Skip to main content
Log in

Congestion probabilities in a batched Poisson multirate loss model supporting elastic and adaptive traffic

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

The ever increasing demand of elastic and adaptive services, where in-service calls can tolerate bandwidth compression/expansion, together with the bursty nature of traffic, necessitates a proper teletraffic loss model which can contribute to the call-level performance evaluation of modern communication networks. In this paper, we propose a multirate loss model that supports elastic and adaptive traffic, under the assumption that calls arrive in a single link according to a batched Poisson process (a more “bursty” process than the Poisson process, where calls arrive in batches). We assume a general batch size distribution and the partial batch blocking discipline, whereby one or more calls of a new batch are blocked and lost, depending on the available bandwidth of the link. The proposed model does not have a product form solution, and therefore we propose approximate but recursive formulas for the efficient calculation of time and call congestion probabilities, link utilization, average number of calls in the system, and average bandwidth allocated to calls. The consistency and the accuracy of the model are verified through simulation and found to be quite satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. When no bandwidth compression takes place, i.e., \({\textbf{\textit{nb}}}+b_{k} \le C\), then r r(n) = 1.

References

  1. Greenberg A, Srikant R (1997) Computational techniques for accurate performance evaluation of multirate, multihop communication networks. IEEE/ACM Trans Netw 5(2):266–277

    Article  Google Scholar 

  2. Moscholios I, Logothetis M, Kokkinakis G (2002) Connection dependent threshold model: a generalization of the Erlang multiple rate loss model. Perform Eval 48(1–4):177–200

    Article  MATH  Google Scholar 

  3. Shengye F, Wu Y, Suili F, Hui S (2004) Coordination-based optimisation of path bandwidth allocation for large-scale telecommunication networks. Comput Commun 27(1):70–80

    Article  Google Scholar 

  4. Moscholios I, Logothetis M, Kokkinakis G (2005) Call-burst blocking of ON-OFF traffic sources with retrials under the complete sharing policy. Perform Eval 59(4):279–312

    Article  Google Scholar 

  5. Vassilakis V, Moscholios I, Logothetis M (2008) Call-level performance modelling of elastic and adaptive service-classes with finite population. IEICE Trans Commun E91-B(1):151–163

    Article  Google Scholar 

  6. Huang Q, Ko K-T, Iversen V (2008) Approximation of loss calculation for hierarchical networks with multiservice overflows. IEEE Trans Commun 56(3)466–473

    Article  Google Scholar 

  7. Glabowski M, Stasiak M, Zwierzykowski P (2009) Communication networks modelling of virtual-circuit switching nodes with multicast connections. Eur Trans Telecommun 20(2)123–137

    Article  Google Scholar 

  8. Glabowski M (2008) Modelling of state-dependent multirate systems carrying BPP traffic. Ann Telecommun 63(7–8):393–407

    Article  Google Scholar 

  9. Staehle D, Mäder A (2003) An analytic approximation of the uplink capacity in a UMTS network with heterogeneous traffic. In: Proc. 18th int. teletraffic congress (ITC-18), pp 81–90

  10. Mäder A, Staehle D (2004) Analytic modeling of the WCDMA downlink capacity in multi-service environments. In: Proc. 16th ITC specialist seminar, pp 217–226

  11. Fodor G, Telek M (2007) Bounding the blocking probabilities in multirate CDMA networks supporting elastic services. IEEE/ACM Trans Netw 15(4):944–956

    Article  Google Scholar 

  12. Vassilakis V, Logothetis M (2008) The wireless engset multi-rate loss model for the handoff traffic analysis in W-CDMA networks. In: Proc. 18th IEEE PIMRC, pp 1–6

  13. Glabowski M, Stasiak M, Wisniewski A, Zwierzykowski P (2009) Blocking probability calculation for cellular systems with WCDMA radio interface servicing PCT1 and PCT2 multirate traffic. IEICE Trans Commun E92-B(4):1156–1165

    Article  Google Scholar 

  14. Kallos G, Vassilakis V, Logothetis M (2011) Call-level performance analysis of a W-CDMA cell with finite population and interference cancellation. Eur Trans Telecommun 22(1):25–30

