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1 Abstract 
Motivated by the geolocation requirements of future mobile network applications such as 
portable internet of things (IoT) devices and automated airborne drone systems, this paper 
aims to provide techniques for improving device geolocation estimates in urban and indoor 
locations. In these applications low size, weight and power are vital design constraints. This 
paper proposes methods for improving the geolocation estimate available to a system in 
indoor and urban environments without the need for addition sensing or transmitting 
hardware. 

This paper proposes novel system application techniques that enable the integration of 
signals of opportunity, providing a robust geolocation estimate without any additional 
hardware. The proposed method utilizes a sinusoidal Kalman filter architecture to analyse 
raw radio frequency (RF) signals that surround a system in urban and indoor environments. 
The introduced techniques efficiently analyse the raw RF data from any signal of opportunity 
and combine it with higher level geolocation sensors to provide an improved geolocation 
estimate. 

The improvements achieved by the system in a range of environments have been 
simulated, analysed and compared to the results obtained using the prior art. These 
improvements have been further validated and benchmarked by hardware test. The results 
obtained provide evidence that the efficient use of signals of opportunity coupled with 
common navigation sensors can provide a robust and reliable geolocation system in indoor 
and urban environments. 

 

 

Keywords: 

Signals of opportunity, Kalman filtering, radio navigation and geolocation. 
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2 Introduction 
Distributed networks of mobile and autonomous devices are likely to become increasingly 
common as the expected wide-spread adoption of both internet of things (IoT) and 
autonomous mobile robotic systems continues. As people spend approximately 90% of their 
time indoors [1], these systems will be predominantly located in indoor and urban 
environments. The indoor environment is likely to become crowded with large numbers of 
portable, low power, small size and wirelessly connected devices. The increasingly busy 
radio spectrum is expected to be filled with wireless communications from vast numbers of 
transmitting devices. While this increasingly congested RF spectrum is a concern for many 
system designers, it does provide a potentially valuable resource for an accurate device 
geolocation estimate. Geolocation estimates are vital to many system designers for two 
main reasons; the first is to enable devices to navigate their environment. The second 
benefit, particularly in IoT applications, is to be able to tag any generated data with a 
geographical location. This commonly increases the value of the information that can be 
gained from the vast array of data produced. 

Global navigation satellite systems (GNSS) and low cost inertial navigation systems (INS) 
are commonly used to provide geolocation estimates. While significant work has been 
carried out to closely couple GPS and INS systems to mitigate their respective error drivers, 
these coupled systems are unable to provide accurate geolocation estimates in urban and 
indoor environments where GPS updates may be unavailable for extended periods of time. 
A review of current research has revealed an opportunity to couple data link RF signal 
analysis into the INS system, allowing the rich RF resource found in urban and indoor 
environments to maintain geolocation estimates where existing systems encounter their 
greatest errors. 

This paper presents a set of novel techniques aiming to improve the accuracy of 
geolocation estimates for a wide range of systems. A key principle of the proposed 
techniques is the ability to monitor the phase estimate of surrounding RF signals to provide 
a ranging estimate from the transmitter. A sinusoidal Kalman filter is proposed that allows 
an accurate, low latency and low noise phase estimate to be maintained by the system. The 
resulting ranging estimation does not drift with time and lends itself to close and ultra-close 
coupling with INS and other system level geolocation systems, techniques for which are 
also presented in this paper. 

The proposed methods are analysed and compared to existing methods through simulation. 
The obtained simulation results are further validated with a set of practical tests using data 
link devices typical to proposed IoT and autonomous mobile systems. The results 
demonstrate that, with even limited prior knowledge of the wireless data link environment, 
an accurate geolocation estimate is maintained for prolonged periods in urban 
environments. 

