Skip to main content

Advertisement

Log in

Generalized diversity combining of energy harvesting multiple antenna relay networks: outage and throughput performance analysis

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

In this paper, the generalized diversity combining of an energy constrained multiple antenna decode-and-forward relay network is considered. Using power splitting and time switching architectures in consort with diversity combining at the relay, six protocols are proposed, i.e., power splitting with selection combining (PSSC), power splitting with maximum ratio combining (PSMRC), power splitting with generalized selection combining (PSGSC), time switching with selection combining (TSSC), time switching with maximum ratio combining (TSMRC), and time switching with generalized selection combining (TSGSC). The outage probability and throughput performance of each protocol is analyzed by first developing the closed form analytical expressions and then verifying these through the Monte Carlo simulation method. Simulation results show that system performance improves both with increasing the number of antennas and decreasing the distance between the source and relay. The TSSC/TSMRC/TSGSC protocols yield better outage performance whereas the PSSC/PSMRC/PSGSC protocols achieve relatively higher throughput performance. Finally, the effects of power splitting ratio, energy harvesting time ratio, energy conversion efficiency, sample down conversion noise, and the target signal-to-noise ratio on system performance are analyzed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raghunathan V, Ganeriwal S, Srivastava M (2006) Emerging techniques for long lived wireless sensor networks. IEEE Commun Mag 44(4):108–114

    Article  Google Scholar 

  2. Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1):18–27

    Article  Google Scholar 

  3. Xu J, Zhang R (2014) Throughput optimal policies for energy harvesting wireless transmitters with non-ideal circuit power. IEEE Selected Areas Commun 32(2):322–332

    Article  Google Scholar 

  4. Varshney LR (2008) Transporting information and energy simultaneously. In: IEEE international symposium on information theory (ISIT 2008), pp 1612–1616

  5. Grover P, Sahai A (2010) Shannon meets tesla: wireless information and power transfer. In: IEEE international symposium on information theory proceedings (ISIT), pp 2363–2367

  6. Zhang R, Ho CK (2013) MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wirel Commun 12(5):1989–2001

    Article  Google Scholar 

  7. Liu L, Zhang R, Chua K-C (2013) Wireless information and power transfer: a dynamic power splitting approach. IEEE Trans Commun 61(9):3990–4001

    Article  Google Scholar 

  8. Zhou X, Zhang R, Ho CK (2014) Wireless information and power transfer in multiuser OFDM systems. IEEE Trans Wirel Commun 13(4):2282–2294

    Article  Google Scholar 

  9. Zhou Z, Peng M, Zhao Z, Li Y (2015) Joint power splitting and antenna selection in energy harvesting relay channels. IEEE Sig Proc Lett 22(7):823–827

    Article  Google Scholar 

  10. Ding Z, Perlaza SM, Esnaola I, Poor HV (2014) Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans Wirel Commun 13(2):846–860

    Article  Google Scholar 

  11. Son PN, Kong HY (2015) Exact outage analysis of energy harvesting underlay cooperative cognitive networks. IEICE Trans Commun E98-B(4):661–672

    Article  Google Scholar 

  12. Nasir AA, Zhou X, Durrani S, Kennedy RA (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Commun 12(7):3622–3636

    Google Scholar 

  13. Nosratinia A, Hunter T E, Hedayat (2004) Cooperative communication in wireless networks. IEEE Commun Mag 42(10):74–80

    Article  Google Scholar 

  14. Laneman JN, Tse DNC, Wormell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080

    Article  MathSciNet  MATH  Google Scholar 

  15. Touati S, Boujemmaa H, Abed N (2015) Static hybrid multihop relaying and two hops hybrid relaying using DSTC. Ann Telecommun 70(3):171–180

    Article  Google Scholar 

  16. Alouane WH, Hamdi N, Meherzi S (2014) Semi-blind amplify-and-forward in two-way relaying networks. Ann Telecommun 69(9):497–508

    Article  Google Scholar 

  17. Alouane WH, Hamdi N (2015) Semi-blind two-way AF relaying over Nakagami-m fading environment. Ann Telecommun 70(1):49–62

    Article  Google Scholar 

  18. Alouane WH, Hamdi N (2015) Performance analysis of semi-blind two-way AF relaying over generalized-k fading channels. Ann Telecommun 70(9):381–394