    Article  Google Scholar 

  15. Washington A, Perros H (2004) Call blocking probabilities in a traffic-groomed tandem optical network. Comput Networks 45(3):281–294

    Article  MATH  Google Scholar 

  16. Sahasrabudhe A, Manjunath D (2006) Performance of optical burst switched networks: a two moment analysis. Comput Networks 50(18):3550–3563

    Article  MATH  Google Scholar 

  17. Vardakas J, Vassilakis V, Logothetis M (2008) Blocking analysis in hybrid TDM-WDM passive optical networks. In: Proc. 5th HET-NETs

  18. Kuppuswamy K, Lee D (2009) An analytic approach to efficiently computing call blocking probabilities for multiclass WDM networks. IEEE/ACM Trans Netw 17(2):658–670

    Article  Google Scholar 

  19. Vardakas JS, Moscholios ID, Logothetis MD, Stylianakis VG (2011) An analytical approach for dynamic wavelength allocation in WDM-TDMA PONs servicing ON-OFF traffic. IEEE/OSA J Opt Commun Netw 3(4):347–358

    Article  Google Scholar 

  20. Kaufman J (1981) Blocking in a shared resource environment. IEEE Trans Commun 29(10):1474–1481

    Article  Google Scholar 

  21. Roberts J (1981) A service system with heterogeneous user requirements. In: Pujolle G (ed) Performance of data communications systems and their applications. North Holland, pp 423–431

  22. Tsang D, Ross K (1990) Algorithms to determine exact blocking probabilities for large multirate tree networks. IEEE Trans Commun 38(8):1266–1271

    Article  MATH  Google Scholar 

  23. Chung S, Ross K (1993) Reduced load approximations for multirate loss networks. IEEE Trans Commun 41(8):1222–1231

    Article  MATH  Google Scholar 

  24. Stamatelos G, Koukoulidis V (1997) Reservation based bandwidth allocation in a radio ATM network. IEEE/ACM Trans Netw 5(3):420–428

    Article  Google Scholar 

  25. Racz S, Gero B, Fodor G (2002) Flow level performance analysis of a multi-service system supporting elastic and adaptive services. Perform Eval 49(1–4):451–469

    Article  MATH  Google Scholar 

  26. Fodor G, Telek M (2005) A recursive formula to calculate the steady state of CDMA networks. In: Proc. 19th int. teletraffic congress (ITC-19), pp 1285–1294

  27. Kallos G, Vassilakis V, Moscholios I, Logothetis M (2006) Performance modelling of W-CDMA networks supporting elastic and adaptive traffic. In: Proc. 4th HET-NETs, 09/1–09/10

  28. Fodor G, Telek M (2007) On the tradeoff between blocking and dropping probabilities in multi-cell CDMA networks. J Commun 2(1):22–33

    Google Scholar 

  29. Vassilakis V, Moscholios I, Logothetis M (2007) Call-level performance modelling of elastic and adaptive service-classes. In: Proc. IEEE ICC, pp 183–189

  30. Akimaru H, Kawashima K (1999) Teletraffic—theory and applications, 2nd edn. Springer, London

    Google Scholar 

  31. Wolff R (1989) Stochastic modeling and the theory of queues. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  32. van Doorn E, Panken F (1993) Blocking probabilities in a loss system with arrivals in geometrically distributed batches and heterogeneous service requirements. IEEE/ACM Trans Netw 1(6):664–667

    Article  Google Scholar 

  33. Kaufman J, Rege K (1996) Blocking in a shared resource environment with batched Poisson arrival processes. Perform Eval 24(4):249–263

    Article  MATH  Google Scholar 

  34. Moscholios I, Logothetis M (2010) The Erlang multirate loss model with batched Poisson arrival processes under the bandwidth reservation policy. Comput Commun 33(Suppl. 1):S167–S179

    Article  Google Scholar 

  35. Morrison J (1996) Blocking probabilities for multiple class batched Poisson arrivals to a shared resource. Perform Eval 25(2):131–150

