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Abstract—Erasure code based distributed storage systems are at multiple locations for protecting data from node failure
increasingly being used by storage providers for big data storage events. Failure events ag norm rather than the exception
since they offer same reliability as replication with a significant in data centers. For example, in the recent years, Facebook

decrease in the amount of storage required. But, when it comes h ted . tant b f . d b
to a storage system with data nodes spread across a very large as reported an important number of erasures occasioned by

geographical area, the node’s recovery performance is affeed by node failures, device malfunctions, scheduled maintemanc
various factors that are both network and computation related. network outages and other related events [4], [5], [6]. Haue

In this paper, we present a XOR-based code supplemented with replication involves a monetary cost with increased sterag
the ideas of parity duplication and rack awareness that could requirement that it brings in, and hence is highly ineffitien

be adopted in such storage clusters to improve the recovery E d bett It t lution toatofi
performance during node failures and compare it with popular rasure codes serve as a better alternate solution toagphc

implementations of erasure codes, namely Facebook’s ReedSince they offer the same reliability as compared to reptioa
Solomon codes and XORBAS local recovery codes. The codewith significant decrease in the storage overhead incurred
perfor_mance along with the proposed ideas are evaluated on a [71, [8], [4], [9], [10]. In erasure coding, a file to be stored
geo-diverse cluster deployed on the NeCTAR research cloud. We s divided into chunks (blocks) of fixed size, and the code

also present a scheme for intelligently placing blocks of coded .
storage depending on the design of the code, inspired by local €Ncodes a set of these data blocks, to create parity (code)

reconstruction codes. The sum of all these propositions could blocks. The group of data blocks and its corresponding yparit
offer a better solution for applications that are deployed on coded blocks is called astripe When devices fail leading to loss

storage systems that are geographically distributed; in which of blocks, the decode operation repairs the lost block by
storage constraints mak_e triple repllca_tlon_not ah_‘ordablg, at the employing the surviving data and parity blocks.
same time ensuring minimal recovery time Is a strict requwement. . ..
However, erasure codes with an additional cost of com-
putation requirement in the event of recovery from node
|. INTRODUCTION failures. If replication is used for providing resilienthe lost
Large scale data storage centers that store and process @#ja can be recovered simply by copying it from one of the
data are a commonplace today. Most cloud service providégilable replicas. But, for erasure coded storage, faitede
are building geo-distributed network of data centers tlaieh recovery involves fetching source and parity data from the
their data nodes spanning wide geographical areas [1]. Ty Viving nodes, resulting in a significant amount of networ
ical examples of some of the practical scenarios are trafff@ffic. More precisely, it involves downloading data from a
monitoring system of a large city, medical diagnostic systespecific number of the live nodes to a worker node where
connecting various hospitals in a country, climate momigr the repair process is initiated, computation operationhat t
and reporting system [2] and other scientific applicatiorworker node for repairing the lost data, followed by copying
[3], to name a few. All these systems have storage nod&e result to another node in the storage cluster, making it
distributed across a wide geography and a centralized ndggh a computation and network intensive operation. In geo-
acting as master that co-ordinates the storage and corigputadistributed data centres, data can be stored at any of the
spread across data nodes. These are real applications &vailable data centres and can be requested to be downloaded
involve large scale distributed processing of massivemelsi from a data centre that is at the other end of the globe. With
of data. Availability, reliability and performance efficiey are erasure codes, this translates to significantly larger ortw
of utmost importance in these data centers. latency and cost involved in retrieving the data required fo
For ensuring availability and reliability, many large szalrepair. In short, employing erasure codes in geo-distithut
commercial data centers, by default, rely on replicatiosforage aggravates recovery performance upon node failure
wherein the same copy of the data is replicated and storgitice the network latency and performance-related faeidds
to the problem, as observed and reported in our previous work
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A. Our contribution and stores it. Any node failure is to be recovered in 'ad-hoc’

This paper addresses the open problem of improving repg]Pde. and reduc!ng recovery time b.ecomes' cr|.t|cal in such
Sa(t_}ctlcal user-facing storage processing applications.

