
Annals of Telecommunications manuscript No.
(will be inserted by the editor)

A survey on formal active and passive testing with
applications to the cloud

Ana R. Cavalli · Teruo Higashino · Manuel Núñez

Received: date / Accepted: date

1 Introduction

Testing has become an integral part of innovation, pro-

duction and operation of systems. The activity of test-

ing is already a flourishing area with the active partici-
pation of a large community of researchers and experts

who are highly aware of its importance and impact for

the future deployment and use of software and systems.

Formal methods have proved to be very promising for

developing automated and generic testing methods. Ac-
tually, the combination of formal methods and testing

is currently well understood and tools to automate test-

ing activities are widely available.

(Formal) testing is the assessment, by means of ex-

periments, that a product conforms to its (formal) re-

quirements. Test cases are designed to test particular
aspects of the system, called test objectives. In order to

formally obtain testing objectives, it is necessary to pro-

vide mathematical models for the semantic of the stud-

ied system, formal frameworks for testing, languages to

describe the expected properties or requirements of the

Ana R. Cavalli
Télécom SudParis
9 Rue Charles Fourier, 91000, Evry, France
Tel.: +33 1 60 76 44 27
Fax: +33 1 60 76 47 11
E-mail: ana.cavalli@it-sudparis.eu

Teruo Higashino
Graduate School of Information Science and Technology
Osaka University, Japan
Tel.: +81 6 6879 4555
Fax: +81 6 6879 4558
E-mail: higashino@ist.osaka-u.ac.jp

Manuel Núñez
Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain
E-mail: mn@sip.ucm.es

system in a precise and unambiguous way and meth-
ods to generate the expected test cases. In addition,

active methods require deploying a test environment

(test architecture) to execute test cases and to observe

implementation reactions. They may also interrupt the

system normal functioning arbitrarily, for example by
resetting it after each test case execution. However,

when a system is deployed in an integrated environ-

ment, it becomes quite difficult to access it. Moreover,

active methods may disturb the natural operation of the
implementation under test. So, these ones may not be

suitable in regards to the tested system. Passive testing

represents another interesting alternative, which offers

several advantages, for example, to not disturb the sys-

tem while testing.

In this paper we present a survey covering the main

approaches to formal testing. We have divided the sur-
vey in three parts. First, we distinguish between ac-

tive and passive approaches to formal testing. Next, we

review some of the work on testing the cloud and on

testing in the cloud.

2 Active testing

Most networked systems, especially communication pro-

tocols, are reactive systems. For each user input or

packet from another network component, a target sys-

tem provides the corresponding reactions and waits a
new input/packet. Thus, the specifications of such re-

active systems are often modeled as the finite state

machines (FSMs). In general, since communication is

essentially unreliable, many specifications of such net-
worked systems contain several exception handling and

timeout mechanisms. Therefore, the total number of

states of such a FSM based specification becomes rather



2 Ana R. Cavalli et al.

large. In order to design and develop high reliable net-

worked systems, we need to guarantee the reliability of

developed implementations of such networked systems.

However, it is rather difficult to mechanically reproduce

the situations corresponding to all exception handling
and timeout mechanisms in real environment and test

whether the corresponding reactions for all the inputs

are carried out correctly. Therefore, a lot of methods for

conformance testing of communication protocols mod-
eled as FSMs have been developed, especially in 1980s

and 1990s (for survey, see [21,40,45,69]). Those testing

methods for FSMs are classified as active testing. In

active testing, a tester provides inputs/packets to each

targeted implementation (“Implementation Under Test
(IUT)”), and checks whether the corresponding outputs

from the IUT are the expected ones.

There are two types of methods in active testing:

functional (black-box) testing and structural (white-
box) testing. In black-box testing, each implementa-

tion is considered as a black-box where for given re-

quirements of a system (specification), test cases from

the requirements are derived to check the correctness

of their implementation. On the other hand, in white-
box testing, test cases are derived from the program of

a given implementation using each testing criteria. Ex-

amples of testing criteria are (i)all paths are executed in

the program, (ii)all conditions in the program are cor-
rectly branched, (iii)all uses of variables are correctly

implemented, and so on.

Conformance testing is a black-box testing approach

where a fault model is given. The most popular fault

model is that the targeted IUT is assumed to be mod-
eled as a FSM with the same number of states of a given

FSM based specification. The number of the states of a

given IUT might be larger than that of the FSM based

specification. Under such an assumption, for a given
pair of a formal specification Spec (requirements) of

a system and its black-box implementation Imp, we

derive test cases from Spec to determine if Imp con-

forms to Spec where the word “conform” has many

definitions depending on its formal models. Examples
of conformance relations are “equivalence” and “reduc-

tion relations”. The “equivalence” conformance relation

means that two FSMs are equivalent if they produce

the same output sequences for every possible input se-
quence from their initial states. In FSM based testing,

we usually consider the output and transfer faults. The

output fault means that a given IUT generates a dif-

ferent output from its specification while the transfer

fault means that a given IUT reaches a state generat-
ing a different output sequence from its specification.

For FSM based conformance testing, there are a lot

of testing methods such as W [18], Wp [25], DS [28],

UIO [67], UIOv [80], HSI [62] and H [20] methods. In W

and Wp methods, a characterization set W is derived

where any two different states of a reduced FSM are

distinguished by at least one sequence in the set W.

DS method corresponds to a special case of W method
where one distinguishing sequence (DS) distinguishes

all states of a given FSM. Note that the distinguishing

sequence does not always exist for any reduced FSM. In

UIO and UIOv methods, for each state of a given FSM,
a single sequence called UIO sequence can be used for

distinguishing the state from all other states. The UIO

sequence does not always exist for any state of a reduced

FSM. HSI and H methods are extensions of W and Wp

methods where unreduced FSMs are treated.