    Article  Google Scholar 

  19. Duong TQ, Zepernick H-J, Bao VNQ (2009) Symbol error probability of hop-by-hop beamforming in Nakagami-m fading. IEEE Electron Lett 45(20):1042–1044

    Article  Google Scholar 

  20. Liu Y, Wang L, Elkashlan M, Duong TQ, Nallanathan A (2014) Two-way relaying networks with wireless power transfer: Policies design and throughput analysis. In: Proceedings of IEEE global telecommunications conference (GLOBECOM2014), Austin, pp 4030–4035

  21. Nguyen DK, Matthaiou M, Duong TQ, Ochi H RF energy harvesting two-way cognitive DF relaying with transceiver impairments. In: Proceedings of IEEE international communications conference (ICC15), London, pp 1970–197

  22. Miridakis NI, Vergados DD (2014) Generalized diversity reception in the presence of multiple distinct interferers: an outage performance analysis. IEEE Trans Wirel Commun 13(5):2443–2453

    Article  Google Scholar 

  23. Deng Y, Wang L, Elkashlan M, Kim KJ, Duong TQ (2015) Generalized selection combining for cognitive relay networks over Nakagami-m fading. IEEE Trans Sig Proc 63(8):1993–2006

    Article  MathSciNet  Google Scholar 

  24. Krikidis I, Sasaki S, Timotheou S, Ding Z (2014) A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels. IEEE Trans Commun 62(5):1577–1587

    Article  Google Scholar 

  25. Bhaskar V, Vivek GR (2015) Spectrum efficiency evaluation of LMF channels under various adaptation policies with hybrid diversity schemes. Ann Telecommun. Springer, doi:10.1007/s12243-015-0476-5

  26. Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series and products, 7th edn. Academic Press

  27. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover Publications, United States

    MATH  Google Scholar 

  28. Ikki SS, Aissa S (2011) Effects of co-channel interference on the error probability performance of multi-hop relaying networks. In: Proceedings of IEEE global telecommunications conference (GLOBECOM2011), pp 1–5

  29. Alouini M-S, Simon MK (1999) Performance analysis of generalized selective combining over Rayleigh fading channels. In: Communication theory mini-conference, pp 110–114

Download references

Acknowledgments

This work was supported by the 2017 Research Fund of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Quang Nguyen or Hyung Yun Kong.

Appendices

Appendix A: Proof of equation (12.3)

The first probability in (12.2), \(\Pr \left [ {\upsilon \psi {g_{\mathrm {X}}} < {\psi _{t}}} \right ]\), is expressed under the CDF of RV g X as

$$ \Pr \left[ {\upsilon \psi {g_{\mathrm{X}}} < {\psi_{t}}} \right] = {F_{{g_{\mathrm{X}}}}}\left( \varphi \right) $$
(A1)

where \(\varphi \triangleq \frac {{{\psi _{t}}}}{{\upsilon \psi }}\).

The second probability in (12.2), \(\Pr \left [ {\upsilon \psi {g_{\mathrm {X}}} \ge {\psi _{t}},\omega \psi {g_{\mathrm {X}}}{g_{2}} < {\psi _{t}}} \right ]\), is given by

$$ \begin{array}{l} \Pr \left[ {\upsilon \psi {g_{\mathrm{X}}} \ge {\psi_{t}},\omega \psi {g_{\mathrm{X}}}{g_{2}} < {\psi_{t}}} \right]\\ \overset{\left( {\text{{A2}}.1} \right)}{=} \int_{\varphi}^{\infty} {{f_{{g_{\mathrm{X}}}}}(x){F_{{g_{2}}}}\left( {\frac{{{\psi_{t}}}}{{\omega \psi x}}} \right)dx} \\ \overset{\left( {\text{{A2}}.2} \right)}{=} \int_{\varphi}^{\infty} {{f_{{g_{\mathrm{X}}}}}(x)\left( {1 - {e^{ - \frac{{{\lambda_{2}}{\psi_{t}}}}{{\omega \psi x}}}}} \right)dx} \\ \overset{\left( {\text{{A2}}.3} \right)}{=} 1 - {F_{{g_{\mathrm{X}}}}}\left( \varphi \right) - \int_{\varphi}^{\infty} {{f_{{g_{\mathrm{X}}}}}(x){e^{ - {\lambda_{2}}\theta /x}}dx} \end{array} $$
(A2)