performance of erasure coded storage nodes in a geo-div@I
cluster setting. Though there has been active research-on gn organization of the paper
hancing repair performance in the context of storage inntece

times, all existing codes are designed for the conventionr%lll:l ?eed r\/evr;ril?:i;];flittgétﬁfep?sr :Zv?e:\?vaegllziﬁdthaesnfgﬂf\g;ti-(r)he
setting of co-located sto . . . .
9 rage nodes. When deployed for@or?ollowed by Section-1ll which presents an overview of erasu

on a cluster with geo-located nodes, they do not fare well tI:rc])des and the repair problem in the geo-diverse context. The
terms of repair performance as reported. Repair performanncext section ivesp a b?ief introductiongto Hadoop and its .era
of storage erasure codes in geo-distributed context needs a g b

different strategy of problem treatment. This work presehe sure codes implementation. Section-V explains multipleRXO

following methodologies in geo-distributed clusters t@nove ?o%t\a,v;rgpéle?](aen;aet;ci)nn i??héhex teﬁm'%ltjels tSl:ppIerTe;ntér:g I,
a XOR-based code, that are observed to help improve repair Y an experimental storage clusner a
the experiments done in the following section. The nextigact

efficiency: . . : :
Y ) describes metrics reported and presents detailed analf/sis
« configuration of topology awareness the results. It also proposes and validates the heurisét th
» replication of parity blocks placement of blocks based on the code design would lead to

We improve the XOR-based code by extending it in suchleetter repair performance. Finally, Section-VIII conasdhe
way that they decrease the repair bandwidth in geo-divensaper.
storage clusters. Furthermore, we also propose a heuristic
termed code awareplacement of blocks, embracing the
design principles behind local repair codes. The results an As indicated earlier in Section-l, classical erasure codes
analysis are reported with real cluster configurationsupet-are sub-optimal in distributed storage environments bezau
on the NeCTAR [12] research cloud that validate proposed the repair problem.Even though only a single data block
methodologies in improving repair performance for largalesc is lost, recovery requires transferring all other blocksthie
geo-distributed cluster settings. corresponding stripe to a certain node that will perform the
The XOR-based code with our improvements is compareecovery operation, and subsequently regenerate theltadt. b
with the original Reed-Solomon erasure code running on+adéhis results in consumption of considerable network band-
book’s storage archives [13] developed on Apache Hadowgdth and disk 1/O during data recovery, sometimes referred
and a code based on the idea of local parities [14]. The as recovery overhead in the literature.
experiments use a set of storage clusters distributedsadies  Consequently, the problem of decreasing the recovery over-
verse geographical locations across Australia on the NéCTAead in the event of node failures in erasure in coded storage
research cloud for simulating a geo-distributed data cefitee  systems has received considerable attention in the reesit p
technique increases the storage requirement of the datarcemoth in theory and practice. Binary MDS codes are popular
but results in decreased recovery time and recovery batidwicdbecause of their use in disk array systems and have been
making it a better choice for big data applications mounted evorked on extensively by researchers. Some examples are
large geo-distributed data centers. EVEN-ODD and RDP codes [15], [16]. These codes have
Our experiments were run on archival type test data (cdteten enhanced to support optimal recovery in the papers [17]
data). Hadoop’s erasure code module can be used to sfd@@ respectively. A coding scheme, callpgiramid codesto
frequently accessed (hot) data as well. In such a contextprove read performance during node repairs is presented i
storage is accessed more often. If failure occurs when a ugkE3], but it incurs additional storage space than conveatio
accesses his/her stored data, it has to be repaired anderestechemes. In [4], the authors present a new framework with
to the file system storage with practically non-noticeableonventional Reed Solomon codes that make single node
delays. This is technically called 'ad-hoc’ repair as omabs failure recovery efficient both in terms of network bandwidt
to the usual repairs that are triggered after being notiged and disk I/O, without incurring extra storage space.
the RaidNodedaemon during its routine scan. Hence, ensuring Another popular domain of code construction is based on
reliability at extremely fast rates to the user becomes ljighthe idea ofreconstruction locality which means the number
significant. There are a number of real applications wheoé nodes contacted during repair. There has been substantia
triple-replicated storage is not cost-effective and usmeas research in recent times on code constructions that arel base
frequencies are more than that of conventional cold storaga locality [20], [21], [22], [23], [24]. Implementationd tocal
For example, let us consider the example of analyzingrepair codes in practical storage systems can be found in [7]
graph of bitcoin transactions that was derived by parsiihg and [5]. Local repair codes focus on achieving faster regove
blocks since the genesis block in the bitcoin blockchaire Thwith some trade-off in the storage requirement of the system
transaction graph is stored in Hadoop file system, and can geReducing repair latency in distributed storage systemks wit
very big as the transactions grow. Keeping triple replisasat heterogeneous link capacities is explored in the recenk wor
practical; thereby, the user erasure codes the block cla d25], based on the observation that regeneration time dakpen