In general, networked systems are often updated.

Thus, their specifications might often be changed. In

such a case, depending on the change of a given speci-

fication, the corresponding IUT also needs to be modi-
fied. Even if the original IUT is confirmed to the orig-

inal specification, the modified IUT might not confirm

to the changed specification. Since it takes much time

for each conformance testing when the specification is

complicated, we need some devices for efficient confor-
mance testing. For this purpose, incremental testing

methods have been studied where incremental test cases

are generated to check that the modified parts of the

specification are correctly implemented in the modified
IUT. As the types of modifications of specifications, (i)

modification of outputs of transitions, (ii) modification

of ending states of transitions, (iii) addition/deletion

of transitions and (iv) addition/deletion of states are

considered. In [23], the authors show that incremental
testing methods are more efficient than complete con-

formance testing methods if the modified part is less

than 20 % of the whole specification.

From the late 1990s, high-speed networks and mul-

timedia communication systems have become popular.
Also, from the early 2000s, wireless communication net-

works are widely used. In those network systems, we

need to consider contents of data and their real-time

constraints. In order to treat such aspects, extended
FSM (EFSM) based conformance testing methods have

been proposed [22,33,47,81]. EFSM based conformance

testing uses mathematical techniques such as “unfold-

ing”, “abstraction” and “separation”. Unfolding trans-

forms a given EFSM into an equivalent FSM where
the values of variables are mapped into the control

states. Abstraction transforms a given EFSM into a

FSM where each “if then else” statement is abstractly

transformed into simple two branches. Separation con-
siders control flows and data flows of a given EFSM

separately where FSM based testing methods are ap-

plied for the control flows and software testing methods



A survey on formal active and passive testing with applications to the cloud 3

are used for testing the data flows. Some EFSM based

methods restrict a class of transition conditions and

variables. For example, in [33,47] the authors restrict

the transition conditions and operations of variables to

addition, subtraction and linear inequalities (+,−,=, <
,>) on integers, and apply integer linear programming

(ILP) techniques for finding satisfiable values in a given

test sequence with variables.

Recent high-speed networks and multimedia com-
munication systems have several types of timing con-

straints. In order to test such real-time systems, the

authors of [2] have proposed the timed automata model

where the predicates with multiple clock variables and

parameters can be specified as transition conditions of
an automaton. In general, such a predicate is repre-

sented as a logical formula of linear inequalities. In

[72], the authors have proposed testing methods for

the timed automata. In [24], the authors introduce a
timed I/O automaton (TIOA) model and consider tim-

ing faults, transfer faults and output faults. They clas-

sify a given TIOA into the control part and clock part,

transform them into the corresponding non-deterministic

FSM, and apply the characterization set for the control
part. Since the exact timing of the clock part at which

the IUT responds with outputs remains unknown, such

uncertainty is modeled as a non-deterministic FSM. In

[34], the authors propose a similar timed I/O automa-
ton model with data values. In order to trace a test

sequence (I/O sequence) on the timed I/O automaton,

we need to execute all I/O actions in the test sequence

at adequate execution timing which satisfy all timing

constraints in the test sequence. However, since outputs
are given from IUTs and uncontrollable, we cannot des-

ignate their output timing in advance. Also their output

timing affects the executable timing for the succeeding

I/O actions in the test sequence. The authors of [34]
propose a method for generating an executable timing

of each input action in a test sequence independently

of its preceding output actions’ timing.

In multimedia communication systems, QoS func-

tional testing is also important [66,73,78]. The subjects
of those QoS functional testing methods are to check

(i) play-back quality of each media object (frame rate

fluctuation, etc.), (ii) temporal relationship among ob-

jects (lip synchronization, etc.), and (iii) timeliness (de-

lay, play-back speed, etc.). The test procedure of QoS
functional testing is to (i) transmit packets to the IUT

at various timing and observe outputs from the IUT

for a long time interval, (ii) measure the frame rate

(time lag between two media objects) every short in-
terval (e.g., 1sec. ), (iii) register the measured value as

a sampling to get a statistical distribution of the values,

and (iv) determine those testing results statistically. In

QoS functional testing, for a specified probability P ,

we treat that a given IUT is correct when the execu-

tion sequences satisfy the constraints specified in the

specification at a probability P ′ such that P ′ ≥ P .

Recently, WiFi is becoming very popular. In WiFi,

a base station controls several mobile terminals. Such a

system is similar to client-server systems. Thus, testing

methods for client-server systems can be used for WiFi
based systems. On the other hand, ad hoc networks

(including MANET and VANET) and sensor networks

consist of several mobile terminals, and there are no in-

frastructure nor control nodes. Therefore, we need new
testing methods for ad hoc networks [16,35,49]. On the

other hand, the performance and reliability of multi-

hop communications strongly depends on node den-

sity distributions. Thus, for interoperability testing and

end-to-end performance testing, mainly passive testing
methods can be used. This is discussed in the next sec-

tion.

3 Passive testing

Since the early 1980s there has been an increasing in-

terest in passive testing, technically defined as a testing
activity in which a tester does not influence (stimulate)

an implementation under test in any way, it does not

apply any test stimuli. Rather, the usual approach of

passive testing consists on recording the trace (for in-
stance, the sequence of exchange of messages) produced

by the implementation under test and mapped to the

property to be tested or specification if it exists. Passive

testing helps to observe abnormal behavior in the im-

plementation under test on the basis of observing any
deviation from the predefined behavior. Moreover, it

is usually considered that the implementation is taken

without knowledge of its internal state that is to say

that we do not consider the event trace record to start
from the initial state or a predefined state. In general,

the specification has the form of a finite state machine

(FSM) and the work consists in verifying that the ex-

ecuted trace is accepted by the FSM specification. A

drawback of the first approaches is the low performance
of the proposed algorithms in terms of complexity and

especially if non deterministic specifications are consid-

ered.