Section 3 discusses existing system capabilities. Section 4 discusses the proposed system 
implementation. Section 5 presents simulation and test results. Section 6 discusses the key 
findings and conclusions. Further work is proposed in section Error! Reference source not 
found.. 
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3 Current Geolocation Solutions 
GNSS systems, such as the global positioning system (GPS), are commonplace in cars, 
mobile phones and a wide range of timing systems. All applications suffer the same 
significant limitation: current receivers are not sensitive enough and transmissions are not 
strong enough to operate the system in indoor environments. Even in urban environments 
such as city centres, GNSS systems frequently provide poor coverage due to the limited line 
of sight from the satellites to users at ground level when surrounded by tall buildings [2]. 

An alternative form of geolocation, not requiring an external input, is to use an INS to 
provide a dead reckoning estimate. INS systems provide information about changes in 
velocity or angular rate, allowing a user to calculate their position relative to a known 
starting point. The major drawback of this approach is that the dead reckoning technique 
integrates errors over time, causing the users calculated position to drift with respect to their 
actual position. Many grades of INS are available, with differing rates of drift related to the 
INS’s accelerometer and gyro biases during operation. Small, low power systems often 
have larger biases which cannot be calibrated out for a particular measurement [3]. 

Coupled IMU and GNSS systems apply the input from both systems into a navigation filter, 
such as a Kalman filter [4]. Coupled systems have been developed to use the potentially 
intermittent GNSS system to remove the integration errors accumulated in the continually 
available IMU data [5]. As detailed in Figure 1, the provision of an externally generated 
ranging estimate allows the multiplication of the two probability distributions to provide an 
improved geolocation estimate.  

 

 

Figure 1 – Geolocation example optimised with the addition of a ranging estimation. 

Closer coupling through an extended Kalman filter allows benefits to both the IMU by 
removing bias errors and the GNSS system by allowing an improved ability to track weak 
signals [6]. Research has also been carried out to enable extended Kalman filters to carry 
out feature recognition that, if compared to a known map, allows the Kalman filter to 
recognise features and objects in a mapped environment. Upon the recognition of a known 
feature, an external ranging estimate can be calculated. This allows both an improved 
location estimate and the ability to calculate and remove errors from other system sensors 
[7][8]. 

Recent research has been carried out on the ability to use existing RF signals to provide a 
feature recognition, with proposed solutions commonly referred to as signals of opportunity 
systems. System applications use signal strength fingerprinting [9], message content [10] or 
message flight time [11][12] to derive geolocation data from the RF signals of opportunity. 
These systems each have their own limitations; however the need for prior signal mapping 
information and poor performance in multipath environments [13][14] are limitations in all 
systems [15]. 

Circular error probability estimate 
from a typical INS/GNSS system. 

Ranging probability estimate. 

The high combined probability at 
the intersect reveals the true 
location with a high degree of 
confidence. 
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Estimating the phase in signals of navigation has also been proposed [16]. This technique 
has produced very encouraging results in low multipath environments with errors of less 
than 2 meters achieved in low latency systems; however, as with other techniques, a 
vulnerability to multipath interference severely limits its accuracy in indoor and urban 
environments. While work has been carried out to mitigate this vulnerability with multiple RF 
channels at separated frequencies [17], no solution has been found that allows the system 
to operate in multipath while retaining the ability for the system to work on low latency 
mobile systems. 

Following analysis of currently available techniques, geolocation error estimates have been 
identified for an automated system in a dense urban environment and presented in Table 1. 

Table 1 - Estimated geolocation accuracy of existing systems in a dense urban environment. 

Technique Typical Error 
(3σ) (m) 

Notes 

WiFi SLAM[9] 10 Prior knowledge of 3rd party infrastructure required. 

Coupled 
signal of 

opportunity[13]  
20 

The most widely adopted technique in current research if no 
environmental prior knowledge is available. 

Phase 
Estimation[16] 

30 
Single multipath source discussed. A lower level of accuracy is 

anticipated in urban and indoor environments. 

GNSS[1] 40 Not available indoors. 

INS [3] 100 Accuracy related to operational time due to integration of error. 

ToA 
Estimation[13] 

300 
Quoted performance is only for ‘mid-urban’ environments. Dense 

urban likely to be worse. 
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4 Proposed System Development 
Current geolocation solutions provide good geolocation accuracy in areas of low multipath 
interference; this is not possible in areas of multipath such as indoor and urban 
environments. This paper introduces a novel method for utilising existing RF sources in 
order to produce a more accurate ranging geolocation estimate in multipath environments.  