II. RELATED WORK



heavily on selection of the participating nodes that help in IV. HADOOP AND ITS ERASURE CODES

the process. The use of erasure codes in geo-diverse storagenprs is Hadoop’s distributed file system which is designed
clusters is explained in [26] for storing binary large olfec 1o siore very large volumes of data reliably across storage
Geo-replicated XOR coding is deployed alongside with Reggl-ations and to stream those data at high bandwidth totclien
Solomon codes for adding data centre fault tolerance. XOR;% lications. Hadoop uses mapreduce paradigm for its com-
;toragg in two different data centres is computed and Stor&ﬁfations of very large data sets. By distributing storage a
in a third data centre. computation across many nodes, the resources can grow with
Reducing recovery overhead in coded storage systems isg@hand. A Hadoop cluster can scale computation capacity,
extensively explored subject. However, extending it t0-gegiorage capacity and 1/0 bandwidth just by adding commodity
diverse storage has not been addressed in literature Sifar; nargware. HDFS stores filesystem metadata on the namenode
is the focus of our paper. and application data separately on data nodes. The nodes
communicate among themselves based on TCP/IP protocol.
Ill. ERASURE CODES AND THE REPAIR PROBLEM IN By default, the datanodes in HDFS do not rely on data protec-
GEO-DISTRIBUTED DATA CENTERS tion mechanisms like RAID for reliability. The implemenitat
Pf Hadoop is based on the Google File System (GFS) [29].
. . . : HDFS-RAID [8] is the module in HDFS that implements
?AZ‘:ﬁ’hgﬁfga{?ggS tgtlaeresr?wre:?]i;‘;gzﬁdl dogotdhiﬁgﬂilgfrhgtig; erasure codes based on Reed-Solomon codes. This module is
namedparity, which is calculated form the data. The most pé) an open source and it runs on erasure coded storage system
' ' employed in large scale production clusters at Facebook.
IDFS-RAID has a list of files that are to be erasure coded
and periodically performs erasure coding of these filessti a
8erforms the recovery operation when blocks are missing or
get corrupted. The recovery operation calls the decodéneof t
grasure code for reconstructing the file. The RAID module
erasure codes also handleslegraded readequests that are redirected from
o L L i _ . HDFS, in which case the requested block is reconstructed on
1) Galois fields: A finite field (Galois field) is a finite the fly by the daemon calleRaidNode The encoding and

set of elements on which the operations additions, Sumr%%'coding operations are carried out as MapReduce jobs in the

tion, multiplication and division are defined based on SOM \ster
fundamental rules. The term 'symbol’ represents an element

of a finite field. RS codes are defined over Galois Fields V. MULTI-XOR CODE

of size 2, represented by F'(2*). During encoding, @ RS | this section, the multi-xor (MXOR) code design and its
algorithm encodes a messagefosymbols inton = m + & storage trade-off are explained. Thereafter, stripe desig

symbols, wheren < 2%, in such a way that the origingl various codes, location awareness and parity replicatien a
message can be reconstructed from any subset of &izgjiscyssed.

of the encoded symbols. The decoding operation involves
solving a set of linear equations with Gaussian eliminatioh. Code design and storage trade-off
or matrix inversion. The CPU complexity fa@r /" operations  The MXOR code is a simple code design which takes a
is expensive and many open source implementations exist thiagle stripe of source blocks (amounting 10 blocks) like
implement libraries foiG F* operations supporting RS coding;XORBAS and FB erasure codes. This code is presented in
the most popular being Jerasure [28], based on which Haddepwhere it is used to build an adaptive erasure coded system
RS codes are built. There is another family of codes, th@at can switch between hot and cold data storage dynamicall
is purely based only on XOR operations. These codes depending on the system workload. We use it here with the
not require expensiv&:F' computation and hence performaim of improving the recovery performance in our geo-digers
encoding and decoding faster. cluster setting. These codes belong to the class of bloaly arr
2) Methodology: The repair problem of recovering fromcodes.
node failures involve contacting the required number of sur MXOR code rearranges ten blocks into two rows of five
vivor nodes based on the code design, downloading data frbiocks each, as shown in Fig. 1. and computes five vertical
them, performing the decode operation and writing back th&R parity blocks and two horizontal parity blocks, resudti
recovered data to the storage. In a geo-distributed clustera total of seven parity blocks. Having only XORs as pasitie
in addition to the computation cost associated w{iiF' ensures that the computation complexity involved in recpve
operations, there are other issues related to node locatidn is trivial. It is clearly evident from the design that it isrye
network latency. Making computation cheaper and thinkihg efficient in handling one node failures by only involving the
other clever mechanisms to improve recovery performanee aiownload of two of the surviving nodes, using only the veatic
the solutions to tackle this issue, which is precisely what wparities. Let us assume the data node that stores the block
have tried to accomplish in this work. data8 shuts down. To recover it, the code requires only the