New approaches have been proposed: a set of prop-

erties, called invariants, are extracted from the system

specification and checked on the traces observed from

the implementation to test their correctness. In this ap-
proach, information will be extracted from the specifi-

cation and then used to process the trace. New algo-

rithms are applied that check the properties on the real



4 Ana R. Cavalli et al.

implementation traces. These algorithms are adapta-

tions of classical algorithms for pattern matching [76].

Another innovation proposed these last years is the

combination of passive testing and fault or attacks in-

jection techniques. Faults or attacks are be injected in
the code and passive testing techniques will be used to

analyse their impact.

One of the first works on passive testing has been

on its application to network fault management [44].

In this approach, the faults of a network protocol are
detected by passively observing its input/output be-

haviours without interrupting the normal network oper-

ations. The authors introduce methods for passive fault

detection in deterministic and non-deterministic FSMs.
The proposed technique is applied to a signaling net-

work protocol operating under Signaling System 7 and

report on experimental results, which show the feasi-

bility of applying passive testing to practical systems.

This work had a strong impact in other works on the
application of passive testing based on FSMs [83,86,77]

and EFSMs [74,42,1,43,76,10] and to systems speci-

fied as communicating FSMs (CFSM) [53–55]. In par-

ticular, in [86] the authors have proposed an approach
that provides information about possible starting states

and possible trace compatibility with the observed I/O

behavior at the end of passive fault detection. In addi-

tion, the proposed approach utilizes a Hybrid method to
evaluate constraints in predicates associated with tran-

sitions in an EFSM which combines the use of both

Interval Refinement and Simplex methods for perfor-

mance improvement during passive fault detection

Many passive testing techniques consider only the
control part of the system and neglect data, or are con-

fronted with an overwhelming amount of data values to

process. Passive testing using EFSM, mainly concen-

trates on checking the correctness of event sequences

(appearing in the collected trace), but it must also con-
sider the variables and the parameter values. In [74], the

authors have proposed the first passive testing method

based on deducing the variable and parameter values

from an event trace with EFSM specifications. In this
approach, the algorithm suffers from an information

loss problem. To overcome this issue, a more efficient

passive testing approach for fault detection is proposed

in [42]. In this paper, the authors present two algo-

rithms by using an event-driven EFSM. First, an effec-
tive passive testing algorithm for EFSMs is proposed;

second, an algorithm based on variable determination

with the constraints on variables is presented. This al-

gorithm allows users to trace the values of variables as
well as the system state. One drawback of this approach

is that not all transfer errors can be detected. Based on

the works of [42], the authors of [1] developed a simi-

lar approach of passive testing but following the trace

in the backward direction. In this approach the partial

trace is processed backward to narrow down the pos-

sible specifications. The algorithm performs two steps.

It first follows a given trace backward, from the cur-
rent configuration to a set of starting ones, according

to the specification. The goal is to find the possible

starting configurations of the trace, which leads to the

current configuration. Then, it analyzes the past of this
set of starting configurations, also in a backward man-

ner, seeking for configurations in which the variables

are determined. When such configurations are reached,

a decision is taken on the validity of the studied paths

(traces are completed). Such an approach is usually ap-
plied as a complement to forward checking to detect

more errors. This new algorithm was applied to the Sim-

ple Connection Protocol (SCP) that allows connecting

two entities after a negotiation of the quality of service
required for the connection. In [10], the backward and

forward methods are combined for online passive test-

ing of web services. Here, the algorithm attempts to

find a set of candidates in the past of the trace, that

matches the observed event. Using those information,
passive fault-detection is carried out, using the forward

approach.

In [57], control and data parts are considered by in-

tegrating the concepts of symbolic execution and by im-

proving trace analysis by introducing trace slicing tech-
niques. Properties are described using Input Output

Symbolic Transition Systems (IOSTSs). These proper-

ties can be designed to test the functional conformance

of a protocol as well as security properties. In IOSTS,
the parameters and variable values are represented by

symbolic values (called fresh variables) instead of con-

crete ones. Enumeration of data values is therefore not

required. This allows to reduce the huge amount of data

values commonly applied in many passive testing ap-
proaches. Besides, in this work a parametric trace slic-

ing technique is used for trace analysis. Trace analysis

plays a very important part in passive testing. A para-

metric trace is defined as a trace containing events with
parameters that have been bound to a concrete data

value (i.e., valuation) and parametric trace slicing is

defined as a technique to slice (or cut) the real protocol

execution trace into various slices based on the valua-

tion. Each slice corresponds to a particular valuation.
These trace slices merged together constitutes the exe-

cution trace. We then apply the symbolic execution of

our properties on the trace slices to provide a test ver-

dict. The proposed symbolic passive testing approach
was implemented in a tool called TestSym-P and ap-

plied to two different protocols: Session Initiation Pro-

tocol (SIP) and Bluetooth Protocol. A more extended



A survey on formal active and passive testing with applications to the cloud 5

version of the approach is provided in the Journal ar-

ticle [59] to specify the protocol properties as well as

several kinds of attack patterns. This helps to detect

conformance as well as security anomalies. In [60] it is

presented an interesting online verification technique of
service choreographies , which takes into account com-

plex data constraints. However, they assume that the

IUT conforms to the model (which are based on Sym-

bolic Transition Graph with Assignments (STGA)) and
also they prove the scalability of their approach for a

maximum of 20,000 packets.

