discrete simulation and
trace-based systems. Those modeling approaches are described and compared in terms of services
and we study their ability to respond to various designer needs to assess when emulation is needed.

1 Introduction

Designing and developing communication protocols and real-time systems is a complex process where
various actors participate in different phases, having only a partial vision of the whole system. The
experiment phase, which eventually provides a global vision, is a mandatory step in research and
development process of distributed applications and communication protocols. In this context, three
classical ways to achieve experimentation are commonly used: simulation, live testing and more recently
emulation.

Simulation, particularly event-driven simulation, is a classical way to achieve economical and fast
protocol experimentation. It relies on an ad-hoc model to work with and it uses a logical event-driven
technique to run the experiment. The use of modeling techniques simplifies the studied problem, by
concentrating on the most critical issues. Indeed, network simulators are essential to provide a proof
of concept prior to protocol development. Nevertheless, those tools (based on a virtual clock) cannot
replace practical protocol evaluation that quantifies implementations’ overhead during real-time oper-
ation. Eventually, to realize a real-time evaluation, only two solutions are left: live testing and network
emulation. For instance, network simulation has been used to design the TFRC protocol internal mech-
anisms [24] (the TCP-Friendly Rate Control protocol is a rate-based congestion control mechanism for
unicast flows operating in a best-effort Internet environment); then, a user-level prototype has been
realized [37] to quantify the processing overhead related to the inherent implementation. Throughout
the remainder of this paper, we use the TFRC case as a running example to help the understanding
of certain concepts presented.

In live testing, evaluations are driven with real implementations. The fundamental way to do
the experiment is by using real technology for the underlying networking environment. This real

1

http://arxiv.org/abs/1002.2827v2

environment can be the target network or an ad-hoc testbed involving real equipments. Nevertheless,
this approach is considered to be very expensive and inflexible to evaluate all aspects of the protocol
being tested.

Emulation is considered to be at the cross-road between simulation and live testing. This approach
consists in executing and measuring real protocols and application implementations over a certain
network where part of the communication architecture is simulated in real-time. The aim of emulation
is to allow a distributed software to run either in realistic conditions (e.g. over a satellite network) or
specific conditions (e.g. when specific packets are dropped such as SYN packets in the TCP case).

This paper introduces an overview of existing network emulation approaches. We particularly focus
on the study of centralized approaches, allowing simple implementation in the context of research labs
or industrial development centers. In addition, we propose a general architectural model that allows
various emulation approaches to be presented and situated in the model. These emulation approaches
include mainly impairment scenarios and virtual architectures. Furthermore, a comparison of these
approaches and a set of criteria considered as requirements for emulation systems will be proposed.

This paper is organized as follows: section 2 situates emulation among various experimentation
approaches. Section 3 presents main emulation requirements. Additionally, section 4 discusses net-
work emulation architecture based on three complementary levels. The outline of main emulation
approaches, as well as their positions in the architectural model proposed will be discussed in section
5. Finally, some concluding remarks are given in section 7.

2 Network Experimentation

Approaches

Before diving in the world of emulation, we first present the common experimental approaches used in
research labs and industrial development.

2.1 Simulation

As discussed above, simulation is a very effective and efficient way to experiment with protocols. Net-
work simulation typically utilizes ad-hoc model and logical event-driven techniques. Classical tools
such as ns-2 [10] or OPNET [14] provides a core simulation engine, as well as a large set of proto-
col models. These simulation tools allow experiments to be done without high costs involvement.
The modeling techniques used in the simulators allow the studied problems to be simplified by con-
centrating on the most important issues. Furthermore, simulation tools do not operate in real-time.
Therefore, depending on the model complexity, it is possible to either simulate a logical hour in few
real-time milliseconds or a logical second in several real-time days. This characteristic reflects both
the benefit and weakness of simulation tools. Due to this attribute, it is unfeasible for simulation tools
to implement systems involving man-in-the-loop. Most simulation tools do not allow to test real-time
implementations but only models (even the most innovative and sophisticated one).