A storage system using erasure coding has an array o

which have the property that if any disks fail, the original
data may be reconstructed from the remainindisks, i.e,k
out of thesen nodes suffice for data recovery. In terms of th
redundancy-reliability trade-off, MDS codes are optiniRéed
Solomon codes (RS) [27] are a well-known family of MD



blocks data3 and parity3 to be downloaded and XORed at [ €99 Stripe blocks | Stripe size
he recovery worker node. However, MXOR codes can handle Facebook's Reed 10 source-+ 4 | 14

the . _y T ’ ) e if Solomon parity blocks

multiple failures, by leveraging the horizontal paritiesthw XORBAS LRC 10 source+ 6 | 16

the vertical parities and fixing the location of the lost oc parity blocks

We have implemented MXOR codes as a new erasure co FMXOR 10 source+ 7 | 17

on top of Facebook’s Reed Solomon and XORBAS LRC, b parity blocks

modifying the open-source project available at [14]. Table I: Stripe structure in various code schemes studied

A general implementation using &m, k) Reed Solomon
code, requires the download of awkyof the remaining data

blocks, which makes the reconstruction process slower and . . .

P . L . downloaded for repair purposes as thpair bandwidth Typ-
inefficient. Thus, MXOR codes are ideal in improving th(?CaII with a recenerating code. the average repair bagidwi
recovery performance. The trade-off in using this code & th Y: 9 9 ' 9 P

it requires extra storage i.e. 1.7x storage overhead, \skéhe is small compared to the size of the fiié
d gel.e. L. g , ' Facebooks RS code, XORBAS LRC code and MXOR code
Reed Solomon codes used in Facebook’s RAID module results

in 1.4x storage overhead and the XORBAS code requires 1.@)}[(.9 erasure codes that con.3|der a stnpe as a simple cofhinat
of ‘'source blocks and parity blocks in a row. Table | below

summarizes stripe structure for various code designs tieat a
analysed in this paper.

datal | data2 || data3 || data4 || datas @ parity6 Vector code designsThere is a different type of code called
MDS array codewhere each symbol is a vector or a column,

data6 || data7 || datag | data9 | data1o @ S and gets stored in a different ljode. It ha@arlyles and can
correct uptor erasures of entire columns. Fig. 2 shows a

(+ :? ( : : : (6,4) code with column lengtlh = 2 and number of parities

r = 2. There are four storage nodes that store data blocks and
two parity nodes that store code blocks. These codes have the
optimal repair property meaning that to repair a node, only

a fraction of1/r data needs to be transmitted. This fraction
is computed based on multiplying the code matrices with the
repair matrices, that are carefully designed.

parityl | parity2 || parity3 | parity4 | parity5

Fig. 1: Multiple XOR code design

B. Stripe design in various codes

With conventionaln, k) erasure codes, data is stored acro N1 | N2 [ N3 | N4 P1 P2
n nodes in the network in a way that the entire data can
reconstructed by a data collector by connecting to/anpdes. a|bjc|dja+tb+tc+d|2a+w+2b+3c+d

A practical example i$14, 10) Reed-Solomon (RS) code usec
in Hadoop distributed storage clusters which codésdata
blocks by addingt extra parity blocks, resulting ih4 coded
blocks that get stored on to different nodes on the clustez. T
set ofn blocks that are encoded or decoded together is called
a stripe. In this code example, to repair the loss®@fl, we transmit
Let B be the total file size measured in terms of symbothe first row from all other remaining nodes. To repaie,
(elements) over a finite field. RS codes treat each fragméransmit the second row from all other nodes. To repéd,
stored in a node as a single symbol belonging to the finitge need to transmit the sum of both rows of all other nodes.
field. It is known that when individual nodes are restrictednd to repair N4, we transmit the sum of the first row and
to perform only linear operations, the total amount of datatimes the second row from nodéél, N2, N3, P1 and the
download needed to repair a failed node, can be no smakem of the first row and times the second row from node
than B. P2. The coefficients to be multiplied for the computation and
In contrast, regenerating codesre codes over a vectorthe data to be transmitted are based on the repair matriaes th
alphabet and hence treat each fragment as being compriaes built for the code design.
of « symbols over the field. Linear operations here permit The stripe definition here would have to take into consider-
the transfer of a fraction of the data stored at a particulation all the symbols of the vector from all the correspogdin
node. Apart from this new parameter two other parameters columns. At times, we need to perform some computation
associated with regenerating codes. A failed node is pethiton a part of data that is read from a node and then use the
to connect to a fixed numbet of the remaining nodes while resulting value in the recovery process. This idea is pajula
downloadings < « symbols from each node. This processeferred to by the termsub-packetizatioin the coding theory
is termed asregenerationand the total amount$ of data community.

wilx |y|z|w+tx+ty+z | 3w+b+3x+2y+z

Fig. 2: Long MDS code (n=6,k=4,1=2)