Some works propose the use of invariants for pas-

sive testing. In [6] the authors propose that invariants

be provided by the expert/tester. Therefore, the first
step consists in checking that invariants are in fact cor-

rect with respect to the specification. An algorithm to

check this correctness is provided. The complexity, in

the worst case, of the algorithm was linear with respect
to the number of transitions of the specification. Once

a set of (correct) invariants is available, the second step

consists in checking whether the trace produced by the

IUT matched the invariants. In order to do so, a sim-

ple adaptation of the classical algorithms for pattern
matching on strings was implemented. This work was

extended [8] to study a new type of invariants (obliga-

tion), to present a tool that implements the approach

and to give a complete case study on the Wireless Ap-
plication Protocol. It is worth pointing out that this

protocol represents a typical example where active test-

ing cannot be applied because, in general, there is no

direct access to the interfaces between the different lay-

ers. Thus, testers cannot control how internal commu-
nications are established.

However, most of the described invariant based test-

ing approaches are derived from the FSM formalism,

where only control parts are considered. Then, the au-

thors of [15] proposed a method to extract the con-
straint information separately from the involved tran-

sitions in addition to extraction of control sequences.

According to their approach the correct sequence must

be found and the constraints must hold true, other-
wise a fault is detected. In another work [6] proposes a

minor modification to the obligation invariant, to deal

with constant data parameters. This approach paved

the way for another work by the authors of [39] to ex-

tend the simple and obligation invariant to match the
EFSM formalism. In [8] the authors assume that the

current states of the observed trace are known. In [58]

these assumptions are not required. Moreover, points of

observation are set in a black-box framework that does
not allow any homing phase. Since no formal specifica-

tion of the implementation is provided, the extracted

traces are not related to any known states. Another

recent interesting work on invariants was proposed by

the authors in [41]. In this approach, the authors dis-

cuss the importance of testing for data relations and

constraints between exchanged messages and they also

show how they can be tested directly on traces using
logic programming.

Monitoring is based on passive testing, i.e. the ob-
servation of the system traces without interfering with

the system’s normal operation [8,3]. Monitoring is also

close to run time verification [46]. The goal of mon-

itoring is to obtain improved visibility of the studied

communicating or inter-operating systems. Many tech-
niques can be applied but they all suppose the defini-

tion of a monitoring architecture (including the selec-

tion of observations points to collect the traces) and the

description of the system security requirements using,
for instance, formal specification languages. Different

types of monitoring can be considered, in this paper we

consider the following ones: i) monitoring of network

communication between inter-operating systems (that

we will refer to as blackbox monitoring); and, ii) the
monitoring of application execution (that we will refer

to as white-box monitoring).

Different techniques for network monitoring exist
in the literature and can be based on, for instance,

SNMP [68,85], Deep Packet Inspection (DPI) [19] and

invariants [56]. DPI is a technique that is used for com-

pletely analyzing communication packets (both headers
and payloads) and can be useful for security analysis of

network traffic and detecting and preventing intrusions

(IDPS, Intrusion Detection and Prevention Systems)

[52]. Most techniques used depend on pattern marching

to detect intrusions or attacks (e.g. SNORT) [71] but
very few use correlation of events to generate alarms

(e.g. BRO) [11].

White-box monitoring is similar to run-time veri-
fication where the application is analysed during its

execution. Several techniques exist, including code in-

strumentation using: just-in-time compilation (e.g. Val-

grind) [79], debugging tools (e.g. GDB) [27], etc. [64]
proposes the use of aspect-oriented monitoring approaches

for validation and testing of a software against con-

straints specified on an associated UML design model.

Monitoring can be performed online and offline. In

the former, the passive tester tries to detect a fault

during the execution of the system [29,70], whereas,

in the latter, the evaluation of the system is done by
collecting the recorded traces [65,1,4,84].

Property modeling for monitoring have been defined

and adapted from currently used formalisms, some of
the works using trace analysis techniques: TIC [50] and

TIPS [56] are based on the analysis of, respectively the

execution traces of a system and the exchanged commu-



6 Ana R. Cavalli et al.

nication packets. They aim at determining if real traces

of the system respect functional and security require-

ments.

Some research works have been dedicated to passive

testing of timed systems. In [5] it is presented a formal
passive testing methodology for timed systems. The pa-

per presents two algorithms to check the correctness of

proposed invariants with respect to a given specifica-

tion and algorithms to check the correctness of a log,
recorded from the implementation under test, with re-

spect to an invariant. The soundness of this method-

ology is shown by relating it to an implementation re-

lation. A tool, called PASTE, which implements the

proposed algorithms is also proposed.
An interesting work has been performed on the pas-

sive testing of asynchronous systems. The work pre-

sented in [30] is focused in the analysis, based on passive

testing, of the asynchronous communication between
the system and the tester taking into account the dif-

ferent observations that can be expected due to the as-

sumption of asynchrony. The proposed technique checks

properties against traces in polynomial time, with a low

need for storage. This technique is well adapted to real-
time systems.

Different tools have been proposed to automate all

the phases of the passive testing approach. In partic-

ular, these tools include the algorithms to check the
correctness of invariants with respect to the specifica-

tion and to decide whether the trace observed from the

implementation respects the invariants. MMT is a mon-

itoring tool developed by MI [82]. This tool allows cap-

turing and analysing network traffic and application
traces. It can be used to verify functional properties,

QoS and security properties and is composed of MMT-

Capture probes and a MMT-Operator application that

allow deploying a mixed distributed/centralized net-
work monitoring solution.

