Skip to main content
Log in

Universal half-blind quantum computation

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

We devise a simple protocol. A client delegates his or her quantum computation to a remote server in accordance with the inputs and instructions. Alice, the client, has a classical computer or limited quantum technologies, and these are not sufficient for the universal quantum computation at her disposal. Bob, the server, owns a fully-fledged quantum computer and promises to execute the computation honestly. The protocol itself is half-blind, that is, Bob may learn which quantum gate he implements but nothing about Alice’s inputs and outputs. Furthermore, Alice is only required to send qubits and perform Pauli gates. Finally, we analyze the security, universality, half-blindness and correctness, and briefly discuss its defects, extension and verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen MA, Chuang IL (2010) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21(6–7):467–488. doi:10.1007/BF02650179

    Article  MathSciNet  Google Scholar 

  3. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of computer science, 1994 Proceedings, 35th annual symposium on IEEE. doi:10.1109/SFCS.1994.365700

  4. Veluru S, Rahulamathavan Y et al (2007) Privacy Preserving text analytics: research challenges and strategies in name analysis, 4.Book on securing cloud-based databases with biometric applications? IGI Global, USA. doi:10.1111/j.1467-9760.2007.00268.x

  5. Childs A (2005) Secure assisted quantum computation. Quantum Inf. Comput. 5:456–466. doi:10.1134/1.2053342

    MathSciNet  MATH  Google Scholar 

  6. Broadbent A, Fitzsimons J, Kashefi E (2009) Universal blind quantum computation. In: Proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS 2009), pp 517–526. doi:10.1109/FOCS.2009.36

  7. Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett 86:5188. doi:10.1103/PhysRevLett.86.5188

    Article  Google Scholar 

  8. Raussendorf R, Browne DE, Briegel HJ (2003) Measurement-based quantum computation on cluster states. Phys Rev A 68:022312. doi:10.1103/PhysRevA.68.022312

    Article  Google Scholar 

  9. Raussendorf R (2003) Thesis PhD. Ludwig-Maximillians University Munchen

  10. Barz S, Kashefi E, Broadbent A, Fizsimons J, Zeilinger A, Walther P (2012) Demonstration of blind quantum computing. Science 20:303–308. doi:10.1126/science.1214707

    Article  MathSciNet  MATH  Google Scholar 

  11. Morimae T, Dunjko V, Kashefi E (2015) Ground state blind quantum computation on AKLT State. Quantum Inf Comput 15(3–4):200–234. doi:10.1103/PhysRevLett.108.200502

    MathSciNet  Google Scholar 

  12. Morimae T, Fujii K (2012) Blind topological measurement-based quantum computation. Nat Commun 3:1036. doi:10.1038/ncomms2043

    Article  Google Scholar 

  13. Morimae T (2012) Continuous-variable blind quantum computation. Phys Rev Lett 109:230502. doi:10.1103/PhysRevLett.109.230502

    Article  Google Scholar 

  14. Sueke JT, Koshiba T, Morimae T (2013) Ancilla-driven universal blind quantum computation. Phys Rev A 87:060301(R). doi:10.1103/PhysRevA.87.060301

    Article  Google Scholar 

  15. Li Q, Chan WH, Wu C, Wen Z (2014) Triple-server blind quantum computation using entanglement swapping. Phys Rev A 89:040302(R). doi:10.1103/PhysRevA.89.040302

    Article  Google Scholar 

  16. Sheng YB, Lan Zhou (2015) Deterministic entanglement distillation for secure double-server blind quantum computation. Sci Rep 5(2015):7815(R). doi:10.1038/srep07815 /Sci Rep 5(2015): 7815

    Article  Google Scholar 

  17. Arrighi P, Salvail L (2006) Blind quantum computation. Int J Quantum Inf 4 (5):883–898. doi:10.1142/S0219749906002171