The proposed technique mitigates the effects of multipath by using a sinusoidal Kalman 
filter to track the received RF signal. This filter maintains an estimate of the expected signal 
phase and uses the raw RF data as a measurement input. Using a Kalman filter to maintain 
the latest measurements, estimates and covariance’s provides significant robustness 
against multipath effects, which tend to be temporary in mobile systems, while still allowing 
low latency feature recognition. 

The filter is designed to update the ranging estimate at each filter iteration. The Kalman filter 
will be created in two stages, one to predict the phase at the next step and a second to 
record data and combine it with the estimation. Matrices are created to maintain state within 
the Kalman filter as well as pass information into and out of the Kalman filter. The proposed 
implementations of these matrices are described in equations 1 to 6. 

The Φ matrix maintains the translation matrix for a sinusoidal system. 

Φ =ቈ
cos	ሺ߱߬ሻ

ୱ୧୬	ሺఠఛሻ

ఠ

െ߱sin	ሺ߱߬ሻ cos	ሺ߱߬ሻ
቉ (1) 

The P matrix maintains the initial state covariance. As the location of the first reading is 
unknown, the following P matrix is typically applied. 

P = ቂ1݁
଺ 0
0 1݁଺

ቃ (2) 

The measurement noise is represented in the Q matrix. 

Q = ቂ1݁
ିସ 1݁ିସ

1݁ିସ 1݁ିସ
ቃ (3) 

The system noise is represented in the R matrix. 

R = [1݁ିସ] (4) 

And the measurement matrices are represented by the H and I matrices. 

H = [1 0] (5) 

I = ቂ1 0
0 1

ቃ (6) 

The estimation step is completed by carrying out the Riccatti equations [18] as described 
below. The estimation step is carried out for each filter iteration: 

M = Φ*P*Φ’+Q (7) 

Hmtrinv = (H*M*H’+R)-1 (8) 

K = M*H’*Hmtrinv (9) 

Kh = K*H (10) 

P = I-Kh*M (11) 
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Following the estimation for the current filter step, the measurement can be made and 
combined into the estimated location using the maintained Kalman gain, K. Again the 
measurement stage, shown in equations 12 to 15, is run at each iteration of the Kalman 
filter. 

 ௛ (12)ݔ௛௢௟ௗୀݔ

ݎ ൌ
XsെXh∗ cos	ሺ߱߬ሻെsinሺ߱߬ሻ ∗ ݄݀ݔ

߱  (13) 

௛ݔ ൌ
cosሺ߱߬ሻ ∗ ௛ݔ ൅ ௗ௛ݔ ∗ sin	ሺ߱߬ሻ

߱ ൅ ሺଵ,ଵሻܭ ∗ ݎ
 (14) 

ௗ௛ݔ ൌ െ߱ sinሺ߱߬ሻ ∗ ௛௢௟ௗݔ ൅ ௗ௛ݔ ∗ cosሺ߱߬ሻ ൅ ሺଶ,ଵሻܭ ∗  (15) ݎ

This initial Kalman filter provides the coupling from an RF source to the resulting range 
estimate as shown in Figure 2. 

 

Figure 2 – Basic system configuration. 

This initial implementation will provide a ranging estimation from an RF source that is 
resilient to the signal interference common in indoor and urban environments. The use of a 
sinusoidal Kalman filter also allows the system to have low latency, resulting in a minimised 
risk of drift due to phase cycle slip. The lack of estimate drift over time makes the resulting 
ranging estimate an ideal signal to be coupled to higher level INS based navigation 
systems. The use of a sinusoidal Kalman filter offers the opportunity for the proposed 
technique to become the core of a complete navigation system, with any other available 
navigation systems coupling directly to enhance the accuracy of each subsystem. This 
paper will continue to present a series of methods for efficiently integrating other navigation 
sensors into a closely coupled system. Figure 3 shows the three stages of system 
architecture required for coupled and closely coupled navigation system integration as well 
as control data link data decoding. The complete system has the sinusoidal Kalman filter at 
its core, maximising the information that can be obtained from the raw RF data. 
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Figure 3 – Three stage system integration with additional higher level navigation sensors. The 
figure describes the architecture required for closely coupled integration, ultra-closely coupled 

integration and a method for utilising encoded data in a control data link. 