    Article  MATH  Google Scholar 

  36. Choundhury G, Leung K, Whitt W (1995) Resource-sharing models with state-dependent arrivals of batches. In: Stewart WJ (ed) Computations with Markov chains. Kluwer, Boston, pp 255–282

    Chapter  Google Scholar 

  37. Jain R (1992) The art of computer systems performance analysis techniques for experimental design, measurement, simulation and modeling. Wiley, New York

    Google Scholar 

  38. Moscholios ID, Vardakas JS, Logothetis MD, Boucouvalas AC (2011) A Batched Poisson multirate loss model supporting elastic traffic under the bandwidth reservation policy. In: Proc. IEEE ICC, pp 1–6

  39. Bonald T, Proutiere A, Roberts J, Virtamo J (2003) Computational aspects of balanced fairness. In: Proc. 18th int. teletraffic congress (ITC-18), pp 801–810

  40. Bonald T, Virtamo J (2005) A recursive formula for multirate systems with elastic traffic. IEEE Commun Lett 9(8):753–755

    Article  Google Scholar 

  41. Iversen VB (2011) Teletraffic theory and network planning. Technical University of Denmark. http://oldwww.com.dtu.dk/education/34340/material/telenook2011pdf.pdf. Accessed 17 Feb 2012

  42. Bonald T, Virtamo J (2004) Calculating the flow level performance of balanced fairness in tree networks. Perform Eval 58(1):1–14

    Article  Google Scholar 

  43. Bonald T, Massoulie L, Proutiere A, Virtamo J (2006) A queueing analysis of max-min fairness, proportional fairness and balanced fairness. Queueing Syst 53(1–2):65–84

    Article  MathSciNet  MATH  Google Scholar 

  44. Simscript II.5. http://www.simscript.com/. Accessed on 17 Feb 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Logothetis.

Appendices

Appendix 1

1.1 Tutorial example

Consider again the example of Section 2.1. A link of capacity C = 3 b.u. and T = 5 b.u. accommodates calls of two service classes. The first service class is elastic and the second service class is adaptive. Remind that b 1 = 1 b.u. and b 2 = 2 b.u., while \({\mu_1}^{-1}={\mu_2}^{-1}= 1\) time unit. Furthermore, we assume that the batch size of both service classes follows the geometric distribution with parameters β 1 = 0.2 and β 2 = 0.5, which corresponds to 1.25 and 2.0 mean number of call arrivals per batch, respectively. The system has 12 states \(\textbf{\textit{n}} = (n_1,n_2)\), which are presented in Table 8, together with the occupied link bandwidth j in each state, and the state-dependent factors \(r(\textbf{\textit{n}})=C/j\), \(\phi_1(\textbf{\textit{n}})\), and \(\phi_2(\textbf{\textit{n}})\). The values of \(\phi_1(\textbf{\textit{n}})\) and \(\phi_2(\textbf{\textit{n}})\) are calculated through Eqs. 13 and 14.

Table 8 State space, occupied link bandwidth, and state-dependent factors of the tutorial example

The global balance equation for a state \(\textbf{\textit{n}} = (n_1, n_2)\) is of the form

$$\begin{array}{lll} \sum \limits_{k=1}^{K=2} (R^{(\rm up)} (L_{\textbf{\textit{n}}}^{k} ) -R^{(\rm up)} (L_{{\textbf{\textit{n}}}_{{\it k}}^{{\it -}{\rm 1}} }^{k} )) \nonumber\\ \quad\sum \limits_{k=1}^{K=2} (R^{(\rm down)} (L_{\textbf{\textit{n}}}^{k} ) -R^{(\rm down)} (L_{{\textbf{\textit{n}}}_{{\it k}}^{{\it -}{\rm 1}} }^{k} )). \end{array}$$
(50)