2.2 Simulation shortcomings

As already emphasized in the introduction, network simulators are essential to provide a proof of
concept prior to protocol development but cannot replace practical protocol evaluation. To pursue
with the TFRC example previously introduced in Section 1, the concept of the rate-based equation
has been validated within ns-2 simulator while the feasibility of the implementation has been evaluated
through real-time experiments. Even though the core algorithm developed within ns-2 in C++ has
been reused inside the kernel implementation, most of the data structure, message exchange and
protocol framework had to be written from scratch. This additional code has to be evaluated too.

Furthermore, it is important to ensure that the services and performances offered by the simulation
model are consistent with the real experimental implementation of the protocol.

2

2.3 Live experimentation

Another conventional method to test and debug distributed software during the implementation stage
is to use real hardware and/or software components. The software can be tested either on a real target
network or on an ad-hoc testbed using real equipment. However, this approach is particularly expensive
in the context of wide area networks, especially when using specific technology such as satellite network.
The cost inefficiency of this method does not involve only the technology cost but also the distributed
man-in-the-loop manipulations and synchronization required. Moreover, it is sometimes impossible to
use this approach simply because the new technology support is not yet validated or available, e.g.
when developing an application over a new satellite transmission technology that is not yet operating.
This method also suffers from the inherent discrepancies between a particular test network and the
much broader range of network imperfections that will be encountered by the software users.

Using real technology on target operational network has been widely deployed. An example of
this scheme is well illustrated by PlanetLab [32]. PlanetLab is a distributed platform that alleviates
experiments management, offering a way to use a very large set of hosts over the Internet. However, the
purpose of PlanetLab is to use Internet as a testbed and not to control the network experimentation
conditions. As a result, PlanetLab does not target reproducibility and is thus more efficiently used for
metrology experiments.

2.4 Network Emulation

Since several years, progresses in high speed processing and networking have allowed the rapid de-
velopment of network emulators, such as Dummynet [34], NIST Net [16]. Network Emulation is a
weighted combination of real technology and simulation. It is used to achieve experiments using both
real protocol implementations and network models. Basically, this allows the creation of a controlled
communication environment. This communication environment can produce specific target behaviors
in terms of quality of service. The objective of emulation tools is to reproduce a real underlying net-
work behavior, such as configurable wired [39] or wireless [41], [17] topologies. Additionally, emulation
aims at providing “artificial impairments” on the network to test particularities of the experimented
protocol. These impairments include loosing specific packets, reducing the network bandwidth with a
specific timing or introducing delay over the network. Emulation is particularly useful in the debugging
and testing phase of a system.

3 When do I need emulation?

You need emulation to assess the performance of an end-to-end system. Although you can use emu-
lation at any layer of the OSI model, in the present paper, we focus on network emulation which is a
combination of real technology (application and communication stack above link-level) and simulation
of the behavior of the link and physical levels.

Let’s assume you want to assess the performance of the TFRC transport protocol. You might be
interested in validating the use of your implementation over several types of terminal (e.g. mobile
phone, PDA, laptop, server, etc.) and compare whether the impact of TFRC internal algorithms
behave similarly in various network conditions. In order to drive this test, you must evaluate as a non-
exhaustive list: the memory footprint, CPU usage and packet processing overhead to identify potential
limits and propose implementation and algorithmic improvements. These metrics are not available in
a simulation context. Testing TFRC with various bandwidth size in a real setup would involve the
use of several different network setups (i.e. several testbeds with different cards on different hosts)
while emulation provides an easy way to set the bandwidth of a link. Anyway, network emulation is
the most practical scheme to obtain trustable metrics since you change only one parameter of your
experimental setup.

