
Class Mutation Operators for C++ Object-Oriented
Systems

Pedro Delgado-Pérez · Inmaculada Medina-Bulo ·
Juan José Domı́nguez-Jiménez · Antonio Garćıa-Domı́nguez ·
Francisco Palomo-Lozano

the date of receipt and acceptance should be inserted later

Abstract Mutation testing is a fault injection testing
technique around which a great variety of studies and
tools for different programming languages have been

developed. Nevertheless, the mutation testing research
with respect to C++ is pending. This paper proposes a
set of class mutation operators related to this language
and its particular object-oriented (OO) features. In ad-

dition, an implementation technique to apply mutation
testing based on the traversal of the abstract syntax
tree (AST) is presented. Finally, an experiment is con-

ducted to study the operator behaviour with different
C++ programs, suggesting their usefulness in the cre-
ation of complete test suites. The analysis includes a

Web Service (WS) library, one of the domains where
this technique can prove useful, considering its challen-
ging testing phase and that C++ is still a reference
language for critical distributed systems WS.

Keywords Mutation testing, mutation operators,

C++, object-oriented programming, abstract syntax
tree, Web Services

1 Introduction

Mutation testing is a fault-based technique assessing
the effectiveness of a test suite to detect faults within

Pedro Delgado-Pérez · Inmaculada Medina-Bulo · Juan José
Domı́nguez-Jiménez · Antonio Garćıa-Domı́nguez · Francisco
Palomo-Lozano
UCASE Software Engineering Group. Department of Com-
puter Science and Engineering, University of Cádiz.
C/ Chile no1, 11002 Cádiz, Spain

Pedro Delgado-Pérez
Phone: +34 956 015780
E-mail: pedro.delgado@uca.es

the code [13]. This technique involves inserting simple
syntactic changes in the program under test using muta-
tion operators, obtained from the analysis of the most

common mistakes made by programmers. These modi-
fications create new programs called mutants. For in-
stance, x > 1 can be turned into x < 1 by a muta-
tion operator replacing relational operators. A good test

suite should be able to detect any changes affecting the
program behaviour, i.e., making the mutant and the
original program produce different outputs.

Mutation testing has been studied and successfully
applied to several languages of diverse nature. However,
its development around C++, an industrial-strength
object-oriented (OO) language, is immature. As a res-

ult, mutation testing for C++ is underrepresented when
compared to other programming languages [9]. The cor-
rect choice of the set of mutation operators is key to

successful mutation testing and it must be specifically
designed according to the unique features of each lan-
guage. Regarding C++, only some typical faults con-
cerning OO features have been enumerated [4]. Never-
theless, class mutation operators have been defined for
other languages like Java [14] and C# [5].

C++ is a general-purpose language used in an as-
sortment of application domains. Moreover, class muta-
tion operators can be applied to any OO system. Thus,
one of the areas where this technique can be really use-
ful is Service-centric Systems (ScS) [2]. On one hand,
mutation testing has been performed on Web Service
(WS) compositions [1,6], black-box testing them at the
interface level. The approach in this paper goes further

by mutating the C++ code in order to leverage the be-
nefits of applying mutation testing to the individual ser-
vices as well. On the other hand, testability of this kind
of systems is limited by many factors and is more chal-
lenging than in traditional systems. In this regard, the



2 Pedro Delgado-Pérez et al.

experiments in this paper have been conducted on sev-

eral C++ programs, including a real C++ WS-library

implementing the XML-RPC protocol.

Hence, this paper aims to introduce a set of muta-

tion operators for C++ at the class level (by mutating

OO features) and evaluate the kind of mutants gener-

ated with them. Section 2 looks in depth at the issue

of mutation operators, the C++ characteristics and the

need for testing WS. The next section deals with the

defined set of mutation operators. Section 4 exposes

how injecting faults into code can be accomplished with

the help of its abstract syntax tree (AST), despite the

difficulty of implementing mutation testing for this par-

ticular language. Section 5 shows the results from the

experiments: firstly, a subset of operators related to ob-

ject construction and destruction is explored to support

their usefulness; secondly, the distribution of mutants

generated for each program provides an approximation

to the usefulness of operators when trying to create

a good test suite to kill their mutants. Finally, the

last section presents the conclusions and future research

lines.

2 Background and Related Work

2.1 Mutation Operators

Mutation operators are associated with typical categor-

ies of errors arising when using a particular language.

Several of these categories are common to many lan-

guages, but each language possesses certain features

making a specific study necessary. Thus, many works

have been devoted to define sets of operators for a vari-

ety of languages and, more important, some tools auto-

mating the mutant generation have been developed [9],

such as MuJava for Java, Proteum/IM 2.0 for C, and

SQLMutation for SQL.

Mutation testing has originally focused on proced-

ural programs, developing mutation operators for lan-

guages like C or Fortran. Nevertheless, these operat-

ors for procedural programs, known as traditional or

standard operators, are insufficient to test OO pro-

grams: they own features like encapsulation, inherit-

ance, and polymorphism, providing a new scope for po-

tential faults. As the presence of the OO paradigm rose,

mutation testing research regarding its characteristics

increased as well. Most of the studies concerning this

paradigm have been carried out around Java [14] and, in

a smaller proportion, around C# [5]. In [4], Derezińska

listed several common mistakes for the OO features of

C++, but did not define a formal set of mutation oper-

ators. Hence, defining a set of class mutation operators

for C++ is required.