When we use the state-dependent factor \(r(\textbf{\textit{n}})\) (irreversible Markov chain) in Eq. 50, we get the following system of equations:

$$\begin{array}{rll}{\rm State}\,\, \textbf{\textit{n}}&=&(0,0): P(0,1) + P(1,0) - 2.0P(0,0) =0\\ {\rm State}\,\, \textbf{\textit{n}}&=&(0,1): 0.5P(0,0) + 2.0P(0,2) + P(1,1) \\ &&-\, 3.0P(0,1) =0\\ {\rm State}\,\, \textbf{\textit{n}}&=&(0,2): 0.5P(0,0) + P(0,1) + 0.6P(1,2) \\&&-\, 3.0P(0,2) =0\\ {\rm State}\,\, \textbf{\textit{n}}&=&(1,0): 0.8P(0,0) + P(1,1) + 2.0P(2,0) \\&&-\, 3.0P(1,0) =0\\ {\rm State}\,\, \textbf{\textit{n}}&=&(1,1): 0.8P(0,1) + 0.5P(1,0) + 2.0P(1,2)\\&& +\, 1.5P(2,1) - 4.0P(1,1) =0\\ {\rm State}\,\, \textbf{\textit{n}}&=&(1,2): P(0,2) + 0.5P(1,0) + P(1,1) \\&&-\, 2.6P(1,2) =0\end{array}$$
$$\begin{array}{rll}{\rm State}\,\, \textbf{\textit{n}}&=&(2,0): 0.16P(0,0) + 0.8P(1,0) + 3.0P(3,0) \\[1pt]&& +\, P(2,1) - 4.0P(2,0) =0\\[1pt] {\rm State}\,\, \textbf{\textit{n}}&=&(2,1): 0.16P(0,1) + 0.8P(1,1) + P(2,0)\\ [1pt]&&+\, 1.8P(3,1) - 3.5P(2,1) =0\\[1pt] {\rm State}\,\, \textbf{\textit{n}}&\!=\!&(3,0): 0.032P(0,0) \!+\! 0.16P(1,0) \!+\! 0.8P(2,0)\\[1pt]&& +\, P(3,1) + 3.0P(4,0) - 5.0P(3,0) =0\\[1pt] {\rm State}\,\, \textbf{\textit{n}}&=&(3,1): 0.04P(0,1) + 0.2P(1,1) + P(2,1) \\[1pt]&&+\, P(3,0) - 2.8P(3,1) = 0\\[1pt] {\rm State}\,\, \textbf{\textit{n}}&=&(4,0): 0.0064P(0,0)+ 0.032P(1,0) \\[1pt]&&+\, 0.16P(2,0) + 0.80P(3,0) + 3.0P(5,0) \\[1pt]&&- 4.0P(4,0) =0\\[1pt] {\rm State}\,\, \textbf{\textit{n}}&=&(5,0): 0.0016P(0,0) + 0.008P(1,0) \\[1pt]&&+\, 0.04P(2,0) + 0.20P(3,0) + P(4,0) \\[1pt]&&- 3.0P(5,0) =0. \end{array}$$

Its solution is

$$\begin{array}{lll} P(0,0) &=& 0.1250 \;\;\; P(0,1) = 0.1166\;\;\; \\[3pt]P(0,2) &=& 0.0807 \;\;\; P(1,0) = 0.1334 \\[3pt] P(1,1) &=& 0.1259 \;\;\; P(1,2) = 0.1051\;\;\; \\[3pt]P(2,0) &=& 0.0871 \;\;\; P(2,1) = 0.0889 \\[3pt] P(3,0) &=& 0.0442 \;\;\; P(3,1) = 0.0582\;\;\; \\[3pt]P(4,0) &=& 0.0227 \;\;\; P(5,0) = 0.0121. \end{array}$$

Based on the values of \(P(\textbf{\textit{n}} )\)’ s, the exact values of G(j)’ s are G(0) = 0.1250, G(1) = P(1,0) = 0.1334, G(2) = P(0,1) + P(2,0) = 0.2037, G(3) = P(1,1) + P(3,0) = 0.1701, G(4) = P(0,2) + P(2,1) + P(4,0) = 0.1923, and G(5) =  P(1,2) + P(3,1) + P(5,0) =  0.1754.

Thus, the exact values of TC and CC probabilities are \(P_{b_1}=0.1754\), \(P_{b_2}=0.3677\), \(C_{b_1}=0.2225\), and \(C_{b_2}=0.6192\).