In order to assess Quality of Service (QoS), the overall performances obtained from an end-to-
end protocol are mainly dependent on external factors such as underlying technologies (e.g. RSVP
establishment path, Service Level Agreement with a DiffServ network, etc.), interconnection topologies,
current network traffic and so on. Different types of QoS can also be offered by the underlying

3

network. For example, IP network service could offer a communication channel ranging from perfect
(minimum delay, high bandwidth and no packet loss, as in a gigabit LAN) to unsatisfactory (high
delay, low bandwidth and high packet loss rate (PLR), as in a noisy satellite network), depending on
the underlying protocols and many other external factors. This leads to a large set of possibilities
in the protocol experiments that can be created. The different types of end-to-end QoS that can be
produced by the underlying experiment framework can focus on:

• Artificial QoS : the experiment framework provides a way to evaluate the protocol over specific
QoS conditions, not imperatively related to any technology or realistic conditions. Artificial QoS
allows the user to test and focus on its experimental protocol in target QoS conditions. This
can be considered as a form of unit testing. Furthermore, the aim of this method is to point
out errors or bugs that are difficult to observe in a non-controlled environment where they rarely
happen. This can be used, for instance, at the transport level to study the impact of various
packet drops in a TCP connection (e.g. SYN/ACK packets [22], etc.).

• Realistic QoS : the experiment framework provides a way to reproduce the behavior of some
specific network architecture as accurately as possible. This type of experiment allows the user
to evaluate the protocol over an existing network or inter-network without using a real testbed
and all related technologies (e.g. a wireless network, a satellite network, an Ethernet gigabit
network, or any interconnection of such technologies).

Generally the following set of impairments are commonly at least supported by almost all emulators
systems: round trip time delay, jitter, packet loss rate and bandwidth size.

Today, there are several emulation platforms freely available on the Internet, either remotely ac-
cessible (e.g. EmuLab [36], Orbit [33], [29]) or for download and local installation (e.g. Imunes [40],
Netem [25], Dummynet [34], KauNet [23]). We strongly believe it would be not appropriate to simply
list and detail all these proposals. Instead, we propose in the following Section an architectural model
where essential features are highlighted.

4 Network Emulation

Architectural Model

Network emulation systems are based on various conceptual levels as illustrated in Figure 1. In this
figure, we split an emulation system into three complementary levels, denoted Model Level, Impairment
Level and Hardware Level. Each of these levels will be discussed in more details. Note that the User
System is not considered to be a part of the emulation system. It includes the System Under Test,
for instance a protocol or a distributed application to be evaluated or demonstrated as well as traffic
sources and sinks.

4.1 Hardware level

The lowest layer of the proposed architecture, namely hardware layer, represents the physical devices
really used by the emulation system. These devices comprise the real end-systems, the real network
links that interconnect them and possibly, network components such as switches or routers. The
virtual resources of the rest of the Emulation System and the User System are mapped on those
real resources, e.g. several virtual end-systems can reside on a single real computer. It is crucial
to understand that hardware level is not necessarily composed by the technologies associated to the
emulated network conditions. For instance, emulating a satellite link to evaluate the performance of
the TFRC protocol can be roughly done over a few desktop stations interconnected with ethernet links
by setting appropriate PLR and delay on the resulting emulated link (see Section 5.1.1).

The emulation system itself can be based on either a centralized system or a distributed system.
In a centralized emulation system, we only use one computer to host the sender(s), the receiver(s),
the intermediate node(s) and to manage all the impairments which define the experiment; while a
distributed emulation system uses several computers to realize the same task. As an example, the

4

Evaluation

Demo

System under Test

Distributed
System

Centralized
System

User
Level

Kernel
Level

S
tatic A

pproach

T
race−B

ased A
pproach

E
vent−D

riven A
pproach

scenario
Impairments

Virtualization

User System

Emulation System

N
etw

ork M
odel

M
odel

H
ardw

are
Im

pairm
ents

M
odel

Figure 1: Architectural model for emulation systems.