where \(\theta \triangleq \frac {{{\psi _{t}}}}{{\omega \psi }}\), \({f_{{g_{\mathrm {X}}}}}\left (x \right )\) is the PDF of RV g X; (A2.2) is obtained by substituting the CDF \({F_{{g_{2}}}}\left ({\frac {{{\psi _{t}}}}{{\omega \psi x}}} \right ) = 1 - {e^{ - \frac {{{\lambda _{2}}{\psi _{t}}}}{{\omega \psi x}}}}\) into (A2.1); (A2.3) is obtained by substituting \(\int _{\varphi }^{\infty } {{f_{{g_{\mathrm {X}}}}}(x)dx} = 1 - \int _{0}^{\varphi } {{f_{{g_{\mathrm {X}}}}}(x)dx} = 1 - {F_{{g_{\mathrm {X}}}}}\left (\varphi \right )\) into (A2.2).

Combining Eqs. A1 and A2, we finish the proof for equation (12.2).

Appendix B: Proof of \(P_{out}^{PSSC}\)

Firstly, the CDF of g SC is given by

$$\begin{array}{@{}rcl@{}} {F_{{g_{SC}}}}(x) &=& \Pr \left[ {{g_{SC}} < x} \right] = \Pr \left[ {\max\limits_{i = 1,...,N} {g_{1i}} < x} \right]\notag\\ &=& \Pr \left[ {{g_{11}} < x,{g_{12}} < x,...,{g_{1N}} < x} \right]\notag\\ &=& {F_{{g_{11}}}}(x){F_{{g_{12}}}}(x)...{F_{{g_{1N}}}}(x)\notag\\ &=& {\left( {1 - {e^{ - {\lambda_{1}}x}}} \right)^{N}} \end{array} $$
(B1)

The PDF of g SC can be obtained by differentiating (B1)

$$ {f_{{g_{SC}}}}(x) = \frac{{\partial {F_{{g_{SC}}}}(x)}}{{\partial x}} = N{\lambda_{1}}{e^{ - {\lambda_{1}}x}}{\left( {1 - {e^{ - {\lambda_{1}}x}}} \right)^{N - 1}} $$
(B2)

Secondly, from the binomial theorem \({\left ({u + v} \right )^{n}} = \sum \limits _{k = 0}^{n} {{C_{n}^{k}}{u^{n - k}}{v^{k}}} \) [27, pp. 10], where \({C_{n}^{k}} = \frac {{n!}}{{k!\left ({n - k} \right )!}}\). We obtain the following result:

$$ {\left( {1 - {e^{ - {\lambda_{1}}x}}} \right)^{N - 1}} = \sum\limits_{k = 0}^{N - 1} {C_{N - 1}^{k}{{\left( { - 1} \right)}^{k}}{e^{ - {\lambda_{1}}kx}}} $$
(B3)

Then, \(P_{out}^{PSSC}\) can be rewritten by

$$\begin{array}{@{}rcl@{}} P_{out}^{PSSC} &=& 1 - {\lambda_{1}}N\sum\limits_{k = 0}^{N - 1} {C_{N - 1}^{k}{{\left( { - 1} \right)}^{k}}} \int_{\varphi}^{\infty} {{e^{ - {\lambda_{1}}\left( {k + 1} \right)x - {\lambda_{2}}\theta /x}}dx} \notag\\ &=& 1 - {\lambda_{1}}N\sum\limits_{k = 0}^{N - 1} {C_{N - 1}^{k}{{\left( { - 1} \right)}^{k}}}\notag\\ &&\times\left( \int_{0}^{\infty} {{e^{ - {\lambda_{1}}\left( {k + 1} \right)x - {\lambda_{2}}\theta /x}}dx} \right.\notag\\&&\qquad\left.- \int_{0}^{\varphi} {{e^{ - {\lambda_{1}}\left( {k + 1} \right)x - {\lambda_{2}}\theta /x}}dx} \right) \end{array} $$
(B4)