For the C++ language, some commercial tools ex-

ist, such as PlexTest or Insure++, as shown in [9]. How-

ever, these products do not implement any class muta-

tion operators, which are the focus of this paper. In

contrast, they perform some simple mutations (for in-

stance, PlexTest only removes instructions), using the

technique in a selective way.

In order to define this set of operators, the most used

features and common programming mistakes in C++

have been studied [8]. The C++03 standard is taken

as reference because it is soon to define operators for

the C++11 standard (it is not widely used yet). At the

same time, contributions in other languages have been

analysed, chiefly around Java [10,12,14], because this

language has drawn the attention of multiple studies,

and also C# [5]; this fact offers insight into the nature of

the mistakes that programmers frequently make. These

languages are syntactically similar, taking Java much

of the C++ syntax but removing many of the low-level

facilities (the main differences between these two lan-

guages are listed in [8]). On the other hand, C# basic

syntax is influenced by C/C++ as well as Java in its

object model.

2.2 C++ and Web Services

C++ is a multiparadigm language, which is backward

compatible with a large fragment of C and includes fea-

tures from the OO paradigm among other program-

ming styles. As a result, this language is used in a wide

range of applications and mutation testing can allow

for an enhancement of the software quality in a variety

of domains. Thus, the application of this technique to
C++ WS can be fruitful, taking into account that errors

in ScS are difficult to locate once deployed. Regarding

the reliability measurement of these ScS, a considerable

amount of research have been undertaken [2]. However,

much of the testing work developed is specification-

based as access to the service code is generally lim-

ited or simply non-existing. As an illustration, model

checking has been used to test C++ WS, checking the

high-level safety and liveness properties [15]. Concern-

ing mutation testing, it has been applied to WSDL [1],

as well as to WS-BPEL compositions [6].

C++ continues to preserve low-level facilities like

pointers, omitted in other languages. Thus, it is im-

portant to differentiate between a pointer to an object

and the object it actually points to. This aspect of-

ten causes mistakes when referring objects, especially

if using dynamic allocation. Moreover, dynamic bind-

ing, which is used to introduce polymorphic behaviour,

is not as simple as in other languages. These errors

are also produced during object construction, entailing



Class Mutation Operators for C++ Object-Oriented Systems 3

memory allocation and initialisation of every member,

and object destruction (both managed by the program-

mer), which are well-known sources of faults [8]. The

complex memory management model along with other

characteristics, such as overriding members in the class

hierarchy, method overloading, and exception handling,

may confuse programmers coming from a procedural

language background or even some programmers used

to mainstream OO languages.

3 Description of Mutation Operators

3.1 Class Mutation Operators for C++

Mutation operators have been classified in seven cat-

egories according to the main OO characteristics; the

usual sources of error, commented in Section 2.2, have

been considered to define these groups and their muta-

tion operators. Each category is identified by an upper

case letter:

1. Access control: A

2. Inheritance: I

3. Method overloading: O

4. Polymorphism and dynamic binding: P

5. Exception handling: E

6. Object and member replacement: M

7. Miscellany: C

The naming convention to identify mutation operators

is three upper case letters: the first one denotes the

category, while the rest identify the operator within

the category. Categories and operators are resumed in

Table 1. Henceforth, several operators marked with ‘*’

and used in Section 5 will be exposed, whereas the defin-

ition of the rest of operators can be found in the refer-

ences provided in Section 3.2.

Information hiding or access control

Mutation operators in this group intend to confirm the

correct accessibility.

– AMC or Access modifier change: AMC checks

the correct access control to members. Access levels

are determined by sections (public, protected, private)

and as many sections of each level as desired can

be added. This operator transfers the member to a

block with a different access level.

– AAC or Inheritance access modifier change:

When a class inherits from another one, it is pos-

sible to determine the access privileges by specifying

an access modifier. This operator changes the access

modifier when inheriting to ensure the assigned ac-

cess is correct:

Example AAC: Mutant 1:
c l a s s A{ c l a s s B: protected A{

. . . . . . . . . . . .
} ; } ;

Mutant 2:
c l a s s B: pub l i c A{ c l a s s B: private A{

. . . . . . . . . . . .
} ; } ;

Inheritance

Operators applied to inheritance, mainly with respect

to the presence of overridden members, are included in

this group.

– ISI or Base keyword insertion: ISI ensures the

correct member is being referenced when a mem-

ber in the subclass hides a variable or overrides a

method of one of its ancestors. In the example be-

low, it can be observed how the scope resolution op-

erator (::) is employed to refer to a base class:

Example ISI: Mutant:
c l a s s A{ c l a s s A{

. . . . . . . . . . . .
i n t n ; i n t n ;

} ; } ;
c l a s s B: pub l i c A{ c l a s s B: pub l i c A{

. . . . . . . . . . . .
i n t n ; i n t n ;
. . . . . . . . . . . .
i n t m ( ) { i n t m ( ) {

. . . . . . . . . . . .
r e turn n∗2 ; re turn A::n∗2 ;

} }
} ; } ;

– IPC or Explicit call of a parent’s constructor

deletion: IPC removes the explicit call to a parent

constructor so that the default constructor is used.

The constructor of a parent class is invoked within

the initialisation list of a constructor (see CID op-

erator).

– IOP or Overriding method calling position

change: This operator simulates the error that of-

ten occurs when calling a method of a base class,

which is overridden in the child class, at the wrong

time, producing an undesired state.