Imunes [40] system falls in the first category while Dummynet [34] or EmuLab [36] belong to the
second one.

The main advantage of using distributed rather than centralized emulation system is the compu-
tation efficiency. However, this can be also considered as a disadvantage as it requires more physical
resources and then, is much more complex to manage and administrate. For example, an EmuLab-like
testbed requires at least five computers: a sender, a receiver, a core emulator and two computers used
to emulate both links in order to drive an experiment. This raises the problem of time synchronization
of all machines that can be solved by using the NTP protocol [30]. Despite the use of NTP and in
the context of delay estimations, computers can experience clock drift that might compromise the
measurements. Although a distributed emulation system is greedy in terms of resources, it remains
more appropriate to estimate overall resource usage consumed by the protocol itself as it isolates the
protocol under test from the emulation system. The advantage of a centralized emulation system is
that it shares the same clock for all its components and is inherently synchronized.

4.2 Impairment Level

The impairment level provides a mean to introduce impairments over the exchanged packet flows. The
impairment system is a center piece of the whole emulation because the real target network conditions
are driven by the impairment system. The accuracy of the emulation is deeply associated to the
capacity of impairment systems to process the packets in time and without introducing any other
impairment than those specified in the upper level. For instance, the impairment processing overhead
might bias the packets processing time estimation.

An impairment can be introduced at either the kernel level or the user level. An example of
emulator that introduces impairment at the kernel level is Dummynet [34]. Dummynet intercepts
packets at the IP forwarding level by implementing a queue (named pipe by Dummynet API) able
to introduce impairments on the enqueued packets. Dummynet is configured through the FreeBSD
firewall API where each pipe is set up as a simple forwarding rule. Another similar tool implemented
inside the GNU/Linux kernel is NIST-Net [16]. While Dummynet employs sophisticated queuing
models for bandwidth modeling, NIST-Net includes delay models of much statistical sophistication.
Indeed, NIST-Net is able to implement a varying delay scenario according to a given distribution while
Dummynet uses a static delay because of the use of a queue. Both emulators cover complementary

5

needs.
Finally, an example of user level impairment is ONE [11]. ONE provides similar capabilities as

Dummynet at the user level. However, the clock timer resolution is a function of the kernel configu-
ration and in general it ranges from 1ms to 10ms. Indeed, several system scheduler runs at a default
100Hz, meaning times based on normal system calls cannot be more precise than 10 milliseconds. As
a result, a user level emulation cannot be as accurate as a kernel level one which gets a granularity
close to the nanosecond. However, this approach is simple to install and adapted for many simple
educational purposes.

4.3 Network Model Level

The model level defines two ways to control the emulation behavior. A user impairment scenario
consists of an explicit list of impairment events while a virtual network architecture generates implicit
impairment events based on the virtual topology, equipments, link characteristics, communication and
routing protocols. Both models will be discussed in more details in the next section.

5 Emulation Approaches

5.1 Impairment scenario models

There are various types of scenarios. They can be classified as impairment scenario models as described
throughout the rest of this section.

5.1.1 Static Approach

In a static approach every parameter remains constant throughout the experiment. Therefore, the
static settings need to be configured before the experiment is conducted. It does not describe the
real network very accurately since the behavior of real network changes all over time. However, it
is sufficient to reproduce pragmatic cases of artificial quality of service (e.g. bounded delay which
characterizes specific network such as satellite link). The parameters that can be defined statically
include delay, packet loss rate, bit error rate (BER), packet reordering, etc. This emulation model
is usually useful to test all the possibilities of a product or to compare it to other already existing
products. This is the basic behaviour of emulator such as Dummynet [34] which is mostly used in this
way.