C. Harnessing the topology awareness recovery from failure. We monitored this in our test data

Network topology plays a critical role in clusters thafluster and our results confirm that parity replication gsin
are geographically distributed, because repair perfocmarih® recovery times down in our cluster.
depends on how close the surviving node is to the recoveryln the case of MXOR, since only two blocks are needed
worker node. In the experimental test cluster, we have ddf4 @ single node failure recovery, parity duplication het
nodes spanning three locations. We can make Hadoop awar€®¥fances the performance of reconstruction if worker and
this geographical assignment by specifying the clusteleeodhe required blocks bglong to th_e same Io.catlon;.whlch is a
as belonging to separate racks via a script and making tHghly probable scenario. Increasing the parity replicagond
corresponding changes in the configuration files. The steps?t Séeéms not to be a viable option, since it increases the
perform this are detailed in the Appendix. storage requirement close to or more than triple replicatio

Without the rack awareness, all data nodes in the cluster &l thereby losing the benefit gains of using codes for storag
treated by Hadoop as belonging to a single location; therebyHowever, in a data center with nodes belonging to more
placing the block replicas of the file randomly. But, accogdi Number of locations, increasing parity replicas will caa
to the default placement policy, the first replica of a blogka Improve the recovery performance but at the cost of incnegsi
be placed in the local rack (where the client data writer nodg&orage requirement.
runs), second replica in another node belonging to a d'rﬁerew_
rack and the third replica is to be placed in another node in
the same rack where the second replica was placed.

Topology awareness is haressed by making Hadoop aware he experimental cluster is built on the national research
of geographically distributed nodes in its cluster. Thiglame ¢loud, NeCTAR (National e-Research Collaboration Took an

by introducing location-awareness, which in turn leads Resources). Itis a federated Australian Research Cloudhwhi

the locations treated as separate racks in the clusterr AfR@rtners with Australian universities and research usoins
this modification, block placement happens exactly as per i Create a national cloud for Australian researchers. It is
default placement policy. We have made use of this locatiéffated at eight different organisations (availabilitynes)
awareness of Hadoop in storing extra copies of paritiesito s@found Australia, operating as one cloud system. Our test
our requirement of improving the recovery performance, gluster has45 data nodes spread across Australia, at three

DESIGN AND SET UP OF THEEXPERIMENTAL STORAGE
CLUSTER

explained in the next sub-section. locations namely_ Tasmania, Queenslanq and Perth. These are
_ o controlled by a single master node that is located at Tasanani
D. Parity duplication and the trade-offs zone. The node locations with the average ping times from the

setting. We store two replicas of parities aiming to brimgin
down the time taken for recovery from node failure. The trad
off is the storage overhead incurred by having an additior

Hadoop, similar to other distributed storage systems, maaster node in Tasmania to the three data node locations are
replica of the parity blocks. The resulting storage ovedhiea
various erasure codes that have been evaluated in our wor

lies on replication as the primary method of ensuring faulshown in Fig. 3.
. ]
Data Nodes
shown in Table. II.

tolerance [30]. We extend this analogy to replicating parit
Code Replication Storage Over- Data No 37 ms
head
Facebook’s Reed 2 1.8x y
Solomon h

blocks with the idea that having more copies of parities wi
increase the chances of locality in our geo-diverse clust
XORBAS LRC 2 2.2X
MXOR code 2 2.4x

Data Nodes

Table II: Impact of Double Replicating parities in various codes
. . . Master
In XORBAS and MXOR, despite increasing the storag Node
overhead, this can bring huge benefits in our cluster by ensur , I , ,
. . h . . . . Fig. 3: Node locations along with ping times from the master node iregperimental
ing locality; the scenario when the parity replica is aval#a cigster
at the location where the repair worker node is assigned by
Hadoop to carry out the recovery process. Having an extraThe instances run on virtual machines of type ml.small
replica of parity blocks leads to higher chances of comtgcti which are machines with 1 core, 4GB RAM, 30GB hard disk.
a node belonging to the same location as the worker nodéie framework and the bash scripts developed as part of our

thereby resulting in locality which in turn leads to fasteprevious work [11] are used here for setting up the clustdr an



automation of the test execution process. All node failares

simulated by stopping the datanode manually. This is do Decoder StreamReader
y pping y Thread Thread performReads|()

by ssh-logging to the datanode and running the bash SCI start decode oll for input data )
'stop-datanode.sh’ from its terminal. Given below are tteps _ K’%
followed in the experiments: dme input deta read e
—
1) Upload files triple-replicated (default case) ‘/  ead
2) Enable RAID for the file path and wait for parity decode time
blocks to be generated, extra replicas to be deleted ¢ time ]
block movements to prevent co-located placements to \—mﬂ%%
Completed ::’:: input data read full /
3) Simulate single/double node failure (node to fail i /
chosen randomly) by stopping data node script on tl
node manually decode
4) Record repair time taken for repairing the lost block tme
5) lterate the steps (1-4) twenty times; for all three code, . ... I

with/without parity replication and with/without locatio

awareness k J
in parallel
VIl. RESULTS ANDANALYSIS Fig. 4: Read, decode and wait times of the repair process: read and decode happen
concurrently; the time CPU is idle waiting for data to be read in-order to deéodee