– IOR or Overridden method rename: This oper-

ator acts when an overriding method interacts with

a parent’s version (see example below). This situ-

ation can only occur when that method is declared

virtual. In this way, the overriding method can be

called from a method in a parent class when the

binding is dynamic:



4 Pedro Delgado-Pérez et al.

Example IOR:
c l a s s A{

. . . . . .
v i r t u a l void m1( ) {//body o f m1}
void m2( ) { . . . m1 ( ) ; . . . }

} ;
c l a s s B: pub l i c A{

. . . . . .
void m1( ) { . . . . . . }

} ;
Mutant:

c l a s s A{
. . . . . .
v i r t u a l void m1( ) {//body o f m1}
virtual void m3() {//body of m1}
void m2( ) { . . . m3() ; . . . }

} ;
c l a s s B: pub l i c A{

. . . . . .
void m1( ) { . . . . . . }

} ;

– IMR or Multiple inheritance replacement: Mul-

tiple inheritance is supported in C++. When a de-

rived class inherits from two or more classes, it may

occur that those base classes have member vari-

ables with the same name or methods with the same

signature. Thus, the programmer can be mistaken

when referencing a certain inherited member. That

is the fault modelled by IMR:

Example IMR: Mutant:
c l a s s A{ c l a s s A{

. . . . . . . . . . . .
i n t a ; i n t a ;

} ; } ;
c l a s s B{ c l a s s B{

. . . . . . . . . . . .
i n t a ; i n t a ;

} ; } ;
c l a s s C: pub l i c A, c l a s s C: pub l i c A,

pub l i c B { pub l i c B {
. . . . . . . . . . . .
void m ( ) { void m ( ) {

. . . . . . . . . . . .
b = A: : a + 1 ; b = B::a + 1 ;

} }
} ; } ;

Method overloading

Operators in this group ensure that a method calling in-

vokes the correct method when overloading is employed.

– OAN or Argument number change: This oper-

ator mutating the number of arguments in method

invocations should consider the possibility of using

default parameters. If a method has just another

overloaded method, as in the example below, then

only one mutant can be generated; but if the over-

loaded method has a default parameter, a further

one can be created:

Without default parameter:
c l a s s A{

. . . . . .
void m ( in t a ) { . . . . . . }
void m ( in t a , f l o a t b) { . . . . . . }

} ;

Example: Mutant:
a .m( 0 , 0 ) ; a .m( 0 ) ;

With default parameter:
c l a s s A{

. . . . . .
void m ( in t a = 1) { . . . . . . }
void m ( in t a , f l o a t b) { . . . . . . }

} ;
Example OAN: Mutant 1:

a .m( 0 , 0 ) ; a .m( 0 ) ;
Mutant 2:

a .m( ) ; (1 )
(1 ) a .m(1) i s a c t ua l l y invoked .

Polymorphism and dynamic binding

This block is composed of operators checking that the

polymorphic mechanism is used in the right way.

– PCI or Type cast operator insertion: The role

of this operator is to cast an object reference, turn-

ing its actual type into the parent or child of the

original declared type. In a case like the example

below, the invoked method may be non-virtual, al-

though the base class needs to be polymorphic to

allow the downcasting :

c l a s s A{ c l a s s B: pub l i c A{
. . . . . . . . . . . .
void m( ) { . . . } void m( ) { . . . }

} }

Example PCI: Mutant:
B b ; B b ;
A ∗pa = &b ; A ∗pa = &b ;
pa−>m( ) ; ( 1 ) (dynamic cast<B*>(pa))−>m( ) ; ( 2 )

(1 ) A : :m( ) i s invoked
(2) B : :m( ) i s invoked

– PPD or Parameter variable declaration with

child class type: This operator, which targets the

parameters of a method, changes the declared type

of an object reference to a parent class type.

– PVI or virtual modifier insertion: Whenever

a method in a class is intended to have a poly-

morphic behaviour, the programmer must indicate

it by adding the virtual modifier. Forgetting to in-

sert the virtual keyword is contemplated with this

operator.



Class Mutation Operators for C++ Object-Oriented Systems 5

Table 1 Summary of categories and mutation operators at the class level

Block Operator Description

Access control
AMC * Access modifier change
AAC * Inheritance access modifier change

Inheritance

IHD Hiding variable deletion
IHI Hiding variable insertion
ISI * Base keyword insertion
ISD * Base keyword deletion
IPC * Explicit call of a parent’s constructor deletion
IOD Overriding method deletion
IOP * Overriding method calling position change
IOR * Overriding method rename
IMR * Multiple inheritance replacement

Method
overloading

OMR Overloading method contents replace
OMD Overloading method deletion
OAN * Argument number change
OAO Argument order change
OPO Method parameter order change

Polymorphism
and dynamic
binding

PCI * Type cast operator insertion
PCD * Type cast operator deletion
PCC * Cast type change
PRV * Reference assignment with other comparable variable
PNC * new method call with child class type
PMD * Member variable declaration with parent class type
PPD * Parameter variable declaration with child class type
PVI * virtual modifier insertion

Exception
handling

EHR Exception handler removal
EHC * Exception handling change
EXS Exception swallowing

Object and
member
replacement

MCO * Member call from another object
MCI * Member call from another inherited class
MNC Method name change
MBC * Member changed

Miscellany

CTD this keyword deletion
CTI this keyword insertion
CID * Member variable initialisation deletion
CDC Default constructor creation
CCA * Copy constructor and assignment operator

overloading deletion
CDD * Destructor method deletion

Legend: Operators marked with * are original or have been changed with respect to their
original definition or implementation in other languages.