5.1.2 Event Driven Approach

The key idea in event-driven [19] approaches is to apply impairements according to events. The most
commonly used events are clock ticks (time-driven approach), but other events can be used, such as
packet numbers, specific conditions observed on the traffic or purely random occurences. The event-
driven approach is very useful to schematically represent a general behavior. The tester will be able
to validate the product under several conditions and to compare it to other solutions. This approach
has been used in various emulation tools. For example, Net Shaper [26] uses time oriented emulation.
In Net Shaper, a daemon is executed and that daemon would wait for the new model to be applied to
the emulation processor. The daemon is able to successfully receive and process up to 1000 messages
per second.

In the case of clock tick events, all impairements are triggered at user-defined times. Such ap-
proaches may be enforced by scripts which list all time events and associated actions. Time-driven
models allow user to define the network and to make it evolve with time. As an example of such
emulators we can notice IREEL [18] and WNINE [17]. Both emulators use an XML script containing
update messages for a Dummynet static emulator used as an impairement engine. As an example, the
emulated network can be designed to behave differently during the day and during the night.

Packet numbers in a flow can also be used as events, as in the KauNet network emulator [23].
In that case, the ipfw tool of FreeBSD is used to select a flow, and data-driven patterns are used
to define how the impairments change with packet numbers. For instance, a packet-loss pattern will

6

use zeros for packet drops and ones for packet deliveries. KauNet also supports bit-error patterns,
bandwidth change patterns, delay patterns and reordering patterns. Such patterns can also be used
in a time-driven way, thus offering a more classical time-driven approach.

Other types of events have been proposed. Randomly generated events can be used to emulate
random node failures. With an emulator able to read packet contents, a specific content (I image) or
header value (DCCP handshake) can be detected and used as a triggering event. More generally, the
metrology of the traffic can be used to detect specific conditions, such as the amount of flow reaching
some level, to trigger specific impairments such as halving the bandwidth on the link.

Note that the most natural way to use the event-driven approach is the use of scripts associating
impairment parameters with events, either explicitly like XML scripts IREEL or WNINE, or implicitely
like patterns and scenarios in KauNet.

5.1.3 Trace-based Approach

This approach [31] is more realistic because the behavior of the network is obtained and will be
reproduced exactly in the same way.

First, a collection phase is usually done by using probes. These probes are used to record the dates
of packets arriving or leaving a host. The results are transmitted to a controller that evaluate the
delay and the mean loss rate to give the basic network model. This allows the user to get dynamic
network profile. The limitation of the trace-based approach is that it cannot reproduce all conditions
a network would experience. A single trace can only capture a snapshot of the varying performance
along a particular path. Furthermore, the traces cannot fully reproduce the network behavior because
it is non deterministic. The same situation in another time could have produced different parameters.

The advantages of the trace-based approach is to use existing traces representing complex mobility
movement to evaluate a prototype [35], [1].

5.2 Virtualization

Network and system virtualization allow to easily manage multiple networks and systems, each of them
customized to a specific purpose at the same time over the same shared infrastructure [38]. Nowadays,
virtualization is perceived as the best candidate to support multiple router software candidate releases
simultaneously as a long-run testing method before real deployment in the Internet (see for instance
[28]). However, in this paper we are more interested in the second role of virtualization which is to
run simultaneously multiple experiments in a shared experimental facility.

The virtual architecture models are higher level models allowing the representation of a target
network that is going to be emulated. It consists of two different aspects namely System Emulation
and Real-time Discrete event simulation. This allows the design of an emulation model according to a
real network topology where the experimented flow crosses a set of real or virtual nodes. Another way
to achieve this is to use the Real-time Discrete Event Simulation through the establishment of a bridge
between real packets and simulated event-driven environments as in the ns-2 emulation extension
NSE [21].