When we use the state-dependent factors \(\phi_1(\textbf{\textit{n}})\) and \(\phi_2(\textbf{\textit{n}})\) (reversible Markov chain) in Eq. 50, we get the following system of equations:

$$\begin{array}{rll}{\rm State}\,\, \textbf{\textit{n}}&=& (0,0): P(0,1)+P(1,0)-2.0P(0,0)= 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (0,1): 0.5P(0,0)+2.0P(0,2)+P(1,1)\\&&-\,3.0P(0,1) = 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (0,2): 0.5P(0,0)+P(0,1)+0.88235P(1,2)\\&&-\,3.0P(0,2) = 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (1,0): 0.8P(0,0)+P(1,1)+2.0P(2,0)\\&&-\,3.0P(1,0) = 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (1,1): 0.8P(0,1)\!+\!0.5P(1,0)\!+\!1.7647P(1,2)\\&&+1.71428P(2,1)-4.0P(1,1) = 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (1,2): P(0,2)+0.5P(1,0)+P(1,1)\\&&-\,2.64705P(1,2) = 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (2,0): 0.16P(0,0)+0.8P(1,0)+3.0P(3,0)\\&&+\, 0.85714P(2,1)-4.0P(2,0)= 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (2,1): 0.16P(0,1)+0.8P(1,1)+P(2,0)\\&&+\,2.23404P(3,1) -3.57142P(2,1) = 0\\ {\rm State}\,\, \textbf{\textit{n}}&\!=\!& (3,0): 0.032P(0,0)\!+\!0.16P(1,0)\!+\!0.8P(2,0)\\&&+\, 0.63829P(3,1)\!+\!3.0P(4,0)\!-\!5.0P(3,0) = 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (3,1): 0.04P(0,1)+0.2P(1,1)+P(2,1)\\&&+\,P(3,0)- 2.87233P(3,1)= 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (4,0): 0.0064P(0,0)+0.032P(1,0)\\&&+\,0.16P(2,0)+ 0.80P(3,0)+3.0P(5,0)\\&&-4.0P(4,0) = 0\\ {\rm State}\,\, \textbf{\textit{n}}&=& (5,0): 0.0016P(0,0)+0.008P(1,0)\\&&+\,0.04P(2,0)+ 0.20P(3,0)+P(4,0)\\&&-\,3.0P(5,0)= 0. \end{array}$$

The solution of this system is

$$\begin{array}{lll} P(0,0) &=& 0.1277 \;\;\; P(0,1)= 0.1278 \;\;\; \\P(0,2) &=& 0.0958 \;\;\;P(1,0)= 0.1276 \\ P(1,1) &=& 0.1278 \;\;\; P(1,2)= 0.1086 \;\;\; \\P(2,0) &=& 0.0764 \;\;\;P(2,1)= 0.0897 \\ P(3,0) &=& 0.0354 \;\;\; P(3,1)= 0.0542 \;\;\; \\P(4,0) &=& 0.0189 \;\;\;P(5,0)= 0.0101. \end{array}$$

Based on the values of \(P(\textbf{\textit{n}})\)’ s, the approximate values of \(G(j)\)’ s are \(G()\), \(G()P(,)\) \(0\), \(G()P(,)P(,)\), \(G()\) P(1,1) + P(3,0) = 0.1632, \(G(4) = P(0,2) + P(2,1) + P(,)\), and \(G()P(,)P(,)\) P(5,0) = 0.1729.

The same values of G(j)’s can also be obtained through Eq. 29. Thus, the approximate values of TC and CC probabilities (based on Eqs. 41 and 43, respectively) are \(P_{b_1}=0.1729\), \(P_{b_2}=0.3773\), \(C_{b_1}=0.2222\), and \(C_{b_2}=0.6248\). These results are very close to the corresponding exact values given above and show that the proposed formula can give quite good results even in the case of small examples.

Appendix 2

2.1 Notion of state-dependent multipliers φ k (n) and their calculation

Consider a link that accommodates calls of two service classes. The first service class is elastic and the second is adaptive.

When \(\textbf{\textit{nb}}\le {\it C}\), the bandwidth b k and the service rate μ k , k = 1,2, of calls are not affected. In this case, \(\phi _{k}(\textbf{\textit{n}})=1\), k = 1,2, where n = (n 1 ,n 2 ) and b = (b 1, b 2).