Example PVI: Mutant:
c l a s s A{ c l a s s A{

. . . . . . . . . . . .
i n t m( ) { . . . . . . } virtual i n t m( ) { . . . . . . }

} ; ;
c l a s s B: pub l i c A{ c l a s s B: pub l i c A{

. . . . . . . . . . . .
i n t m( ) { . . . . . . } i n t m( ) { . . . . . . }
} ; } ;

Exception handling

Improper handling of exceptions (although exceptions

are not unique to this paradigm, they are closely related

to it) is treated in this block.

– EHC or Exception handling change: EHC re-

moves the exception handling statement. The ex-

ception will not be caught within the method, but

it will be propagated to the nearest handler. This



6 Pedro Delgado-Pérez et al.

case can be achieved through a relaunch of the ex-

ception so that it is caught and handled, hopefully,

at a higher level:

Example EHC: Mutant:
i n t f ( ){ i n t f ( ){

t ry { t ry {
. . . . . . . . . . . .

} catch ( Handler1 ){ } catch ( Handler1 ){
. . . . . . throw;

} ; } ;
} }

Object and member replacement

Operators in this category are dedicated to the replace-

ment of the object invoking a member or to the change

of the member invoked, by a compatible object or mem-

ber respectively.

– MCO or Member call from another object:

When an object member variable is referenced and

calls a method, MCO replaces that reference to the

object by another variable of the same class type

(the invoked method is not changed):

Example MCO:
c l a s s A{ c l a s s B{

. . . . . .
void method ( ) ; A a1 ;

} ; A a2 ;
void m( ) { . . . a1 . method ( ) ; . . . }

} ;
Mutant:
c l a s s A{ c l a s s B{

. . . . . .
void method ( ) ; A a1 ;

} ; A a2 ;
void m( ) { . . . a2 . method ( ) ; . . . }

} ;

– MCI or Member call from another inherited

class: This operator is similar to MCO in the sense

that it makes that a method is invoked from a dif-

ferent object, but now the objects are from different

class types, both having the same base class.

– MBC or Member changed: MBC accesses a dif-

ferent instance variable (with the same type) when

a member variable is referred.

Miscellany

This block contains operators related to different spe-

cific C++ characteristics.

– CID or Member variable initialisation dele-

tion: CID removes the initial value given to mem-

ber variables, checking thereby that the proposed

initialisation is correct. Initial values are assigned in

the constructors, either in the body or using initial-

isation lists. Thus, if the initialisation is within the

body of the constructor, the assignment statement

is deleted, while, if it is within the initialisation list,

then that element is removed from the list:

Example CID: A: :A( ) : a (0 ) { b = 1;}
Mutant 1: A: :A( ) : a (0 ) {}
Mutant 2: A: :A( ) {b = 1;}

– CCA or Copy constructor and assignment

operator overloading deletion: The task of copy-

ing objects is accomplished through the definition of

a copy constructor and, usually, the assignment op-

erator overloading too (when they are not defined,

the compiler provides them automatically). This op-

erator deletes the defined copy constructor or the

assignment operator overloading, checking they are

correctly implemented:

Example CCA:
c l a s s A{

. . . . . .
A( const A& copy ) { . . . . . . }
A& operator =(const A& copy ) { . . . . . . }

} ;
Mutant 1:

c l a s s A{
. . . . . .

// A(const A& copy){... ...}
A& operator =(const A& copy ) { . . . . . . }

} ;
Mutant 2:

c l a s s A{
. . . . . .
A( const A& copy ) { . . . . . . }

// A& operator =(const A& copy){... ...}
} ;

– CDD or Destructor method deletion: C++ al-

lows the programmer to define not only how the

objects are constructed, but also how they are des-

troyed. If a destructor is not specified, the compiler

automatically provides one. CDD deletes the de-

structor checking its correct implementation:

Example CDD: Mutant:
c l a s s A{ c l a s s A{

. . . . . . . . . . . .
˜A( ) { . . . . . . } ; // ˜A(){... ...};

} ; } ;



Class Mutation Operators for C++ Object-Oriented Systems 7

3.2 Comparison with other Languages

Summarising, a set of 37 operators has been conformed

for C++ at the class level, distributed in seven cat-

egories. This number of operators is higher than the

one presented in [14] for Java (29) and the same as the

one shown in [5] for C# (37 operators without counting

the invalid ones).

The operator AMC [3,10,14] is different in C++

because the access level is specified by sections and not

individually as in Java. Most operators in the inher-

itance category have been defined for Java [3,10,14]

and taken in C# [5]. However, ISI, ISD, IPC and IOP

change with respect to Java as they are related to the

super keyword, which does not exist in C++ because

of the multiple inheritance. Thus, not only a single dir-

ect base class has to be considered, but every inher-

ited class. Regarding method overloading, OMR, OMD,

OAO and OAN are based on [12] and OPO is based

on POC from [10], adapting its name to the established

convention. All operators from [14] in the polymorphism

group have been considered with a similar meaning but

different implementation (as commented in Section 2,

the usage of pointers and references to dynamically bind

the objects is necessary).

Concerning exception handling, a definition of EHR

and EHC can be found in [10] and EXS in [5]. In Java,

the function of EHC is achieved using a throws de-

claration instead of the try-catch statement. Besides,

in C++ the finally clause is not used and the exception

could be ultimately captured in the main function in-

stead of the class Object. MCO, MCI, MNC and MBC

are all named in [5] and the fault that they simulate is

shown in [4] (in Object and Member blocks). For this

category, only an explicit definition for MNC has been

found in [3]. Finally, some operators in miscellany take

as reference the Java-specific group in [14]. Regard-

ing CID, an initial value cannot be assigned directly

to members as in Java, but in the constructors.