4 Testing (in) the cloud

In this short section we consider some of the work on
testing (in) the cloud. Although the special issue tar-

geted the broad scope of testing distributed and net-

worked systems, where formal testing is well established [48,

36,13,63,75,31,32], cloud computing represents the nat-

ural evolution of these systems and work on testing is
in their initial stages. First, we would like to mention

the difference between two apparently similar concepts:

testing in the cloud and testing the cloud. The former

one targets the validation of applications, environments
and infrastructures that are available on a cloud en-

vironment. This ensures the correct operation of each

part of the cloud system against the expectations of

the cloud computing business model. Cloud testing, or

Testing as a Service (in short, TaaS), involves using

cloud infrastructures in testing products and services.

In other words, cloud testing can be seen as a service

while testing a cloud is an inexorable activity that must
be undertaken for any application developed to be ex-

ecuted in a cloud system [51].

Although testing (in) the cloud is a flourishing ac-

tivity, there is almost no work on formal testing. First,
this special issue includes a paper by Alberto Núñez

and Robert M. Hierons where the authors present a

formal methodology for validating cloud models using

metamorphic testing. Another paper dealing with for-

mal testing of cloud systems presents a formalism where
a computing cloud is modelled as a graph, computing

resources, such as services and intellectual property ac-

cess rights, are attributes of a graph node, and the use

of a resource is modelled as a predicate on an edge of
the graph [17]. Cloud computations are modelled as a

set of paths in a subgraph of the cloud such that every

edge contains a predicate that must hold to enable the

edge. This formalism also includes a family of model-

based testing criteria to support the testing of cloud
applications.

Next we review some work on testing cloud systems

although they do not consider formal methods. One ap-

proach for testing cloud systems executes a real virtual
machine instead of a model that mimics its underly-

ing behaviour. D-Cloud [7] is a software testing envi-

ronment that manages virtual machines and includes

fault injection capabilities. Basically, D-Cloud sets up

a test environment on cloud resources using a given sys-
tem configuration file and automatically executes sev-

eral tests according to a given scenario. D-Cloud has

been built on top of Eucalyptus and uses QEMU [9] to

build virtual machines that simulate faults in parts of
the hardware including disk, network and memory. Pre-

Fail [37] is a programmable and efficient failure testing

framework where testers can express a variety of fail-

ure exploration policies, skip redundant fault-injection

tests, run failure testing in parallel, and reduce the time
to debug failed test runs. Unlike D-Cloud, that provides

simulated actual faults, PreFail inserts a failure surface

between the target system and the OS library.

In recent years, simulation has become a widely

adopted loosely formalised approach for testing cloud
systems. The developer builds a simulation model that

imitates the behaviour of the target system and then

different measures, like performance and power con-

sumption, are gathered by running simulations. Researchers
have designed cloud models and then performed ad-

hoc testing by manually simulating different scenarios

and comparing obtained results. Among the available



A survey on formal active and passive testing with applications to the cloud 7

simulation tools that can be used to model and simu-

late cloud computing environments are CloudSim [12],

GreenCloud [38], SimGrid [14], Virtual-GEMS [26] and

iCanCloud [61].

Acknowledgements This research has been partially sup-
ported by the Spanish MEC project ESTuDIo (TIN2012-
36812-C02), the Comunidad de Madrid project SICOMORo-
CM (S2013/ICE-3006) and the UCM-Santander program to
fund research groups (group 910606).

References

1. Alcalde, B., Cavalli, A., Chen, D., Khuu, D., Lee, D.: Net-
work protocol system passive testing for fault manage-
ment: A backward checking approach. In: Proc. of 24th
IFIP Int. Conf. on Formal Techniques for Networked and
Distributed Systems (FORTE’04), Lecture Notes in Com-
puter Science, vol. 3235, pp. 150–166. Springer (2004)

2. Alur, R., Dill, D.: A theory of timed automata. Theoret-
ical Computer Science 126, 183–235 (1994)

3. Andrés, C., Cambronero, M., Nuñez, M.: Formal pas-
sive testing of service-oriented systems. In: Proc. of 2010
IEEE Int. Conf. on Services Computing (SCC 2010), pp.
610–613 (2010)

4. Andrés, C., Merayo, M., Núñez, M.: Passive testing of
timed systems. In: Proc. of 6th Int. Symp. on Automated
Technology for Verification and Analysis (ATVA 2008),
Lecture Notes in Computer Science, vol. 5311, pp. 418–427.
Springer (2008)

5. Andrés, C., Merayo, M.G., Núñez, M.: Formal passive
testing of timed systems: theory and tools. Software Test-
ing, Verification and Reliability 22(6), 365–405 (2012)

6. Arnedo, J.A., Cavalli, A., Núñez, M.: Fast testing of crit-
ical properties through passive testing. In: Proc. of 15th
IFIP Int. Conf. on Testing of Communicating Systems
(TestCom 2003), Lecture Notes in Computer Science, vol.
2644, pp. 295–310. Springer (2003)

7. Banzai, T., Koizumi, H., Kanbayashi, R., Imada, T.,
Hanawa, T., Sato, M.: D-cloud: Design of a software
testing environment for reliable distributed systems us-
ing cloud computing technology. In: Proc. of 10th
IEEE/ACM Int. Conf. on Cluster, Cloud and Grid Com-
puting (CCGrid’10), pp. 631–636 (2010)

8. Bayse, E., Cavalli, A., nez, M.N., Zäıdi, F.: A passive
testing approach based on invariants: application to the
wap. Computer Networks 48(2), 247 – 266 (2005)

9. Bellard, F.: Qemu, a fast and portable dynamic transla-
tor, a fast and portable dynamic translator. In: Proc. of
2005 USENIX Annual Technical Conference (ATEC ’05),
pp. 41–41. USENIX Association (2005)