When \(T \ge \textbf{\textit{nb}} > C\), the bandwidth b k and the service rate μ k , of calls are decreased by \(\phi _{k}(\textbf{\textit{n}})\), k = 1,2, so that the link operates at its full capacity:

$$\label{EQ51} n_{1} b_{1}^{\rm compressed} +n_{2} b_{2}^{\rm compressed}=C. $$
(51)

Furthermore, from Eqs. 16 and 17, we have

$$\label{EQ52} b_{1}^{\rm compressed} =b_{1} \phi _{1} (\textbf{\textit{n}}) ~~~~{\rm (elastic~service~class)} $$
(52)
$$\label{EQ53} b_{2}^{\rm compressed} =b_{2}^{} \phi _{2} (\textbf{\textit{n}})r(\textbf{\textit{n}}) ~~~~{\rm (adaptive~service~class)}. $$
(53)

Based on Eqs. 52 and 53, Eq. 51 becomes

$$\label{EQ54} n_{1}b_{1}\phi _{1}(\textbf{\textit{n}})+n_{2}b_{2}\phi _{2}(\textbf{\textit{n}})r(\textbf{\textit{n}})=C. $$
(54)

Consider now an excerpt of the state transition diagram of our system that consists of four adjacent states as shown in Fig. 7.

Fig. 7
figure 7

State transition diagram of four adjacent states

According to Kolmogorov’ s criterion [41], the system Markov chain (Fig. 7) becomes reversible if

$$ \textit{Flow clockwise} = \textit{Flow counter-clockwise} $$

By applying this criterion to our Markov chain (Fig. 7), we have

$$\begin{array}{lll} \lambda _{1} \phi _{2} (n_{1} ,n_{2} )n_{2} \mu _{2} \phi _{1} (n_{1} ,n_{2}-1)n_{1} \mu _{1} \lambda _{2} \nonumber\\ \quad \phi _{1} (n_{1} ,n_{2} )n_{1} \mu _{1} \phi _{2} (n_{1}-1,n_{2} )n_{2} \mu _{2} \lambda _{1} \lambda _{2}. \end{array}$$
(55)

In Eq. 55, we notice that the Kolmogorov’ s criterion holds by a proper selection of the state-dependent multipliers \(\phi _{k}(\textbf{\textit{n}})\), which affect the bandwidth and service rate requirements (not the arrival rates).

Equation 55 is simplified to

$$\label{EQ56} \phi _{2} (n_{1} ,n_{2} )\phi _{1} (n_{1} ,n_{2}-1)=\phi _{2} (n_{1}-1,n_{2} )\phi _{1} (n_{1} ,n_{2} ). $$
(56)

By choosing

$$\label{EQ57} \phi _{k}(\textbf{\textit{n}})=\left\{\begin{array}{l} {{\rm 1}\, \, \, \, \, \, \, \, \, \, \, \, \, \, ,\, \, {\rm when}\, \, \textbf{\textit{nb}}\le C\, \, {\rm and}\, \, \textbf{\textit{n}} \in \, \Omega\, \, \, } \\ {\frac{x( \textbf{\textit{n}}_{k}^{-1} )}{ x(\textbf{\textit{n}})} ,\, \, \, {\rm when}\, C< \textbf{\textit{nb}}\le T\, \, {\rm and}\, \, \textbf{\textit{n}} \in \, \Omega \; \; } \\ {{\rm 0}\, \, \, \, \, \, \, \, \, \, \, \, \, ,\, \, \, {\rm otherwise\; \; \; \; \; }} \end{array}\right. $$
(57)

Equation 56 holds and the Markov chain becomes reversible.

Equation 54, based on Eq. 57, is written as

$$\label{EQ58} x(\textbf{\textit{n}})=\frac{1}{C} \left[n_{1} b_{1}x(\textbf{\textit{n}}_{{\rm 1}}^{{\rm -1}} )+r(\textbf{\textit{n}})n_{2} b_{2}^{} x(\textbf{\textit{n}}_{2}^{{\rm -1}} )\right] $$
(58)

where \(r(\textbf{\textit{n}})=C/(\textbf{\textit{nb}})\).