We note that \(\theta = \frac {{{\lambda _{2}}{\psi _{t}}}}{{\omega \psi }} \approx 0\) and \(\varphi = \frac {{{\psi _{t}}}}{{\upsilon \psi }} \approx 0\) when ψ is high. Thus, the integral \(\int _{0}^{\varphi } {{e^{ - {\lambda _{1}}\left ({k + 1} \right )x - {\lambda _{2}}\theta /x}}dx} \) is insignificant due to \(\frac {{{\psi _{t}}}}{{\upsilon \psi }} \approx 0\), and \(\int _{0}^{\varphi } {{e^{ - {\lambda _{1}}\left ({k + 1} \right )x - {\lambda _{2}}\theta /x}}dx} \) can be approximated to \(\int _{0}^{\varphi } {{e^{ - {\lambda _{1}}\left ({k + 1} \right )x}}dx} \). We obtain:

$$ \int_{0}^{\varphi} {{e^{ - {\lambda_{1}}\left( {k + 1} \right)x - {\lambda_{2}}\theta /x}}dx} \approx \int_{0}^{\varphi} {{e^{ - {\lambda_{1}}\left( {k + 1} \right)x}}dx} = \frac{{1 - {e^{ - {\lambda_{1}}\left( {k + 1} \right)\varphi }}}}{{{\lambda_{1}}\left( {k + 1} \right)}} $$
(B5)

Finally, \(P_{out}^{PSSC}\) can be expressed by using the formula \(\int _{0}^{\infty } {{e^{ - \frac {\beta }{{4x}} - \gamma x}}dx = \sqrt {\frac {\beta }{\gamma }} } {K_{1}}\left ({\sqrt {\beta \gamma } } \right )\) [26, Eq. 3.324.1], where \({K_{1}}\left (. \right )\) is the first-order modified Bessel function of the second kind

$$ \begin{array}{l} P_{out}^{PSSC} \approx 1 - {\lambda_{1}}N\sum\limits_{k = 0}^{N - 1} {C_{N - 1}^{k}{{\left( { - 1} \right)}^{k}}} \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\times \left[ {2\sqrt {\frac{\theta }{{{\lambda_{1}}\left( {k + 1} \right)}}} {K_{1}}\left( {2\sqrt {{\lambda_{1}}{\lambda_{2}}\theta \left( {k + 1} \right)} } \right) - \frac{{1 - {e^{ - {\lambda_{1}}\left( {k + 1} \right)\varphi }}}}{{{\lambda_{1}}\left( {k + 1} \right)}}} \right] \end{array} $$
(B6)

This finishes the proof of \(P_{out}^{PSSC}\).

Appendix C: Proof of \(P_{out}^{PSM\!RC}\)

Firstly, because g MRC is summation of i.i.d. exponential RVs, its PDF is given from [28, Eq. 12] as

$$ {f_{{g_{MRC}}}}(x) = \frac{{{\lambda_{1}^{N}}}}{{\left( {N - 1} \right)!}}{x^{N - 1}}{e^{ - {\lambda_{1}}x}} $$
(C1)

Then , we rewrite \(P_{out}^{PSMRC}\) as

$$ \begin{array}{l} P_{out}^{PSMRC} = 1 - \frac{{{\lambda_{1}^{N}}}}{{\left( {N - 1} \right)!}}\int_{\varphi}^{\infty} {{x^{N - 1}}{e^{ - {\lambda_{1}}x - {\lambda_{2}}\theta /x}}dx} \\ = 1 - \frac{{{\lambda_{1}^{N}}}}{{\left( {N - 1} \right)!}}\left[ {\int_{0}^{\infty} {{x^{N - 1}}{e^{ - {\lambda_{1}}x - {\lambda_{2}}\theta /x}}dx} - \int_{0}^{\varphi} {{x^{N - 1}}{e^{ - {\lambda_{1}}x - {\lambda_{2}}\theta /x}}dx} } \right]\\ \approx 1 - \frac{{{\lambda_{1}^{N}}}}{{\left( {N - 1} \right)!}}\left[ {\int_{0}^{\infty} {{x^{N - 1}}{e^{ - {\lambda_{1}}x - {\lambda_{2}}\theta /x}}dx} - \int_{0}^{\varphi} {{x^{N - 1}}{e^{ - {\lambda_{1}}x}}dx} } \right] \end{array} $$
(C2)