4 Applying Mutation Operators

4.1 Approach

Parsing C++ code to determine where the operators

can be used is one of the main obstacles in the construc-

tion of a mutation tool. Firstly, some important tech-

niques used to develop mutation tools for Java and C#

are not available in C++, such as the reflection mech-

anism (which allows us to examine the type and state

of objects at runtime) or the insertion of faults in the

bytecode. Thus, mutations have to be performed on the

code. Secondly, the complexity of C++ does not ease

the task of parsing source code for detecting where the

operators can be applied. At the same time, ensuring

that an ad-hoc parser (e.g., based on pattern-matching)

can cover every syntactic construct is really difficult.

These considerations lead the authors to reuse the

AST internally produced by a compiler to analyse and

transform the code according to the criteria defined in

the mutation operators. The AST is an intermediate

form that a compiler generates to represent the source

code; it provides a simplified and clear structure of the

code focusing on the essential aspects, facilitating the

traversal of the tree as nodes containing the language

elements are processed.

Hence, the AST traversal makes the harsh labour

of detecting the locations where a change can be intro-

duced easier. In addition, 100% of the features of the

language covered by the compiler are guaranteed to be

manageable with this approach.

4.2 Implementation Process of a Mutation Operator

The Clang compiler1 has been chosen to process the

AST. Unlike others, this compiler has a well-designed

API, allowing us to reuse its libraries to parse C++

code. These libraries have been used to implement the

mutation operators, automating the process of travers-

ing the tree and finding the nodes that conform to the

rules defined in the operator. The whole process follows

these steps:

1. Using a domain-specific language (DSL) to create

predicates in Clang, a pattern is created to search

for nodes of the tree which could be mutated. For

instance, a pattern for the operator CID looks for

members that are initialised in the initialisation list.

2. Then, selected nodes are analysed to avoid cases in

which the mutation would produce a mutant that

could not be compiled. As for CID, it needs the

position of the initialisation within the list to know

if a comma or the colon preceding the list has to be

deleted.

3. Now, mutation can be applied. In the case of CID,

the node and the appropriate characters (as found

in the previous step) are deleted.

4. Finally, the tree is translated back into source code

form through the Clang libraries.

This process is implemented through the Visitor

pattern. As a full-fledged compiler, Clang provides an

AST with all the information that the mutation oper-

ators may need. The AST generated by Clang is easily

understandable, does not implicitly simplify the code

1 http://clang.llvm.org



8 Pedro Delgado-Pérez et al.

and saves information about every token, among other

advantages.

5 A Discussion of Mutation Operators

5.1 Experiment Setup

An experiment was prepared to analyse several C++

programs using the obtained class mutation operators.

The goal in Section 5.2 is to illustrate, with concrete

cases, different situations where various operators can

be useful. In Section 5.3 and 5.4, the objective is to

examine the distribution of mutants for OO systems

and measure the effectiveness of their tests.

Two programs were chosen from the LLVM-3.2 test-

suite2, containing pieces of code written in C/C++

handling the diverse language constructs:

– Garage, with a class modelling a parking where two

kind of vehicles are parked and released.

– Family, with three classes simulating the hierarchy

“grandfather-father-son”, sharing some attributes.

Two known open-source libraries were used to apply

the operators in real applications, including a library

for WS:

– Tinyxml2 3 to parse XML documents.

– XmlRpc++ (ver. 0.7)4, to incorporate XML-RPC

client and server support into C++ applications.

Both programs could work together in a side of a

client-server communication, the former parsing XML

files and the latter sending/receiving them via HTTP

protocol. Different measures of their characteristics are

shown in Table 2.

In Section 5.2, the mutants generated with a sub-

set of operators in the aforementioned programs were

analysed to evaluate their quality in the composition

of a test suite. For the second and main part, the two

real applications were considered, classifying the kind

of mutants with all the operators presented. The faults

modelled by the operators were introduced into the

code resorting to the procedure explained in Section 4.2.

Then, each mutant was independently run against the

test suite to see the response of its execution. If the

mutant produces a different output from the original

program, for at least one test case, it is classified as

killed or dead (in the opposite case, the mutant is still

alive). Some mutants always produce the same output

as the original program for any input: these are said to

2 http://llvm.org/releases/3.2/docs/TestingGuide.html
3 https://github.com/leethomason/tinyxml2 (Last access:

03/2014)
4 http://xmlrpcpp.sourceforge.net/ (Last access: 03/2014)

Table 2 Size statistics of Tinyxml2 and XmlRpc++

Measure Tinyxml2 XmlRpc++

LoCa 2,620 2,194
Classes 18 13
Methods (mean) 17.8 11.9
Attributes (mean) 3.1 4.5
Inheriting classes 8 5
Inherited members (mean) 32.4 6

aCounted with c count 7.14 (http://invisible-island.net/c_count)

be equivalent. Finally, if the mutant gives a compilation

error, it is considered as invalid.

Regarding the test suite, several test scenarios (a

series of test cases using objects of one or more classes)

were created for garage and family testing their main

functionalities. In the case of tinyxml2 and xmlrpc++,

the diverse test scenarios that were distributed with

the programs were employed to yield the results. The

execution of the tests in xmlrpc++ was not done in the

conventional manner as both server and client had to

be run so that communication was possible. Equivalent

mutant determination is an undecidable problem, so

they were manually identified.