Equation 58 is Eq. 14 for two service classes (elastic and adaptive).

To determine \(\phi _{1}(\textbf{\textit{n}})\) and \(\phi _{2}(\textbf{\textit{n}})\), we proceed as follows. Based on Eqs. 54 and 56, we get

$$\begin{array}{lll} {\phi _{1} (n_{1} ,n_{2} )=\left\{\begin{array}{l} {\frac{C}{n_{1} b_{1} } ,\, \, \, \, \,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{\rm if}\, \, n_{1} \ge 1\, \, {\rm and}\, n_{2} =0\, } \\ {\frac{C\phi _{1} (n_{1} ,n_{2} -1)}{n_{1} b_{1} \phi _{1} (n_{1} ,n_{2} -1)+r(n_{1} ,n_{2} )n_{2} b_{2} \phi _{2} (n_{1} -1,n_{2} )} ,\, \, \, \, \, {\rm if}\, \, n_{1} \ge 1\, \, {\rm and}\, n_{2} \ge 1\, } \end{array}\right. } \\ {\phi _{2} (n_{1} ,n_{2} )=\left\{\begin{array}{l} {\frac{C}{r(n_{1} ,n_{2} )n_{2} b_{2} } ,\, \, \, \, \, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{\rm if}\, \, n_{2} \ge 1\, \, {\rm and}\, n_{1} =0\, } \\ {\frac{C\phi _{2} (n_{1} -1,n_{2} )}{n_{1} b_{1} \phi _{1} (n_{1} ,n_{2} -1)+r(n_{1} ,n_{2} )n_{2} b_{2} \phi _{2} (n_{1} -1,n_{2} )} ,\, \, \, \, \,~ {\rm if}\, \, n_{1} \ge 1\, \, {\rm and}\, n_{2} \ge 1} \end{array}\right. } \end{array}. $$
(59)

For K service classes, when n k  ≥ 1, k ∈ K, we have

$$ \label{EQ60} \begin{array}{l} {\phi _{k}(n_{1},...,n_{k},...,n_{K} )} ={\frac{C\phi _{k} (n_{1} -1,...,n_{k-1}-1,n_{k} ,n_{k+1}-1,...,n_{K}-1)}{\sum \limits_{i\in \! K_{\rm e}}n_{i} b_{i}\phi _{i} (n_{1}-1,...,n_{i-1}-1,n_{i},n_{i+1}-1,...,n_{K_{\rm e}}-1)+r(\textbf{\textit{n}})\sum \limits_{i\in K_{\rm a}}n_{i} b_{i} \phi _{i} (n_{1}-1,...,n_{i-1}-1,n_{i},n_{i+1}-1,...,n_{K_{\rm a}}-1)}}. \end{array} $$
(60)

Equation 60 can also be used in the case of the E-EMLM [25]. If we consider only the case of elastic service classes [24], then Eq. 60 becomes

$$\label{EQ61} \phi _{k} (n_{1} ,...,n_{k},...,n_{K})=\frac{C\phi _{k}(n_{1}-1,...,n_{k-1}-1,n_{k},n_{k+1}-1,...,n_{K}-1)}{\sum \limits_{i \in K} n_{i} b_{i} \phi _{i}(n_{1}-1,...,n_{i-1}-1,n_{i},n_{i+1}-1,...,n_{K}-1)}, \, \, \, ~{\rm if}\, \, n_{k} \ge 1,\,~ k\in K. $$
(61)

Although the Markov chain becomes reversible by using \(\phi _{k}(\textbf{\textit{n}})\)’s, the existence of summations in Eqs. 60 and 61 reveals that no PFS exists for the calculation of steady-state distribution P(n).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moscholios, I., Vardakas, J., Logothetis, M. et al. Congestion probabilities in a batched Poisson multirate loss model supporting elastic and adaptive traffic. Ann. Telecommun. 68, 327–344 (2013). https://doi.org/10.1007/s12243-012-0326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-012-0326-7

Keywords

Navigation