10. Benharref, A., Dssouli, R., Serhani, M., En-Nouaary, A.,
Glitho, R.: New approach for efsm-based passive testing
of web services. In: Proc. of 19th IFIP Int. Conf. on Test-
ing of Software and Communicating Systems (TestCom
2007), Lecture Notes in Computer Science, vol. 4581, pp.
13–27. Springer (2007)

11. http://bro-ids.org/ (2014)
12. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and

simulation of scalable cloud computing environments and
the CloudSim toolkit: Challenges and opportunities. In:
Proc. of 7th IEEE Int. Conf. High Performance Comput-
ing and Simulation (HPCS’09), pp. 1–11 (2009)

13. Cacciari, L., Rafiq, O.: Controllability and observability
in distributed testing. Information and Software Tech-
nology 41(11–12), 767–780 (1999)

14. Casanova, H., Legrand, A., Quinson, M.: SimGrid: A
generic framework for large-scale distributed experi-
ments. In: Proc. of 10th Int. Conf. on Computer Modeling
and Simulation (UKSIM’ 08), pp. 126–131 (2008)

15. Cavalli, A., Gervy, C., Prokopenko, S.: New approaches
for passive testing using an extended finite state ma-
chine specification. Information and Software Technology
45(12), 837 – 852 (2003)

16. Cavalli, A., Grepet, C., Maag, S., Tortajada, V.: A vali-
dation model for the dsr protocol. In: Proc. of IEEE Int.
Workshop on Wireless Ad Hoc Networking (WWAN’04),
pp. 768–773 (2004)

17. Chan, W., Mei, L., Zhang, Z.: Modeling and testing of
cloud applications. In: Proc. of 4th IEEE Int. Conf. on
Asia-Pacific Services Computing (APSCC’09), pp. 111–
118 (2009)

18. Chow, T.S.: Test design modeled by finite-state ma-
chines. IEEE Trans. on Software Engineering 4(3), 178–
187 (1978)

19. Corwin, E.H.: Deep packet inspection: Shaping the in-
ternet and the implications on privacy and security. In-
formation Security Journal: A Global Perspective 20(6),
311–316 (2011)

20. Dorofeeva, M., El-Fakih, K., Yevtushenko, N.: An im-
proved conformance testing method. In: Proc. of 25th
IFIP Int. Conf. on Formal Techniques for Networked and
Distributed Systems (FORTE’05), pp. 363–378. Springer
(2005)

21. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yev-
tushenko, N.: Fsm-based conformance testing methods:
A survey annotated with experimental evaluation. Infor-
mation and Software Technology 52, 1286–1297 (2010)

22. Duale, A.Y., Uyar, M.U.: A method enabling feasible con-
formance test sequence generation for efsm models. IEEE
Trans. on Computers 53(5), 614–627 (2004)

23. El-Fakih, K., Yevtushenko, N., v. Bochmann, G.: Fsm-
based incremental conformance testing methods. IEEE
Trans. on Software Engineering 30(7), 425–436 (2004)

24. En-Nouaary, A., Dssoul, R., Khendek, F., Elqortobi, A.:
Timed test cases generation based on state characteriza-
tion technique. In: Proc. of 19th IEEE Real-Time System
Sympsium (RTSS’98), pp. 220–229. IEEE (1998)

25. Fujiwara, S., v. Bochmann, G., Khendek, F., Amalou, M.,
Ghedamsi, A.: Test selection based on finite state mod-
els. IEEE Trans. on Software Engineering 17(6), 591–603
(1991)

26. Garćıa-Guirado, A., Fernández-Pascual, R., Garćıa, J.M.:
Virtual-GEMS: An infrastructure to simulate virtual ma-
chines. In: Proc. of 5th annual workshop on model-
ing, benchmarking and simulation (MoBS’09), pp. 1–10
(2009)

27. http://www.gnu.org/software/gdb/ (2014)
28. Gonenc, G.: A method for the design of fault detection

experiments. IEEE Trans. on Computers C-19(6), 551–
558 (1970)

29. Hallé, S., Villemaire, R.: Runtime monitoring of web ser-
vice choreographies using streaming xml. In: 2009 ACM
Symposium on Applied Computing, SAC’09, pp. 2118–
2125 (2009)

30. Hierons, R., Merayo, M., Núñez, M.: Passive testing with
asynchronous communications. In: Proc. of 33rd IFIP
Int. Conf. on Formal Techniques for Distributed Sys-
tems (FORTE’13), Lecture Notes in Computer Science, vol.
7892, pp. 99–113. Springer (2013)



8 Ana R. Cavalli et al.

31. Hierons, R.M.: Oracles for distributed testing. IEEE
Trans. on Software Engineering 38(3), 629–641 (2012)

32. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementa-
tion relations and test generation for systems with dis-
tributed interfaces. Distributed Computing 25(1), 35–62
(2012)

33. Higashino, T., v. Bochmann, G.: Automatic analysis and
test case derivation for a restricted class of lotos expres-
sions with data parameters. IEEE Trans. on Software
Engineering 20(1), 29–42 (1994)

34. Higashino, T., Nakata, A., Taniguchi, K., Cavalli, A.R.:
Generating test cases for a timed i/o automaton model.
In: Proc. of 12th IFIP Int. Workshop on Testing of Com-
municating Systems (IWTCS’99), pp. 197–214. Springer
(1999)

35. Hiromori, A., Umedu, T., Yamaguchi, H., Higashino, T.:
Protocol testing and performance evaluation for manets
with non-uniform node density distribution. In: Proc. of
24th IFIP Int. Conf. on Testing Software and Systems
(ICTSS 2012), pp. 231–246. Springer (2012)