The global network behavior is produced by virtually reproducing the network topology and com-
ponents. Two directions are taken depending on the way this virtualization is achieved. In the virtual
systems, all nodes constituting the target network to be emulated are implemented either onto a sin-
gle centralized system (several virtual nodes co-exist into the centralized system) or distributed onto
various distinct systems (e.g. a computing grid) usually connected together by high speed networks.
Virtual links are used to connect these nodes together according to the topology of the targeted net-
work. Real protocols such as IP or routing ones can also be implemented into the virtual node system.
Of course, in this type of architecture, the classical strategy to produce realistic behavior is to introduce
real traffic into the emulated network to produce congestion, delays, losses, etc.

Imunes [39] is an example of centralized virtual node approach. It proposes a methodology for em-
ulating computer networks by using a general purpose OS kernel partitioned into multiple lightweight
virtual nodes. The virtual nodes can be connected via kernel level links to arbitrarily form complex
network topologies. Furthermore, Imunes allows to emulate fully functional IP routers over each em-
ulated virtual nodes. Imunes provides each virtual node with an independent network stack, thus

7

enabling highly realistic and detailed emulation of network routers. It also enables user-level appli-
cations to run within the virtual nodes. At user level, Imunes proposes a very convenient interface
allowing to easily define the emulated network, namely the virtual nodes, the software, the links and
the impairment parameters.

The Entrapid protocol development environment [27] introduced a model of multiple virtualized
networking kernels, which presents several variants of the standard BSD network stack in multiple
instances, running as threads in specialized user process. Other approaches that following this approach
is the Alpine emulator [20] project; GNS3/dynamips [4] and Virtual Routers [15].

The virtual architectural approach is often considered as the only mean to achieve realistic em-
ulation of complex network topology. As previously introduced, PlanetLab proposes to directly use
the Internet links to obtain real measures (for metrology purpose) conjointly with an emulation sys-
tem allowing to map several end-hosts on a single computer in order to drive several and different
experiments in parallel. Nevertheless, the major problem of this approach may be the scalability issue.
Issues such as how to implement one or several core network routers in a single machine and how to
manage the number of flows in a centralized manner remain problematic. These questions are difficult
to answer, not only in the context of total centralization but also in the context of distributed systems
such as grids.

6 Summary

We propose in this section a summary of the main characteristics of the emulators cited in this paper
(following our classification model presented in Figure 1). Note that the trace-based approach is a
functionnality that is already included inside some emulators (Orbit, W-NINE, KauNet, ...) and can
be added as a preprocessing tool to any event-driven emulator. However, we do not list this capability
when it corresponds to an option and is not used as default network model.

7 Conclusion

This paper attempts to provide highlights concerning network emulation which is considered to be in
the middle between simulation and live-testing schemes. We saw that network emulation combines the
advantages offered by simulation and live-testing at the same time while allowing different evaluation
metrics (i.e. processing overhead, memory footprint). Another important finding is that we can easily
set up complex measurements testbed by combining both virtualization and network emulation tools.
However network emulation is definitely not the unique answer and must be carefully weighted as a
function of the performances an experimenter seeks to evaluate. Thus, to obtain a clear view, we
develop an architectural model which illustrates and classifies all types of emulation tools. We hope
both model and arguments presented would help the reader to better weight emulation in an evaluation
process and choose the right scheme to assess the performances targeted.

References

[1] CRAWDAD: Community Resource for Archiving Wireless Data At Dartmouth.

[2] Dummynet. http://info.iet.unipi.it/ luigi/dummynet/.

[3] Emulab. http://www.emulab.net/.

[4] GNS3: graphical network simulator. http://www.gns3.net.

[5] Imunes. http://imunes.tel.fer.hr/imunes/.

[6] Ireel. http://ireel.npc.nicta.com.au/.

[7] Kaunet. http://www.kau.se/en/kaunet.