. ) wait time.
The experimental results are focussed only on single node

and double node recovery scenarios. Single node failure is
the most common one in practice, followed by double no
failures. It is reported in [31] that 98.08% of all repairsaive
recovering a single block in a stripe. The results of single node repair performance is discussed
first. The plots in Fig. 5 show the repair times consumed durin
repairing a single node failure under all three experinaatt
cases that are studied. Fig. 5(a) shows single node recovery

The primary metric used for evaluating the recovery petimes when the setting is run without location awareness and
formance is repair time in milliseconds taken by the recpveparity replication. Fig.5(b) reports the times when Hadd®p
worker to perform the repair, which is the total of decodectimaware of the the location but parity meta replication is not
and wait time. Repair time is the metric used very commonBnabled. In Fig. 5(c), plotted are the results when bothtioca
for measuring the decode performance of erasure codes [3®}areness and parity replication are set. The values indke b
[4], [6], [5]. We know that to repair a block, some survivingplots are obtained by runningp iterations of the experiment
blocks to be read and downloaded. HDFS-RAID does thégript.
by opening parallel input data streams to data nodes tha sto In all three cases, it is clearly evident that MXOR codes
those required blocks. This time correspondsetad time and  perform faster recovery as compared to FB RS codes and
is dependent on disk 1/O, network bandwidth and latency. DEORBAS LRC codes, confirmed by reduction in all metrics
coding operation happens simultaneously with read oeratithat were plotted. XORBAS LRC is observed to perform
and both operations are implemented as concurrent threagishfirming the claimed performance in the paper [5] with a
The decoder process, which is responsible for repairing tecrease in repair times by (10-15)% as compared to FB RS,
failed block, needs to wait at times for input data to be reatl aover all test cases. In the absence of location awarengs re
made available for decoding to happen. This period of timefficiency of code is affected by the surviving nodes for fepa
when there is no computation happening, and the thread wagtsing far from the recovery worker node; increasing theirepa
for read data to come in, is denotedwait time. The actual times, as seen from Fig. 5(a). The plots in Fig. 5(b) confirm
CPU time consumed for the decode computations is calléitht setting location awareness has resulted in decre#tsing
decode timeReading time reflects the disk I/O performancejecode and wait times of RS and XORBAS codes. This idea
decoding time represents the CPU workload and waiting tilealso discussed in previous papers such as [7], [32], [8] an
reveals the implementation and network efficiency. Fig. 410]. Fig. 6 shows the average recovery times (sum of decode
shows the relationship between the three times as a functigid wait times) of the three codes under assessment in the
of time flow. above mentioned settings.

Apart from the repair time, the amount of data read for Plot in Fig. 5(c) shows that replicating parities, alonghwit
repair (denoted as HDFSBytesRead) by the repair workerck awareness has contributed to further reduction irvesgo
node and the total CPU time taken for repair process are atsoes of RS and XORBAS codes. Replication of parity blocks
measured from the logs. increases their availability; which in turn helps in perfoer

CE Analysis of Results

A. Metrics of interest



a. With no location awareness b. With location awareness c. With both location awareness
and no parity replication and no parity replication and parity replication
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Fig. 5: Repair times during single node failure
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Fig. 7: Storage code scheme vs. CPU time (single node failure)
Fig. 6: Average recovery times (single node failure) of codes under differentgsettin

ing faster repairs. The motivation behind replicating {esi
was triple replication inherent in Hadoop’s architectutegt
ensures reliability of hot data. There has been recent woilkstter it is. Decreasing CPU times is evident of the fact
which map the replication idea to erasure coded storage [3®lat the repair job needs lesser computations with XORBAS
[10]. and MXOR codes as compared to RS codes. Considering
Figure 7 shows the total CPU time in seconds taken by tdeuble node failure scenario, the same set of experiments
worker node to perform the repair of single node failure Far t were repeated simulating two nodes failure scenario wigh th
three codes under analysis. Figure 8 shows the codes aksesame configuration settings and the metrics were measured.
vs. the mega bytes read during repair process during sinflig. 9 shows the recovery times across various test cases
node failure. It is seen that both the parameters decreasecassidered. The recovery times are found to be decreasing
we move from RS to XORBAS to MXOR codes. Reducingvith the addition of the ideas of topology awareness andypari
the bytes read has a direct impact on the network bandwidtplication. RS and XORBAS code schemes have gained good
consumed during recovery process; lesser the bytes relaehefits from location awareness and parity meta replicatio



Wales and Melbourne. To be more precise, Cluster-1 has no

geo-diversity at all; while Cluster-5 has the most geo-diitg

in terms of the locations of their nodes. In both cases, singl

node failure is simulated (by choosing a node randomly to

fail) and recovery times are measured.