5.2 Usefulness of Operators

The operators CDD, CCA and CID, related with the

construction and destruction of objects, are studied in

this section; they refer to language elements that have

some distinguishing features compared to the rest of

methods and are much used as they are always invoked

whenever an object is built or destroyed respectively.

Moreover, they are error prone as commented in Sec-

tion 2.

CDD mutants are mostly “potentially” equivalent

because the destructor is usually invoked just to re-

lease memory. The word “potentially” is used because

an anomalous behaviour concerning the memory can

only be detected when memory is a limited resource. In

this case, the mutants can be killed if the memory is not

released properly. Nevertheless, this experiment shows

that a destructor also performs other actions that can

be tested in new scenarios. In tinyxml2, two mutants

were killed because the destructor is used to unlink a

pointer; as the pointer is not handled in the destructor

of the mutant, the change can be detected by a test

case checking the pointer. In the case of xmlrpc++, the

deletion of the destructor also affects the execution of a

mutant because a pointer to a boolean is not given the

appropriate value.

CCA mutants are usually equivalent as well because

the copy constructors are often similar to the default



Class Mutation Operators for C++ Object-Oriented Systems 9

one. Nonetheless, this operator can suggest the inclu-

sion of new scenarios performing a copy of objects when

this constructor is somewhat different. Regarding the

family program, a specific scenario copying an object of

class Parent was included, and the mutant was killed

when the destructor was executed. The original version

reserves a new block of memory for the copied object. In

the mutant, both objects involved in the copy pointed

to the same address, producing an error when trying to

free the same block of memory twice.

The CID operator tends to create many mutants.

Some mutants in tinyxml2 were easily killed because a

member pointer was not initialised in the constructor.

Additionally, when the variable _allocated of the class

DynArray was not initialised properly, a problem with

memory allocation could be detected: the value assigned

to a member by the compiler can be unexpected. Some-

times, this undefined behaviour will be captured in the

execution, but in other situations, a new scenario with

a timer can be introduced checking how long it lasts.

For instance, in garage, when the variable maxVehicles

of the class Garage is not initialised, the for loop below

takes a different time depending on the value assigned

to that variable:

Garage : : Garage ( i n t max) {
// CID initialisation deletion: maxVehicles = max;
parked = new Vehic l e ∗ [ maxVehicles ] ;
f o r ( i n t bay = 0 ; bay < maxVehicles ; ++bay )

parked [ bay ] = NULL;
}

As an interesting fact, the case of some mutants of

CID in tinyxml2 can be mentioned; this program was

executed against 112 test cases, but 3 of the mutants

generated with this operator were killed by a single test

case (different in each case). This information demon-

strates that some faults can be difficult to locate and

enforces the need of a complete test suite and, there-

fore, the usefulness of this approach. The situations ex-

plained above prove that these operators have potential

in revealing faults not covered by other operators, often

requiring particular test cases.

5.3 Experimental Results

For the analysis of the distribution of mutants, the ap-

plications tinyxml2 and xmlrpc++ were mutated. Re-

garding tinyxml2, all the mutants generated were con-

sidered; in contrast for xmlrpc++, the mutants related

with log and error reports were discarded for being sec-

ondary functionalities as well as the classes uncovered

by the test suite were excluded (the terms discarded

and uncovered are taken from [16]). The classification

of the mutants obtained is depicted in Table 3 and 4

for tinyxml2 and xmlrpc++ respectively. “Generated”

counts the number of mutants including invalid ones,

which are deducted in “Total”. “Dead” indicates the

amount of mutants resulting dead. The remaining alive

mutants (fourth column) were studied, calculating then

how many were equivalent. The last column shows the

mutation score: the ratio between the killed and non-

equivalent mutants.

However, not every non-equivalent mutant can be

said to be killable; the alive CDD mutants can only

be killed under certain conditions (see Section 5.2); in

the case of EXS, an exception not considered in the

program is needed to be thrown, being this an open

question. Besides, the alive mutants in AAC will be

invalidated with adequate tests. The equivalence and

mutation score was not studied in MBC and MNC ;

they are supposed not to suffer from equivalence unless

two methods in a class perform the same action or two

variables have the same value occasionally, but these

cases are not significant (they completely depend on

the program implementation).

Concerning the WS-library xmlrpc++, mutants usu-

ally died after producing not very enlightening errors

or blocking indefinitely while waiting for the other side

of the communication. To catch this second situation,

a timeout was set to stop execution after a reasonable

time. Hence, from a client side, the origin of these prob-

lems is difficult to determine, supporting the idea that

intensive testing is needed in this kind of applications.

5.4 Discussion and Related Studies

Firstly, it should be noted that the amount of mutants

stemming from class mutation operators is much lower

than for traditional statement-level operators, as stated

in [14] and also in [16], where the number of class-level

mutants produced was 60% lower than their traditional

counterparts; the language constructs modified by these

operators are not as much used as arithmetic or logical

operators. Thus, ten operators in the set did not create

any mutant in this experiment. Therefore, the results

obtained with traditional operators for other languages

should not be compared with the results presented here,

but with studies around class mutants, where similar

numbers can be found [11,16]. In this sense, the prac-

tical application of the technique is more affordable.