8

Name
Hardware Impairments Network Year Web
Model Model Model

– comments

Dummynet [34]
centralized kernel static 1997 [2]
– FreeBSD, IP-level emulation

KauNet [22]
centralized kernel event-driven 2006 [7]
– based on dummynet

IREEL [18]
distributed kernel event-driven 2006 [6]
– based on dummynet

Netem [25]
centralized kernel static 2005 [8]
– GNU/Linux, IP-level emulation

NISTnet [16]
centralized kernel static 2003 [9]
– sophisticated statistical distributions

ONE [11]
centralized user static 2001 [11]
– the first network emulator

PlanetLab [32]
distributed kernel virtualization 2003 [13]
– based on Linux virtual machines

EmuLab [36]
distributed kernel virtualization 2001 [3]
– based on dummynet links

Imunes [40]
centralized kernel virtualization 2003 [5]
– based on FreeBSD virtual machines

Alpine [20]
centralized kernel virtualization 2001 No

Entrapid [27]
centralized kernel virtualization 1999 No

Virtual routers
[15]

centralized kernel virtualization 2003 No

GNS3 [4]
centralized kernel virtualization 2008 [4]
– based on Cisco router images

NETShaper [26]
distributed kernel event-driven 2002 No
– link-level emulation

Orbit [33]
distributed kernel event-driven 2005 [12]
– two-tier laboratory emulator/field trial network testbed

W-NINE [17]
distributed kernel event-driven 2008 No
– wireless emulator

CMU [31]
centralized user trace-based 1997 No
– seminal paper on trace-based approach

Table 1: Summary of the emulators cited in this paper.

[8] Netem. http://www.linuxfoundation.org/collaborate/workgroups/networking/netem”.

[9] Nistnet. http://snad.ncsl.nist.gov/nistnet/.

[10] ns-2 user manual. http://www.isi.edu/nsnam/ns/.

[11] One user manual. http://irg.cs.ohiou.edu/one/manual.html.

[12] Orbit. http://www.orbit-lab.org/.

[13] Planetlab. http://www.planet-lab.org/.

[14] Opnet technologies, 2001. http://www.opnet.com.

9

[15] Florian Baumgartner, Torsten Braun, Eveline Kurt, and Attila Weyland. Virtual routers: a tool
for networking research and education. ACM SIGCOMM Comput. Commun. Rev., 33(3):127–135,
2003.

[16] M. Carson and D. Santay. NIST Net: A Linux-Based Network Emulation Tool. ACM Computer
Communication Review, 2003.

[17] Emmanuel Conchon, Tanguy Pérennou, Johan Garcia, and Michel Diaz. W-NINE: a two-stage
emulation platform for mobile and wireless systems. EURASIP Journal on Wireless Communi-
cations and Networking, 2010.

[18] Laurent Dairaine, Guillaume Jourjon, Emmanuel Lochin, and Sebastien Ardon. Ireel: remote
experimentation with real protocols and applications over an emulated network. ACM SIGCSE
Inroads Bull., 39(2), 2007.

[19] S. Dawson and F. Jahanian. Probing and fault injection of distributed protocols implementations.
In International Conference on Distributed Computer Systems, 1995.

[20] David Ely, Stefan Savage, and David Wetherall. Alpine: a user-level infrastructure for network
protocol development. In USITS’01: Proceedings of the 3rd conference on USENIX Symposium
on Internet Technologies and Systems, 2001.

[21] Kevin Fall. Network Emulation in the VINT/NS Simulator. In IEEE Fourth Symposium on
Computers and Communications, 1999.

[22] Johan Garcia, Stefan Alfredsson, and Anna Brunstrom. The impact of loss generation on
emulation-based protocol evaluation. In PDCN’06: Proceedings of the 24th IASTED interna-
tional conference on Parallel and distributed computing and networks, Anaheim, CA, USA, 2006.

[23] Johan Garcia, Emmanuel Conchon, Tanguy Pérennou, and Anna Brunstrom. Kaunet: Improving
reproducibility for wireless and mobile research. In MobiEval: System Evaluation for Mobile
Platforms, Workshop of Mobisys 2007, pages 21–26, San Juan, Puerto Rico, June 2007.