36. Jard, C., Jéron, T., Kahlouche, H., Viho, C.: Towards
automatic distribution of testers for distributed confor-
mance testing. In: Proc. of Int. Conf. on Formal Descrip-
tion Techniques and Protocol Specification, Testing and
Verification (FORTE’98/PSTV’98), pp. 353–368. Kluwer
Academic Publishers (1998)

37. Joshi, P., Gunawi, H., Sen, K.: PREFAIL: a pro-
grammable tool for multiple-failure injection. ACM SIG-
PLAN Notices 46(10), 171–188 (2011)

38. Kliazovich, D., amd S. U. Khan, P.B.: GreenCloud: A
packet-level simulator of energy-aware cloud computing
data centers. The Journal of Supercomputing 62(3),
1263–1283 (2012)

39. Ladani, B., Alcalde, B., Cavalli, A.: Passive testing: A
constrained invariant checking approach. In: Proc. of
17th IFIP Int. Conf. on Testing of Communicating Sys-
tems (TestCom 2005), Lecture Notes in Computer Science,
vol. 3502, pp. 9–22. Springer (2005)

40. Lai, R.: A survey of communication protocol testing. The
Journal of Systems and Software 62, 21–46 (2002)

41. Lalanne, F., Maag, S.: A formal data-centric approach for
passive testing of communication protocols. IEEE/ACM
Trans. on Networking 21(3), 788–801 (2013)

42. Lee, D., Chen, D., Hao, R., Miller, R., Wu, J., Yin, X.:
A formal approach for passive testing of protocol data
portions. In: Proc. of 10th IEEE Int. Conf. on Network
Protocols (ICNP 2002), pp. 122–131 (2002)

43. Lee, D., Chen, D., Hao, R., Miller, R., Wu, J., Yin, X.:
Network protocol system monitoring-a formal approach
with passive testing. IEEE/ACM Trans. on Networking
14(2), 424–437 (2006)

44. Lee, D., Netravali, A., Sabnani, K., Sugla, B., John, A.:
Passive testing and applications to network management.
In: Proc. of 5th IEEE Int. Conf. on Network Protocols
(ICNP’97), pp. 113–122 (1997)

45. Lee, D., Yannakakis, M.: Principles and methods of test-
ing finite state machines-a survey. Proceedings of the
IEEE 84(8), 1090–1123 (1996)

46. Leucker, M., Schallhart, C.: A brief account of runtime
verification. The Journal of Logic and Algebraic Pro-
gramming 78(5), 293 – 303 (2009)

47. Li, X., Higashino, T., Higuchi, M., Taniguchi, K.: Auto-
matic generation of extended uio sequences for communi-
cation protocols in an efsm model. In: Proc. of 7th IFIP
Int. Workshop on Protocol Test Systems (IWPTS’94),
pp. 225–240. Springer (1994)

48. Luo, G., Dssouli, R., Bochmann, G.v.: Generating syn-
chronizable test sequences based on finite state machine
with distributed ports. In: Proc. of 6th IFIP Int. Work-
shop on Protocol Test Systems (IWPTS’93), pp. 139–153.
North-Holland (1993)

49. Maag, S., Zaidi, F.: Testing methodology for an ad hoc
routing protocol. In: Proc. of 2006 ACM Int. Workshop
on Performance Monitoring, Measurement, and Evalua-
tion of Heterogeneous Wireless and Wired Networks, pp.
48–55 (2006)

50. Mammar, A., Cavalli, A., Jimenez, W., Mallouli, W.,
Montes, E.: Using testing techniques for vulnerability de-
tection in c programs. In: Proc. of 23rd IFIP Int. Conf. on
Testing Software and Systems (ICTSS’11), Lecture Notes
in Computer Science, vol. 7019, pp. 80–96. Springer (2011)

51. Mehrotra, N.: Cloud-Testing vs. Testing a Cloud. In:
Proc. 10th Int. Software Testing Conf., pp. 1–7 (2010)

52. Mell, P., Scarfone, K.: Guide to intrusion
detection and prevention systems (IDPS).
http://csrc.nist.gov/publications/ nistpubs/800-
94/SP800-94.pdf (2007)

53. Miller, R.: Passive testing of networks using a cfsm spec-
ification. In: Proc. of 1998 IEEE Int. Conf. on Perfor-
mance, Computing and Communications (IPCCC ’98),
pp. 111–116 (1998)

54. Miller, R., Arisha, K.: On fault location in networks by
passive testing. In: Proc. of 2000 IEEE Int. Conf. on
Performance, Computing, and Communications (IPCCC
’00), pp. 281–287 (2000)

55. Miller, R., Arisha, K.: Fault identification in networks by
passive testing. In: Proc. of 34th Simulation Symp., pp.
277–284 (2001)

56. Morales, G., Maag, S., Cavalli, A., Mallouli, W., Montes,
E., Wehbi, B.: Timed extended invariants for the passive
testing of web services. In: Proc. of 2010 IEEE Int. Conf.
on Web Services (ICWS 2010), pp. 592–599 (2010)

57. Mouttappa, P., Maag, S., Cavalli, A.: An iosts based pas-
sive testing approach for the validation of data-centric
protocols. In: Proc. of 12th Int. Conf. on Quality Soft-
ware (QSIC 2012), pp. 49–58 (2012)

58. Mouttappa, P., Maag, S., Cavalli, A.: Monitoring based
on iosts for testing functional and security properties:
Application to an automotive case study. In: Proc. of 37th
IEEE Int. Conf. on Computer Software and Applications
(COMPSAC ’13), pp. 1–10 (2013)

59. Mouttappa, P., Maag, S., Cavalli, A.: Using passive test-
ing based on symbolic execution and slicing techniques:
Application to the validation of communication proto-
cols. Computer Networks 57(15), 2992 – 3008 (2013)