8 - In Fig. 10, the recovery performance of Facebook’s RS
codes is compared with XORBAS local parity codes, with
data results obtained by runnidg iterations of test script on
Cluster-5. The local parities in XORBAS only require XOR
operations to recover from node failures. With reference to
the plots in Fig. 10(a) and (b), local parities have helped

V A in improving read performance in Cluster-5. This directly

translates to reduction in wait times, because requiredkslo

are already read and available for decoding computationa. Th
Coding Scheme peak points of reading times represent the recovery presess

Fig. 8: Storage code scheme vs. MegaBytes Read (single node failure)  that involved the interaction among helper nodes located

farthest from each other. Fig. 11 presents the test castsresu

when run on Cluster-1. The reading and decoding processes
are observed to perform faster here as compared to the case in

From the results of experiments simulating single an@luster-5, the reason is attributed to the fact that all datdes
double node failures, it is observed that parity repligatioavailable at the same location. To conclude, results shaiv th
augmented with location awareness offers significant imgro repair is faster when blocks of a stripe are placed into nodes
ments in the recovery performance of RS and XORBAS codasa single location as opposed to placement on nodes spread
in the cluster. It is interesting to note that MXOR codacross a distributed cluster.

does not gain benefit in recovery performance as comparedResults and observations on MXOR codes before and after

to RS and XORBAS codes. During single node failure, ¢ode aware block placementThe results and discussions

requires downloading only one parity block for recoveryj¢e presented below motivate the heuristic further. From thalte
having extra copies of parities become less relevant iagutt  and analysis presented in Section-VI (B), MXOR codes give
no improvements. Double node failure demands downloaditige best repair performance. Hence, the following discussi
only a subset of surviving nodes depending on the blocks thatfocussed only on MXOR codes.

are lost. This is in contrast to RS codes, where each of thelet us consider a storage cluster that has nodes spread acros

two failures involve downloading of the remaining surviving L geographic locations. Le¥V be the total number of nodes

blocks. and!; represent the number of nodes at any locatiobet n

.. denote the number of blocks of a coded stripe. Given this, the

D. Towards erasure-code aware block placement policies a1 numper of possibilities with which cluster nodes can b

In this section, we start with the proposition that in @&hosen to place coded blocks of any code is:
geographically distributed cluster, if the block placemen (Z Z)
L't
n

1000
|

800
|

400
|

HDFSMegaBytes read for recovery
200
|

© - f f f

RS XORBAS MXOR

C. Observations

done intelligently, improvements in recovery performaige
achieved. Any erasure code has a structure, and geographica
diversity demands spreading blocks of the coded stripesacrcn MXOR code, during single node failure, the code design
nodes at disparate locations. We propose a heuristic th&ih wdemands only two (one source and one parity) among the
this spreading is done taking into consideration the afinect sixteen live blocks (please refer Fig. 1) to be downloaded fo
of the code, it will result in better recovery performanc&eT recovery process to be initiated. The fastest recovery drapp
results of two different experiments and their observatiare when these three blocks are placed in the same location. The
given below to support the proposed heuristic. code blocks can be separated into five locality groups, as
Results and observations on fully distributed vs. fullghown in Fig. 12. The two horizontal parities are not reglire
centralized clusters: Towards this, the results of recoveryfor repairing a single node failure, and hence they can be
performance of Facebook’s RS codes and XORBAS codeouped together with any of the other five groups.
are presented. The tests are run on two clusters set up oAfter RAIDing, the blocks are placed according to a place-
the NeCTAR research cloud that are drastically opposite ment policy that co-locates blocks belonging to the same
the geo-distribution of their data nodes. Both clustersehagroup, so that it will lead to optimal recovery performance
25 data nodes each, with a single master node locatedii®, the placement of blocks belonging to any single group
Tasmania availability zone. Cluster-1 has all nodes codfines restricted to the same location. This restriction makes t
to a single location: Tasmania, whereas Cluster-5 has nodesnber of possibilities of placing coded blocks: (ln) The
distributed across five disparate locations across Aistraheuristic was implemented and tested on HDFS-RAID module.
namely Tasmania, Queensland, South Australia, New SoutlRAIDing is a two-step process in Hadoop-20's HDFS-RAID