[24] M. Handley, S. Floyd, J. Pahdye, and J. Widmer. TCP-Friendly Rate Control (TFRC): Protocol
Specification. Request For Comments 3448, IETF, January 2003.

[25] Stephen Hemminger. Network emulation with netem. In Australia’s national Linux conference
(LCA), Canberra, Australia, 2005.

[26] D. Herrscher and K.Rothermel. A Dynamic Network Scenario Emulation Tool. In 11th Interna-
tional Conference on Computer Communications and Networks, 2002.

[27] X. W. Huang, R. Sharma, and S. Keshav. The ENTRAPID Protocol Development Environment.
In IEEE Infocom, 1999.

[28] Eric Keller, Minlan Yu, Matthew Caesar, and Jennifer Rexford. Virtually eliminating router bugs.
In ACM CoNext, December 2009.

[29] R. Siracusa M. Ott, I. Seskar and M. Singh. Orbit testbed software architecture: Supporting
experiments as a service. In IEEE Tridentcom 2005, Trento, Italy, 2005.

[30] D. Mills. Network time protocol (version 3) specification, implementation. Request For Comments
1305, IETF, 1992.

[31] Brian D. Noble, M . Satyanarayanan, Giao T. Nguyen, and Randy H. Katz. Trace-based mobile
network emulation. In ACM SIGCOMM, Cannes, France, 1997.

[32] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A blueprint for introducing disruptive
technology into the internet. In 1st Workshop on Hot Topics in Networks (HotNets-I), Princeton,
New Jersey, USA, October 2002.

10

[33] Kishore Ramachandran, Sanjit Kaul, Suhas Mathur, Marco Gruteser, and Ivan Seskar. Towards
large-scale mobile network emulation through spatial switching on a wireless grid. In Workshop on
Experimental Approaches to Wireless Network Design and Analysis, (E-Wind), ACM Sigcomm,
2005.

[34] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network protocols. ACM Com-
puter Communication Review, 27(1):31–41, 1997.

[35] James Scott, Pan Hui, Jon Crowcroft, and Christophe Diot. Haggle: A networking architecture
designed around mobile users. In The Third Annual IFIP Conference on Wireless On-demand
Network Systems and Services (WONS 2006), Les Menuires, France, January 2006.

[36] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike
Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated Experimental Environment for Dis-
tributed Systems and Networks. In Fifth Symposium on Operating Systems Design and Imple-
mentation, pages 255–270, December 2002.

[37] Jörg Widmer. TFRC userspace prototype, 2000. http://aciri.org/tfrc/code/.

[38] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual network embedding:
Substrate support for path splitting and migration. ACM SIGCOMM Computer Communications
Review, April 2008.

[39] M. Zec and M. Mikuc. Operating System Support for Integrated Network Emulation in IMUNES.
In First Workshop on Operating System and Architectural Support for the on demand IT InfraS-
tructure, Boston, USA, 2004.

[40] M. Zec and M. Mikuc. Operating system support for integrated network emulation in imunes. In
1st Workshop on Operating System and Architectural Support for the on demand IT InfraStructure
/ ASPLOS-XI, Boston, USA, October 2004.

[41] P. Zheng and L. M. Ni. EMPOWER: A Network Emulator for Wireline and Wireless Networks.
In IEEE Infocom, San Francisco, 2003.

11

	1 Introduction
	2 Network Experimentation Approaches
	2.1 Simulation
	2.2 Simulation shortcomings
	2.3 Live experimentation
	2.4 Network Emulation

	3 When do I need emulation?
	4 Network Emulation Architectural Model
	4.1 Hardware level
	4.2 Impairment Level
	4.3 Network Model Level

	5 Emulation Approaches
	5.1 Impairment scenario models
	5.1.1 Static Approach
	5.1.2 Event Driven Approach
	5.1.3 Trace-based Approach

	5.2 Virtualization

	6 Summary
	7 Conclusion