60. Nguyen, H., Poizat, P., Zaidi, F.: Online verification of
value-passing choreographies through property-oriented
passive testing. In: Proc. of 14th IEEE Int. Symp. on
High-Assurance Systems Engineering (HASE 2012), pp.
106–113 (2012)

61. Núñez, A., Vázquez-Poletti, J.L., Caminero, A.C.,
Castañé, G.G., Carretero, J., Llorente, I.M.: iCanCloud:
A flexible and scalable cloud infrastructure simulator.
Journal of Grid Computing 10(1), 185–209 (2012)

62. Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A.:
Nondeterministic state machines in protocol conformance
testing. In: Proc. of 6th IFIP Int. Workshop on Protocol
Test Systems (IWPTS’93), pp. 363–378. North-Holland
(1993)

63. Rafiq, O., Cacciari, L.: Coordination algorithm for dis-
tributed testing. The Journal of Supercomputing 24(2),
203–211 (2003)



A survey on formal active and passive testing with applications to the cloud 9

64. Richters, M., Gogolla, M.: Aspect-oriented monitoring of
UML and OCL constraints. In: 4th Int. Workshop on
Aspect-Oriented Modeling with UML on 6th Int. Conf.
on the Unified Modeling Language (UML’03). (2003)

65. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
Lorensen, W.E., et al.: Object-oriented modeling and de-
sign. Prentice-hall Englewood Cliffs, NJ (1991)

66. S. C. Cheung, S.T.C., Xu, Z.: Toward generic timing tests
for distributed multimedia software systems. In: Proc. of
12th IEEE Int. Symp. on Software Reliability Engineer-
ing (ISSRE’01), pp. 210–220 (2001)

67. Sabnani, K., Dahbura, A.: A protocol test generation pro-
cedure. Computer Networks ISDN Systems 15(4), 285–
297 (1988)

68. Shin, K.S., Jung, J.H., Cheon, J.Y., Choi, S.B.: Real-time
network monitoring scheme based on SNMP for dynamic
information. Journal of Network and Computer Applica-
tions 30(1), 331 – 353 (2007)

69. Sidhu, D.P., Leung, T.K.: Formal methods for protocol
testing: a detailed study. IEEE Trans. on Software Engi-
neering 15(4), 413–426 (1989)

70. Simmonds, J.: Dynamic analysis of web services. Ph.D.
thesis, University of Toronto (2011)

71. http://www.snort.org/ (2015)
72. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Test-

ing timed automata. Theoretical Computer Science
254(1-2), 225–257 (2001)

73. Sun, T., Yasumoto, K., Mori, M., Higashino, T.: Qos
functional testing for multi-media systems. In: Proc.
of 23rd IFIP Int. Conf. on Formal Techniques for Net-
worked and Distributed Systems (FORTE’03), pp. 319–
334. Springer (2003)

74. Tabourier, M., Cavalli, A.: Passive testing and applica-
tion to the gsm-map protocol. Information and Software
Technology 41(11-12), 813 – 821 (1999)

75. Ural, H., Williams, C.: Constructing checking sequences
for distributed testing. Formal Aspects of Computing
18(1), 84–101 (2006)

76. Ural, H., Xu, Z.: An efsm-based passive fault detection
approach. In: Proc. of 19th IFIP Int. Conf. on Testing of
Software and Communicating Systems (TestCom 2007),
Lecture Notes in Computer Science, vol. 4581, pp. 335–350.
Springer (2007)

77. Ural, H., Xu, Z., Zhang, F.: An improved approach to
passive testing of fsm-based systems. In: Proc. of 2nd
IEEE Int. Workshop on Automation of Software Test
(AST ’07), p. 6 (2007)

78. V. Misic, S.T.C., Cheung, S.C.: Towards a framework
for testing distributed multimedia software systems. In:
Proc. of 1998 IEEE Int. Symp. on Software Engineering
for Parallel and Distributed Systems (PDSE’98), pp. 72–
81 (1998)

79. http://valgrind.org/ (2014)
80. Vuong, S.T., Chan, W., Ito, M.: The uiov-method for

protocol test sequence generation. In: Proc. of 2nd IFIP
Int. Workshop on Protocol Test Systems (IWPTS’89),
pp. 161–175. North-Holland (1989)

81. Wang, C.J., Liu, M.T.: Axiomatic test sequence gener-
ation for extended finite state machines. In: Proc. of
12th IEEE Int. Conf. on Distributed Computing Systems
(ICDCS-12), pp. 252–259 (1992)

82. Wehbi, B., Montes, E., Bourdelles, M.: Events-based se-
curity monitoring using mmt tool. In: Proc. of 5th IEEE
Int. Conf. on Software Testing, Verification and Valida-
tion (ICST 2012), pp. 860–863 (2012)

83. Wu, J., Zhao, Y., Yin, X.: From active to passive:
Progress in testing of internet routing protocols. In:

Proc. of 22nd IFIP Int. Conf. on Formal Techniques for
Networked and Distributed Systems (FORTE 2002), pp.
101–116. Springer (2002)

84. Xiaoping, C., Lalanne, F., Maag, S.: A logic-based pas-
sive testing approach for the validation of communicating
protocols. In: Proc. of 7th Int. Conf. on Evaluation of
Novel Approaches to Software Engineering (ENASE’12),
pp. 53–64 (2012)

85. Zeng, W., Wang, Y.: Design and implementation of server
monitoring system based on snmp. In: Proc. of 2009 Int.
Joint Conf. on Artificial Intelligence (JCAI ’09), pp. 680–
682 (2009)

86. Zhao, Y., Yin, X., Wu, J.: Problems in the information
dissemination of the internet routing. Journal of Com-
puter Science and Technology 18(2), 139–152 (2003)