The method for integrating the proposed sinusoidal Kalman filter based system consists of 
three stages. Stage 1 will be the initial close coupling of additional navigation sensors into 
the sinusoidal Kalman filter, improving the robustness of the RF phase estimation. Stage 2 
is the addition of a feedback loop. This allows the ultra-close coupling of the system, 
improving the performance of surrounding navigation sensors. Stage 3 is the addition of 
control link data from systems where the motion of the system is controlled via a RF data 
link. 

Stage 1 of the system is an open loop closely coupled system where the sinusoidal Kalman 
filter measurements come from all available navigation sensors. Although methods exist for 
closely coupling navigation sensors to provide an improved geolocation estimate, the novel 
application of a sinusoidal Kalman filter to maintain an estimation of phase allows the 
additional data to be used to further improve the robustness of the system to multipath and 
other urban and indoor RF effects. The system requires an update to the Kalman filter H 
matrix and the addition of an F and Z matrix. The updated H matrix relates to the 
measurements received from each sensor. The F matrix converts the measured sensor 
reading into a phase estimate based on the calculated range from the transmitter. An 
example updated H and F matrix for a typical data stream with RF and GNSS data can be 
seen below. 

H	 ൌ ቂ1 0
1 0

ቃ (16) 

F	 ൌ ሾ1 ඥݔଶ ൅ ଶݕ ∗ sin	ሺ߱߬ሻሿ (17) 

Upon each time separation iteration of the Kalman filter the H matrix is multiplied by the 
corresponding F and then Z matrix. 

Z	 ൌ ሾa	bሿ (18) 
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The Z matrix is updated at each iteration, depending upon what fresh measurement data is 
available from the system. In the below example, if a raw RF data measurement is 
available, a = 1 and b = 0. If a GNSS measurement is available, a=0 and b=1. 

This implementation allows the Kalman filter to be updated with all available data. The 
covariance of the H matrix is maintained by Kalman filter, providing additional robustness to 
multipath effects. Erroneous RF signals are identified by a lowering in the covariance values 
in the Kalman filters P matrix and will have limited effect on the maintained phase estimate. 

Following the integration of the additional navigation sensors an additional stage of ultra-
close coupling is possible using conventional methods of using an X matrix to convert the 
range update back into a known position estimate for each sensor. The advantage of this 
technique for the proposed system is that further robustness to indoor and urban RF effects 
is provided, allowing a highly robust phase estimate to be maintained by the Kalman filter 
due to accurately maintained measurement covariance’s in the P matrix. 

The system architecture described so far is applicable to any signals of opportunity source, 
where the location of the transmitter is either known in advance or can be calculated using 
simultaneous localisation and mapping techniques. The system uses only the RF carrier 
signal, so can be used without knowledge of any of the data on the link. Even encrypted 
data links can be used to provide a ranging estimate.  

The movement of many robotic systems is controlled by an RF data-link. This data-link is 
likely to provide an ideal RF data source from a known transmitter location and could be 
utilised in many systems. In systems that use the control datalink as the RF input to the 
system, the data contained within the data-link can be decoded, providing the commanded 
system motion. This commanded motion can be, via a control matrix (B), used to update the 
prediction estimate made by the Kalman filter.  The B matrix is multiplied with the Φ matrix, 
allowing the prediction part of the Kalman filter to account for the motion expected by the 
system. The B Matrix must have a prior knowledge of the system dynamics that will apply 
following any commanded motion input. Once again, the addition of an improved prediction 
estimate within the Kalman filter will provide additional robustness to measurement 
uncertainty. The ability for the system to command data in this way is a unique benefit that 
comes from using signal of opportunity inputs into a sinusoidal Kalman filter architecture. 
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5 Simulation and Experiment 

5.1 Simulation 
The performance of the proposed sinusoidal Kalman filter based system will be simulated in 
a typical urban environment. The aim of the simulation is to allow an analysis of the 
proposed approach alongside that of the most widely adopted prior art [13], enabling a 
comparison of performance to be made. The simulation has created a radio fingerprint of 
the dense urban environment shown in Figure 4 with signals generated from point A.  