Using the formula \({\int _{0}^{u}} {{x^{v - 1}}{e^{ - \mu x}}dx} = {\mu ^{ - v}}\gamma \left ({v,\mu u} \right )\) [26, Eq. 3.381.1] and \(\int _{0}^{\infty } {{x^{v - 1}}{e^{ - \frac {\beta }{x} - \gamma x}}dx} = 2{\left ({\frac {\beta }{\gamma }} \right )^{v/2}}{K_{v}}\left ({2\sqrt {\beta \gamma } } \right )\) [26, Eq. 3.471.9], where K v (.) is a modified Bessel function of the second kind, \(\gamma \left ({v,\mu u} \right )\) is the incomplete gamma function and it is defined by \(\gamma \left ({v,\mu u} \right ) \triangleq \int _{0}^{\mu u} {{e^{ - t}}{t^{v - 1}}dt} = \int _{0}^{\infty } {{e^{ - t}}{t^{v - 1}}dt} - \int _{\mu u}^{\infty } {{e^{ - t}}{t^{v - 1}}dt} = \Gamma \left (v \right ) - \Gamma \left ({v,\mu u} \right )\) [26, Eq. 8.350.1], with \(\Gamma \left (v \right ) \triangleq \int _{0}^{\infty } {{e^{ - t}}{t^{v - 1}}dt} \) [26, Eq. 8.310.1], \(\Gamma \left ({v,\mu u} \right ) \triangleq \int _{\mu u}^{\infty } {{e^{ - t}}{t^{v - 1}}dt} \) [26, Eq. 8.350.2]. We obtain the following results

$$ \int_{0}^{\varphi} {{x^{N - 1}}{e^{ - {\lambda_{1}}x}}dx} = {\left( {{\lambda_{1}}} \right)^{ - N}}\gamma \left( {N,{\lambda_{1}}\varphi } \right) $$
(C3a)
$$ \int_{0}^{\infty} {{x^{N - 1}}{e^{ - {\lambda_{1}}x - {\lambda_{2}}\theta /x}}dx} = 2{\left( {{\lambda_{2}}\theta /{\lambda_{1}}} \right)^{N/2}}{K_{N}}\left( {2\sqrt {{\lambda_{1}}{\lambda_{2}}\theta } } \right) $$
(C3b)

Substituting Eqs. C3a and C3b into Eq. C2, \(P_{out}^{PSMRC}\) is given by

$$ P_{out}^{PSM\!RC} = 1 \!-\! \frac{{{\lambda_{1}^{N}}}}{{\left( {N\! - \!1} \right)!}}\left[ {2{{\left( {{\lambda_{2}}\theta /{\lambda_{1}}} \right)}^{N/2}}{K_{N}}\left( {2\sqrt {{\lambda_{1}}{\lambda_{2}}\theta } } \right)\! -\! {{\left( {{\lambda_{1}}} \right)}^{ - N}}\gamma \left( {N,{\lambda_{1}}\varphi } \right)} \right] $$
(C4)

This finishes the proof of \(P_{out}^{PSMRC}\).

Appendix D: Proof of \(P_{out}^{PSGSC}\)

Firstly, the PDF of g GSC is given from [29, Eq. 8] as

$$ {f_{GSC}}\left( x \right) = {C_{N}^{L}}\left\{ \begin{array}{l} \frac{{{\lambda_{1}}^{L}{x^{L - 1}}{e^{ - {\lambda_{1}}x}}}}{{\left( {L - 1} \right)!}} + {\lambda_{1}}\sum\limits_{l = 1}^{N - L} {{{\left( { - 1} \right)}^{L + l - 1}}C_{N - L}^{l}} \\ \times {\left( {\frac{L}{l}} \right)^{L - 1}}{e^{ - {\lambda_{1}}x}}\left[ {{e^{ - \frac{{l{\lambda_{1}}x}}{L}}} - \sum\limits_{m = 0}^{L - 2} {\frac{1}{{m!}}{{\left( { - \frac{{l{\lambda_{1}}x}}{L}} \right)}^{m}}} } \right] \end{array} \right\} $$
(D1)