Other common conclusion in related studies is the

high equivalence percentage: while traditional operators

generate between 5-15% of equivalence, this percentage

was largely increased using class operators in the same

programs [14,16]. However, the statistics calculated are



10 Pedro Delgado-Pérez et al.

Table 3 Mutant classification in Tinyxml2

Oper. Gen Tot Dead Alive Equiv MS

AAC 16 0 - - - -
AMC 738 443 0 443 428(96.6%) 0%
IHI 48 47 12 35 32(68.1%) 80%
ISD 1 1 1 0 0(0%) 100%
ISI 1 0 - - - -
IPC 6 0 - - - -
IOD 47 25 21 4 1(4%) 87.5%
IOP 8 8 8 0 0(0%) 100%
IOR 10 10 7 3 1(10%) 77.8%
OMD 68 31 9 22 16(51.6%) 60%
OPO 46 23 4 19 13(56%) 40%
PCD 12 6 4 2 2(100%) 100%
PCI 774 533 393 140 62(11.6%) 83.4%
PCC 5 5 0 5 1(20%) 0%
PPD 29 6 3 3 3(50%) 100%
MCO 19 19 13 6 0(0%) 68.4%
MCI 39 39 11 28 0(0%) 28.2%
MNC 399 331 189 142 - -
MBC 469 469 279 190 - -
CID 62 62 43 19 0(0%) 69.4%
CDC 4 4 3 1 0(0%) 75%
CDD 14 14 2 12 8(57.1%) -
CCA 4 4 0 4 4(100%) -

Total 2806 2080 1002 1078 571(34.7%) 66.9%

Legend: Gen: Generated; Tot: Total; Equiv: Equivalent;

MS: Mutation score; “-”: indicates a statistic not calculated

Table 4 Mutant classification in XmlRpc++

Oper. Gen Tot Dead Alive Equiv MS

AAC 10 4 0 4 - -
AMC 436 210 0 210 210(100%) -
IHI 13 13 2 11 11(84.6%) 100%
ISD 2 2 0 2 2(100%) -
ISI 3 3 0 3 3(100%) -
IPC 3 1 1 0 0(0%) 100%
IOD 8 3 0 3 3(100%) -
IOR 15 15 0 15 15(100%) -
OMD 30 9 6 3 0(0%) 66.7%
OMR 15 10 6 4 0(0%) 60%
OAN 7 7 0 7 0(0%) 0%
OPO 2 1 0 1 0(0%) 0%
PCD 3 0 - - - -
PCI 49 5 4 1 1(20%) 100%
PPD 7 1 0 1 1(100%) -
EHC 2 2 0 2 0(0%) 0%
EXS 2 2 0 2 - -
MCO 48 48 20 28 0(0%) 41.6%
MNC 436 370 215 155 - -
MBC 200 200 85 115 - -
CID 16 15 10 5 0(0%) 66.7%
CDC 2 2 0 2 0(0%) 0%
CDD 8 8 1 7 3(37.5%) -
CCA 2 2 2 0 0(0%) 100%

Total 1320 933 352 581 249(39,1%) 52.9%

Legend: Gen: Generated; Tot: Total; Equiv: Equivalent;

MS: Mutation score; “-”: indicates a statistic not calculated

rather different depending on the operators and applic-

ations analysed: from 45,4% [16] to 86.45% [11] in re-

cent works. This study reports an average percentage of

36,9%, which is lower than the aforementioned results,

but corroborates that equivalence is a prominent issue.

Nevertheless, the determination of equivalence was not

such a difficult task in several operators because some

classes contained common structures, but it is challen-

ging in others like MNC or MBC.

The study brings out the likeliest operators to be

applied in OO systems as well as the often most pro-

lific operators. For instance, the operators in object and

member replacement seem the most frequently used. As

a result, the operators in this category spawned the

41.25% and 66.2% of valid mutants in tinyxml2 and

xmlrpc++ respectively. However, in general, class muta-

tion operators are applied with varying frequency de-

pending on the language features used in each applic-

ation, e.g., PCI created 774 mutants in tinyxml2 but

only 49 in xmlrpc++.

The experiment yields an average mutation score of

59.9%, which means that 40.1% of the mutants need

new test cases to be killed. This shows how mutation

testing can help find missing tests in real scenarios. The

operators with a low mutation score are the most prom-

ising because their mutants seem to be harder to detect,

like OAN, PCC and EHC, with a score of 0%. In con-

trast, ISD, IPC, IOP, PCD, PPD and CCA obtained

100%. However, it would be useful to confirm these res-

ults by extending the study with additional programs

and test suites. As a final remark, the AMC operator

might need to be reconsidered in future studies, because

its mutants have been either equivalent, invalid or kil-

lable with the same test cases as OMD, confirming the

original observations by Offutt et al. for Java [14]. Sim-

ilarly, AAC may require further refinements, as it did

not produce any killable mutants.

5.5 Threats to Validity

One of the main challenges in mutation testing is check-

ing if a mutant is equivalent or not: since it is an un-

decidable problem, it must be done by hand and there

is an inherent possibility of error. Another threat is the

reliance of mutation testing on the test suites: they will

determine the time consumed and the reliability of the

results. A test suite making an exhaustive use of every

class and their members would broadly reduce the num-

ber of alive mutants. For instance, if no object copy

were performed in any test case, all the mutants pro-

duced with CCA would survive.

As for the limitations in the conducted studies, only

a subset of all the operators have been analysed in

depth in Section 5.2. Therefore, the conclusions can-

not be generalised to the entire set of operators. In

the same way, not every operator produced mutants

from the two applications in Section 5.4, though res-

ults about those operators will be obtained in further

research. Various simple as well as real and complex ap-

plications were chosen to avoid the partial perspective



Class Mutation Operators for C++ Object-Oriented Systems 11

of the individual programs, but the performance of the

operators is quite different in each application. Hence,

it is not easy to assure that the population studied is

representative, so the figures shown should be treated

as estimations. The different results reported in other

similar analyses prove that the usage of OO features

varies greatly from one application to another [16].