 

Figure 4 - Urban Environment with Simulated Reception Points 

Reception points B to E have been selected to allow performance analysis at both near and 
long range and, to simulate performance in areas of high and low multipath, areas of high 
and low building density. The results are show in Figure 5 and Table 2. 

 

Figure 5 – Simulated range estimate provided at points B to E with respect to point A for 2 
ranging methods. 
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Table 2 - Tabulated Range Estimate Averages 

Reception 
Point 

Reception 
Environment True 

Range 
(m) 

Average Error (m) 
Improvement 

(%) 
Range 

Building 
Density 

Prior Art 
Method 

Proposed 
Method 

B Near High 40 6.7 5.8 13 

C Long Low 100 33.2 10.8 67 

D Long High 110 17.3 15.3 12 

E Near Low 25 2.0 0.7 65 

While the greatest improvements have been made in areas of relatively low multipath, 
greater ranging accuracy has been achieved at all reception points with the average error 
reducing form 14.8 m with the prior art to 8.2 m with the proposed method. 

5.2 Hardware Benchmarking 
To validate and benchmark the system improvements obtained, the proposed method has 
been tested with hardware at the point shown in simulation to be the most challenging, 
reception point D. The system has been tested in the incremental stages outlined in section 
4. Each stage has been tested to validate the proposed technique and to provide evidence 
that the anticipated performance has been achieved. All testing has been carried out with a 
drone, modified to be controlled with a 27 MHz amplitude modulated transmitter. The flying 
drone contains a micro electro-mechanical system (MEMS) IMU with 3 accelerometers and 
3 gyros. The Single RF channel has been recoded using a low power software defined radio 
(SDR) receiver attached to the drone. The test apparatus can be seen in the photographs 
below. A smart phone GPS receiver has been added to the drone to provide comparative 
GNSS geolocation data.                    

 

Figure 6 – Drone System         

 

Figure 7 – SDR Receiver  

 

Figure 8 – 27 MHz 
Transmitter

The test area was in a densely populated urban city centre location with tall buildings 
surrounding the trial. A clear view of the sky above the trial was present, although sight was 
limited by tall buildings on all sides. The test consists of a 60 second drone flight at a 
constant altitude of 6 feet. The flight profile consisted of the 4 steps shown in Figure 9. 
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Figure 9 - Test Flight Map 

All data has been collected in separate files for post processing. Post processing has been 
carried out on the data recorded by each of the trial sensors. Raw IMU and GPS data has 
been collected. These raw data sources, available to typical automated robotic systems, 
have been plotted throughout the test trial in Figure 10. 

 

Figure 10 – Ranging estimate from the raw data sources. 

1. Start/End point and 
transmitter location. A 10 
second stationary hover carried 
out at the start and end of the 
flight. 

3. 20 second hover including 
180° turn 30 m from the 
transmitter 

2. 20 second flight away from 
transmitter. 

4. 20 second flight towards the 
transmitter 
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The data presented in Figure 10 shows the challenges faced by many systems navigating in 
an urban environment. The first challenge is the poor fidelity of the GPS location provided in 
a dense urban environment; it is hard to determine any component of the flight during the 
trial. The poor performance of the GPS is typical when receiving signals in urban 
environments. The inertial data presented by the INS system shows that the stages of the 
flight can be determined; however the significant drift of approximately 30 meters at the end 
of an 80 second flight presents the second challenge of error integration. The inertial drift 
will continue to accumulate for the entirety for the mission without the aid of an external data 
source. Whilst this paper aims to use the RF signal present in the systems control datalink 
to provide an external source of navigation data, it is hard to see how this data source could 
provide information when the time domain RF amplitude data is plotted. Due to the limited 
flight range and the fact that the datalink contains an automated gain control loop, the 
amplitude of the raw RF data does not appear to provide any useful ranging information. 
The raw data obtained from the flight appears to show that accurate, low drift navigation for 
a drone system, using only the existing hardware will be a very challenging task. The 
techniques proposed by this paper shall now be applied in stages to show the contribution 
of each technique in building an accurate drift free navigation solution. 