Then, \(P_{out}^{PSGSC}\) can be rewritten by

$$ \begin{array}{l} \!\!\!\!P_{out}^{PSMRC} \\ \!\!\!= 1 \!-\! {C_{N}^{L}}\int_{\frac{{{\psi_{t}}}}{{\upsilon \psi }}}^{\infty} {\left\{ \begin{array}{l} \frac{{{\lambda_{1}}^{L}{x^{L - 1}}{e^{ - {\lambda_{1}}x}}}}{{\left( {L - 1} \right)!}} + {\lambda_{1}}\sum\limits_{l = 1}^{N - L} {{{\left( { - 1} \right)}^{L + l - 1}}C_{N - L}^{l}} \\ \times {\left( {\frac{L}{l}} \right)^{L - 1}}{e^{ - {\lambda_{1}}x}}\left[ {{e^{ - \frac{{l{\lambda_{1}}x}}{L}}}\! -\! \sum\limits_{m = 0}^{L - 2} {\frac{1}{{m!}}{{\left( { - \frac{{l{\lambda_{1}}x}}{L}} \right)}^{m}}} } \right] \end{array} \right\}{e^{ - {\lambda_{2}}\theta /x}}dx} \\ \!\!\!= 1 \!-\! {C_{N}^{L}}\left\{ \begin{array}{l} \frac{{{\lambda_{1}}^{L}}}{{\left( {L - 1} \right)!}}{I_{1}}\\ + {\lambda_{1}}\sum\limits_{l = 1}^{N \!-\! L} {{{\left( { - 1} \right)}^{L + l - 1}}C_{N - L}^{l}{{\left( {\frac{L}{l}} \right)}^{L - 1}}\left[ {{I_{2}}\! - \!\sum\limits_{m = 0}^{L - 2} {\frac{1}{{m!}}{{\left( { - \frac{{l{\lambda_{1}}}}{L}} \right)}^{m}}{I_{3}}} } \right]} \end{array} \right\} \end{array} $$
(D2)

where \({I_{1}} \triangleq \int _{\varphi }^{\infty } {{x^{L - 1}}{e^{ - {\lambda _{1}}x - {\lambda _{2}}\theta /x}}dx} \), \({I_{2}} \triangleq \int _{\varphi }^{\infty } {{e^{ - \left ({{\lambda _{1}} + \frac {{l{\lambda _{1}}}}{L}} \right )x - {\lambda _{2}}\theta /x}}dx} \), and \({I_{3}} \triangleq \int _{\varphi }^{\infty } {{x^{m}}{e^{ - {\lambda _{1}}x - {\lambda _{2}}\theta /x}}dx} \).