6 Conclusions and Future Work

A set of class level mutation operators for the C++

programming language has been introduced. Mutation

testing is a language-dependent technique, at least in

terms of mutation operators, which presents particular

difficulties in the case of C++. In this sense, the work

presented here is an important contribution because it

defines a set of C++ mutation operators for the first

time and it develops a feasible and comprehensive solu-

tion to automate mutation in this context. This solution

is based on the traversal of the AST internally gener-

ated by the Clang compiler.

These operators have been analysed through a care-

fully designed experiment with different OO programs

to illustrate the applicability of the technique. In brief,

several special operators related to object construction

and destruction have been studied in detail, showing

that specific tests are usually needed to kill their mutants.

The distribution of mutants obtained confirms several

results observed in the literature: class mutation op-

erators generate fewer mutants than traditional oper-

ators, equivalent mutants are also a relevant issue in

C++, and the generalisation of results is difficult be-

cause of the dependency on the subjects under study.

The results promote the benefits of the technique as

the test suites only killed around 60% of the mutants,

being even more valuable when developing WS for high-

availability systems to avoid unusual errors where the

communication was not successfully achieved.

The study of equivalent and invalid mutants can

lead to identify different situations always creating non-

desirable mutants, which may be prevented in the fu-

ture. Moreover, it will be interesting to analyse the

Evolutionary Mutation Testing (EMT) technique [7],

which could allow for a reduction of the number of

mutants without a significant loss of effectiveness. In

addition, the possibility of introducing new operators

according to features not covered yet will be explored.

References

1. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.:
WS-TAXI: A WSDL-based testing tool for web services.
In: ICST, pp. 326–335 (2009)

2. Bozkurt, M., Harman, M., Hassoun, Y.: Testing and veri-
fication in service-oriented architecture: a survey. Soft-
ware Testing, Verification and Reliability 23(4), 261–313
(2013)

3. Chevalley, P.: Applying mutation analysis for object-
oriented programs using a reflective approach. In: Soft-
ware Engineering Conference, 2001. APSEC 2001. Eighth
Asia-Pacific, pp. 267 – 270 (2001)

4. Derezińska, A.: Object-oriented mutation to assess the
quality of tests. In: Proceedings of the 29th Conference
on EUROMICRO, pp. 417–420. IEEE Computer Society,
Belek, Turkey (2003)

5. Derezińska, A.: Quality assessment of mutation operators
dedicated for C# programs. In: P. Kellenberger (ed.)
Proceedings of VI International Conference on Quality
Software, pp. 227–234. IEEE Computer Society, Beijing
(China) (2006). ISSN 1550-6002

6. Domı́nguez-Jiménez, J., Estero-Botaro, A., Garćıa-
Domı́nguez, A., Medina-Bulo, I.: GAmera: an automatic
mutant generation system for WS-BPEL compositions.
In: R. Eshuis, P. Grefen, G.A. Papadopoulos (eds.) Pro-
ceedings of the 7th IEEE European Conference on Web
Services, pp. 97–106. IEEE Computer Society Press,
Eindhoven, The Netherlands (2009)

7. Domı́nguez-Jiménez, J., Estero-Botaro, A., Garćıa-
Domı́nguez, A., Medina-Bulo, I.: Evolutionary mutation
testing. Information and Software Technology 53(10),
1108–1123 (2011)

8. Horstmann, C., Budd, T.: Big C++, 2nd Edition. Wiley
(2009)

9. Jia, Y., Harman, M.: An analysis and survey of the devel-
opment of mutation testing. Software Engineering, IEEE
Transactions on 37(5), 649–678 (2011)

10. Kim, S., Clark, J., McDermid, J.: Class mutation: Muta-
tion testing for object-oriented programs. In: Proc. Net.
ObjectDays, pp. 9–12 (2000)

11. Ma, Y.S., Kwon, Y.R., Kim, S.W.: Statistical investiga-
tion on class mutation operators. ETRI Journal 31(2),
140–150 (2009)

12. Ma, Y.S., Kwon, Y.R., Offutt, J.: Inter-class mutation op-
erators for Java. In: S. Kawada (ed.) Proceedings of XIII
International Symposium on Software Reliability Engin-
eering, pp. 352–363. IEEE Computer Society, Annapolis
(Maryland) (2002)

13. Offutt, A.J., Untch, R.H.: Mutation testing for the new
century. chap. Mutation 2000: uniting the orthogonal,
pp. 34–44. Kluwer Academic Publishers, Norwell, MA,
USA (2001)

14. Offutt, J., Ma, Y.S., Kwon, Y.R.: The class-level mutants
of MuJava. In: K. Anderson (ed.) Proceedings of the 2006
International Workshop on Automation of Software Test,
pp. 78–84. ACM, Shanghai (China) (2006)

15. Qi, Z., Liu, L., Zhang, F., Guan, H., Wang, H., Chen, Y.:
FLTL-MC: Online high level program analysis for web
services. In: SERVICES I, pp. 171–178 (2009)

16. Segura, S., Hierons, R.M., Benavides, D., Ruiz-Cortés,
A.: Mutation testing on an object-oriented framework:
An experience report. Information and Software Techno-
logy 53(10), 1124 – 1136 (2011)