As described in section 4, the raw RF data will be fed though the Kalman filter to create a 
low noise sinusoid of the raw RF carrier signal. The phase of this low noise sinusoid is 
analysed and shifts in the maintained phase estimate have been be used to estimate a 
change in range from the transmitter to the recording receiver mounted on the drone. 
Analysing the data’s phase shift with a sinusoidal Kalman filter provides the ranging 
estimate shown in Figure 11.  

 

Figure 11 – Ranging estimate from the RF post sinusoidal Kalman filter processing. 

It can be seen that by comparing the estimates from the low noise sinusoidal Kalman filter a 
low drift range estimate can be seen throughout the 80 second flight. This low drift ranging 
estimate was able to track the range changes with low latency throughout the flight, 
resulting in a good localisation estimate throughout the flight. As predicted, errors in the 
recordings throughout the flight don’t integrate together and the estimate tends towards the 
true location at the stationary points in the data. The limitation of the processed RF data is 
that there that range estimation errors of up to 12 m are present for periods of several 
seconds. This may have been caused by multipath effects in the RF data due to the test 
being carried out at low altitude in a dense urban environment. The cause of this deviation 
will be determined in later testing but, even with this deviation, the observed performance is 
significantly better than existing navigation systems, providing evidence that the using the 
sinusoidal Kalman filter at the core of the system provides a significant benefit. 

The next analysis proposed by this paper is designed to remove these short term errors by 
ultra-closely coupling the RF data with that of a low noise, but high drift INS system. This 
technique has been carried out and is presented in Figure 12. 
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Figure 12 – Ranging estimate from the processed RF and ultra-closely coupled IMU data 

It can be seen in the data provided that ultra-closely coupling the Kalman filter and IMU 
system has had an effect. The largest effect can be seen in the IMU drift. The integrated 
error at the end of the flight has reduced from 28 m in the uncoupled trial to 17 m in the 
coupled trial. The magnitude of the IMU following coupling is strongly linked to the Kalman 
filter estimate in the stationary period in the first 10 seconds of the trial where the Kalman 
filter P matrix experiences a period of convergence on the present system errors. Another 
key observation is that the output from the Kalman filter has changed very little and the 
deviations of up to 12 m remain. This suggests that the deviations are not in fact caused by 
multipath and another unknown error source is dominating the Kalman filter errors. Although 
the identification of this error source is proposed as further work, the systems resilience to 
multipath is likely to have been proven. 

For many systems where the RF signal recorded by the drone mounted equipment is not 
controlled by the system operator, as found in many signal of opportunity systems where 3rd 
party RF networks are used as the data source, no further navigation data is available from 
the techniques proposed in this paper. The results presented in Figure 12 will be the final 
performance of the system. When this performance is compared with the GPS ranging 
estimate shown in Figure 10, a drastic performance improvement has been achieved. Even 
if the GPS data were to be combined with the INS data also shown in Figure 10, no 
accurate ranging estimate during the flight would have been provided; The GPS signal 
obtained in an urban environment was of such poor quality that the INS estimate could not 
have been improved by coupling it with the GPS signal with existing techniques. Coupling 
the INS data to the output of the proposed system has reduced the error at the end of the 80 
second flight considerably. 