The expression of integrals I 1, I 2, and I 3 can be given by

$$ \begin{array}{l} {I_{1}}\overset{\left( {\text{{D3a}}\text{{.1}}} \right)}{=} \int_{\varphi}^{\infty} {{x^{L - 1}}{e^{ - {\lambda_{1}}x - {\lambda_{2}}\theta /x}}dx} \\ \overset{\left( {\text{{D3a}}\text{{.2}}} \right)}{\approx} \int_{0}^{\infty} {{x^{L - 1}}{e^{ - {\lambda_{1}}x - {\lambda_{2}}\theta /x}}dx} - \int_{0}^{\varphi} {{x^{L - 1}}{e^{ - {\lambda_{1}}x}}dx} \\ \overset{\left( {\text{{D3a}}\text{{.3}}} \right)}{=} 2{\left( {{\lambda_{2}}\theta /{\lambda_{1}}} \right)^{L/2}}{K_{L}}\left( {2\sqrt {{\lambda_{1}}{\lambda_{2}}\theta } } \right) - {\left( {{\lambda_{1}}} \right)^{ - L}}\gamma \left( {L,{\lambda_{1}}\varphi } \right) \end{array} $$
(D3a)
$$ \begin{array}{l} {I_{2}}\overset{\left( {\text{{D3b}}\text{{.1}}} \right)}{=} \int_{\varphi}^{\infty} {{e^{ - \left( {{\lambda_{1}} + \frac{{l{\lambda_{1}}}}{L}} \right)x - {\lambda_{2}}\theta /x}}dx} \\ \overset{\left( {\text{{D3b}}\text{{.2}}} \right)}{\approx} \int_{0}^{\infty} {{e^{ - \left( {{\lambda_{1}} + \frac{{l{\lambda_{1}}}}{L}} \right)x - {\lambda_{2}}\theta /x}}dx} - \int_{0}^{\varphi} {{e^{ - \left( {{\lambda_{1}} + \frac{{l{\lambda_{1}}}}{L}} \right)x}}dx} \\ \overset{\left( {\text{{D3b}}\text{{.3}}} \right)}{=} 2\sqrt {{\lambda_{2}}\theta /\left( {{\lambda_{1}} + \frac{{l{\lambda_{1}}}}{L}} \right)} {K_{1}}\left( {2\sqrt {{\lambda_{2}}\theta \left( {{\lambda_{1}} + \frac{{l{\lambda_{1}}}}{L}} \right)} } \right) \\- \frac{{1 - {e^{ - \left( {{\lambda_{1}} + \frac{{l{\lambda_{1}}}}{L}} \right)\varphi }}}}{{\left( {{\lambda_{1}} + \frac{{l{\lambda_{1}}}}{L}} \right)}} \end{array} $$
(D3b)
$$ \begin{array}{l} {I_{3}}\overset{\left( {\text{{D3c}}\text{{.1}}} \right)}{=} \int_{\varphi}^{\infty} {{x^{m}}{e^{ - {\lambda_{1}}x - {\lambda_{2}}\theta /x}}dx} \\ \overset{\left( {\text{{D3c}}\text{{.2}}} \right)}{\approx} \int_{0}^{\infty} {{x^{m}}{e^{ - {\lambda_{1}}x - {\lambda_{2}}\theta /x}}dx} - \int_{0}^{\varphi} {{x^{m}}{e^{ - {\lambda_{1}}x}}dx} \\ \overset{\left( {\text{{D3c}}\text{{.3}}} \right)}{=} 2{\left( {{\lambda_{2}}\theta /{\lambda_{1}}} \right)^{(m + 1)/2}}{K_{m + 1}}\left( {2\sqrt {{\lambda_{1}}{\lambda_{2}}\theta } } \right) \\- {\left( {{\lambda_{1}}} \right)^{ - (m + 1)}}\gamma \left( {m + 1,{\lambda_{1}}\varphi } \right) \end{array} $$
(D3c)

where (D3a.2), (D3b.2) and (D3c.2) are obtained by approximating \(\int _{0}^{\varphi } {{x^{L - 1}}{e^{ - {\lambda _{1}}x - {\lambda _{2}}\theta /x}}dx} \approx \int _{0}^{\varphi } {{x^{L - 1}}{e^{ - {\lambda _{1}}x}}dx} \), \(\int _{0}^{\varphi } {{e^{ - \left ({{\lambda _{1}} + \frac {{l{\lambda _{1}}}}{L}} \right )x - {\lambda _{2}}\theta /x}}dx} \approx \int _{0}^{\varphi } {{e^{ - \left ({{\lambda _{1}} + \frac {{l{\lambda _{1}}}}{L}} \right )x}}dx} \) and \(\int _{0}^{\varphi } {{x^{m}}{e^{ - {\lambda _{1}}x - {\lambda _{2}}\theta /x}}dx} \approx \int _{0}^{\varphi } {{x^{m}}{e^{ - {\lambda _{1}}x}}dx} \), respectively. (D3a.3), (D3b.3) and (D3c.3) are attained by using \({\int _{0}^{u}} {{x^{v - 1}}{e^{ - \mu x}}dx} = {\mu ^{ - v}}\gamma \left ({v,\mu u} \right )\) and \(\int _{0}^{\infty } {{x^{v - 1}}{e^{ - \frac {\beta }{x} - \gamma x}}dx} = 2{\left ({\frac {\beta }{\gamma }} \right )^{v/2}}{K_{v}}\left ({2\sqrt {\beta \gamma } } \right )\). Substituting Eqs. D3aD3b, and D3c into Eq. D2, the proof is concluded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S.Q., Kong, H.Y. Generalized diversity combining of energy harvesting multiple antenna relay networks: outage and throughput performance analysis. Ann. Telecommun. 71, 265–277 (2016). https://doi.org/10.1007/s12243-016-0508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-016-0508-9

Keywords

Navigation