    Article  MATH  Google Scholar 

  18. Morimae T, Fujii K (2013) Blind quantum computation protocol in which Alice only makes measurements. Phys Rev A 87:050301(R). doi:10.1103/PhysRevA.87.050301

    Article  Google Scholar 

  19. Dunjko V, Kashefi E, Leverrier A (2012) Blind quantum computing with weak coherent pulses. Phys Rev Lett 108:200502. doi:10.1103/PhysRevLett.108.200502

    Article  Google Scholar 

  20. Giovannetti V, Maccone L, Morimae T, Rudolph T G (2013) Efficient universal blind quantum computation. Phys Rev Lett 111:230501. doi:10.1103/PhysRevLett.111.230501

    Article  Google Scholar 

  21. Mantri A, Perez-Delgado C, Fitzsimons JF (2013) Optimal blind quantum computation. Phys Rev Lett 111:230502. doi:10.1103/PhysRevLett.111.230502

    Article  Google Scholar 

  22. Morimae T, Fujii K (2013) Secure entanglement distillation for double-server blind quantum computation. Phys Rev Lett 111:020502. doi:10.1103/PhysRevLett.111.020502

    Article  Google Scholar 

  23. Rivest RL, Shamir A (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21:120–126. doi:10.1145/359340.359342 /Commun ACM 21:120–126

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu R, Tan Y, Zhang Q, Wu F, Zheng J, Xue Y (2016) Determining image base of firmware files for ARM Devices. IEICE Trans Inf Syst E99D(2):351–359. doi:10.1587/transinf.2015EDP7217

    Article  Google Scholar 

  25. Ikeda M et al (2011) Advances in imaging detectors and applications. Proc SPIE 8194

  26. Allahverdyan AE, Balian R, Theo M, Nieuwenhuizen (2016). A sub-ensemble theory of ideal quantum measurement processes, arXiv:1303.7257. doi:10.1016/j.aop.2016.11.001ArmenE

  27. Ambainis A, Mosca M, Tapp A, De Wolf R (2000) Private quantum channels. In: Proceedings of the 41st annual IEEE symposium on foundations of computer science (FOCS 2000), pp 547–553. doi:10.1109/SFCS.2000.892142

  28. Gottesman D (1998) The Heisenberg representation of quantum computers. In: Group 22: proceedings of the XXIL international colloquium on group theoretical methods in physics, pp 32–43. doi:10.1016/B978-0-444-86972-2.50029-0

  29. Gupta BB, Agrawal DP, Yamaguchi S (2016) Handbook of research on modern cryptographic solutions for computer and cyber security. IGI Global Publisher, USA. doi:10.4018/978-1-5225-0105-3

  30. Barnum H, Crepeau C, Gottesman D, Smith A, Tapp A (2002) Authentication of quantum messages. In: Proceedings of the 43rd annual IEEE symposium on the foundations of computer science (FOCS02), pp 449–458. doi:10.1109/SFCS.2002.1181969

  31. Sun Z, Zhang Q, Li Y, Tan Y (2016) PPDL: a dynamic partial-parallel data layout for green video surveillance storage. IEEE Trans Circuits Syst Video Technol. doi:10.1109/TCSVT.2016.2605045

  32. Broadbent A (2015) Delegating private quantum computations. Can J Phys 93(9):941–946. doi:10.1139/cjp-2015-0030

    Article  Google Scholar 

Download references

Acknowledgments

The research is funded by the National Natural Science Foundation of China, under Grant Nos. 61672014 and 61502200, and Natural Science Foundation of Guangdong Province, China, under Grant nos. 2016A030313090 and 2014A0303 10245, and Science and Technology Planning Project of Guangdong Province, China, under Grant No. 2013B01040 1018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Zhou, X. Universal half-blind quantum computation. Ann. Telecommun. 72, 589–595 (2017). https://doi.org/10.1007/s12243-017-0561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-017-0561-z

Keywords

Navigation