Further to this already considerable improvement in performance over existing INS coupling 
systems, the drone system under test is controlled by a frequency modulated command 
signal which is operated by the system designer. This command signal is used to provide 
the stop, forward, backwards, turn left and turn right commands to the drone and is decoded 
by the on-board RF receiver. This data can be made available to the filter along with a basic 
kinematic model representation of the drone. The following information about the kinematic 
model is known and is captured in the trial B matrix: 

Forward motion is typically 5 m/s 

Turn rate is typically 90 °/s. 

The resulting ranging estimate from using this data as described in section 4 is presented in 
Figure 13. 
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Figure 13 – Ranging including data obtained from the encoded data. 

The addition of the encoded data reveals further detail about the system behaviour. The first 
thing to note is the fact that the assumed kinematic model appears to be incorrect. The 
system appears to have not correctly measured the 180° yaw command at the turning point 
half way through the trial. Despite this, the Kalman filters estimated range remains accurate. 
The benefit of adding the decoded command data is seen in the first 10 seconds of the trial 
where the P matrix is converging. The addition of the stop command information has 
allowed the Kalman filter to better remove the IMU biases. This has reduced the integrated 
IMU drift at the end of the trial from 17 m to 5 m. This will again further increase the systems 
resilience to multipath and other urban and indoor RF effects. 

The Kalman filter errors throughout the hardware test has been analysed. The average error 
between truth and the Kalman filter estimate was recorded to be 3.3 m with a 3σ error 
prediction of 12 m. The performance of the proposed technique, compared against existing 
methods in a similar environments, as described in section 3, can be seen in Table 3. 

Table 3 - Estimated geolocation accuracy comparison in a dense urban environment. 

Technique Typical Error (m) Notes 

Proposed 
Technique 

 12  
12 m (3σ) error achieved with hardware test. No prior knowledge 

of a 3rd party system required. 

WiFi SLAM[9] 10 Prior knowledge of 3rd party infrastructure required. 

Coupled 
signal of 

opportunity[13]  
20 

The most widely adopted technique in current research if no 
environmental prior knowledge is available. 

Hardware test of the geolocation techniques researched in this paper have provided a 
reduction in geolocation error indoor and urban environments over existing techniques. 
While the system has proven resilient to the presence of an erroneous kinematic model in 
the test, further optimisation of this parameter is likely to allow the achieved performance to 
match that of systems that can utilise prior knowledge of the environment, overcoming a 
common system application constraint. 
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6 Conclusions 
Mature systems exist that closely couple INS and GNSS data to enable an improved 
geolocation estimate. Initial testing in a typical urban environment has showed that, as 
predicted, GNSS performance is limited by a combination of poor line of sight view of the 
sky, multipath effects and poor performance of low size, power and weight GNSS receivers 
common to many small robotic and IoT systems produce considerable geolocation errors. 
GNSS does not provide a suitable external coupling partner for INS systems in these 
systems. Research has also been carried out into using signals of opportunity to provide a 
ranging estimate. These systems are adversely affected by multipath in urban environments 
or require prior knowledge of 3rd party data-links to provide a ranging estimate. 

This paper has presented novel techniques for using a single RF data source to maintain a 
ranging estimate by comparing the predicted output of a sinusoidal Kalman filter with a noisy 
recoded RF signal. This comparison allows a low latency ranging estimate to be produced 
that provides resilience to the adverse effects of multipath. Testing has shown that in a 
typical urban environment this ranging estimate can be coupled to the output of an INS to 
produce a high fidelity and robust ranging estimate. Further, an addition to the basic 
technique allows for closer coupling of the signals of opportunity system and the existing 
INS system can be made if the contents of the data-link message can be decoded by the 
target system. 

This paper has presented a significant improvement on the resilience and robustness of 
signals of opportunity systems and allows them to provide a reliable external source of 
information for ranging systems without the need for any additional system hardware. 
Further, this technique effectively removes a common design constraint that previously 
limited geolocation performance in many applications. This will enable system designers to 
gain more information from their mobile robotic and IoT data, enabling the next generation 
of advanced urban information networks.  

The testing carried out in this paper is extremely encouraging but limited to a single 80 
second flight in an urban environment. Further work is required to characterise the 
performance of the system in a range of environments and test scenarios.  
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