c. With both location awareness
and parity replication

b. With location awareness
and no parity replication

a. With no location awareness
and no parity replication
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Fig. 10: Comparison of recovery times of Facebook Hadoop and XORBAS Hado@tuster5

module. Any file to be uploaded is triple-replicated first ancectories at regular intervals. It checks if blocks of apsrare
stored to file system (please refer to the steps mentionedcimlocated in a node; if so, it prepares block move requests a
Section-V) by default. Thereafter, storage is chosen to Emwards them to thélockMover The BlockMoverexecutes
RAIDed by theRaidNodedaemon once a specific time periodhe move operation by moving the block to a different node in
(which can be set) elapses. The storage is arranged inpestrithe cluster. We modifie®PlacementMonitoto check whether
and encoding operation computes parity blocks correspgndblocks are placed according to the locality group placenrent

to the source blocks in all stripes. After RAIDing completed=ig. 12. If not, theBlockMovermoves them to their respective
extra replicas of all source blocks are deleted from theag®r groups. The locations of blocks after introducing the code
and replication is set td. The RaidNodehas a thread called aware placement strategy is shown in Fig. 13. The test cluste
PlacementMonitotthat periodically scans all the RAIDed di-used here is the same that was set-up for testing recovery
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Location 3

Location 1 Location 2

In RS codes, all blocks of a stripe are needed to repair a
missing block; hence with location cluster we do a uniform
distribution. This groups the blocks into three groupsd4of

blocks each plus extra blocks. These three groups can be

Fig. 13: Erasure code aware blocks placement in MXOR codes

placed to the three locations, and the left Builocks can be

placed randomly in any of the three locations.

The experiment for simulating single node failure (with From the above observations, it can be concluded that, a
location awareness) was conducted. Fig. 14 shows the ngcoveetter design that takes into account how the coded blo&ks ar

times before and after code aware block placement. Resuydtaced to suit a geo-diverse cluster can help increase eegov

reported are averaged ovEb iterations and present improve-performance of any coded storage system. The results show

ment in recovery performance with code aware placementtbft placing blocks respecting the structure of the undegly

blocks. erasure code enhances performance during recovery from nod
The new heuristic can be applied to any erasure cotilures. It affirms the heuristic that there is possibilib§

in general. Let us consider the case of RS and XORBA®ptimization based on erasure code design, and also paitts o

codes. XORBAS, by design, has locality, and coded blocksrther possibilities of optimizing based on other projesrof

are separated into three groups. 18 lcation cluster, it is the network characteristics that support coded storage. Nladel

mere task of restricting blocks of a group to a single logatiostorage network topologies with different cost parameters



like bandwidth and delay has been an open research arga M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. niuikis,
and has not been addressed previously in literature. There R.Vadali, S. Chen, and D. Borthakur. Xoring elephants: Nevasure

has been active research by different groups on codes thgf

reduce repair bandwidth. Influence of network topology on
codes has been investigated in the context of trees [33]t Mos
of the storage networks today are much more diverse, witﬁ]

different communication capacities and topologies. Mimim
communication needed to repair an erasure in such contexts

has not been studied in detail so far. This research area is
identified earlier by Dimakis et.al. in their celebrated @ap [s]

on network coding [34]. We leave this open problem for our[

future work.

VI1Il. CONCLUSION

When compared to an erasure coded storage system which

(10]

has all data nodes located at the same geographical location ) ) )
] Lakshmi J. Mohan, Renji Luke Harold, Pablo Ignacio Seor&aneleo,

an erasure coded large scale distributed storage systeadsp

across wide geography entails more complex recovery from

node failure. To tackle this issue, we presented an assess-
ment of three popular codes along with two simple ide

of managing location awareness information and maintginif3)

additional copies of parities; following which we presehte

heuristic that placing blocks intelligently based on theleo 1

(14]

design would result in better repair performance. The tesujis

of our study have revealed new facets of erasure codes when

implemented on Hadoop storage system in a geo-distribut[(fg]

environment. Erasure codes, in particular are not a sbudet
solution for providing reliability.

The experimental results confirm that topology awareneﬁ§]
and metareplication improve recovery performance to some
extent. To get further improvements, a new block placement
policy that optimizes recovery performance and follows tH8]
erasure code design shall be considered. The sum of all these proceedings of the ACM SIGMETRICS International Confezeno
ideas could offer a better solution for a code based storage Measurement and Modeling of Computer Sys{eBI§METRICS ’10,

system spanning a large geographical area.
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APPENDIX
Location Awareness

This section briefly introduces the notion of topology awat
ness with a custom network layout. The Hadoop softwa
framework provides a ready-to-use and flexible implemg

tation of custom network topologies based on bash scri

It basically uses the rack awareness idea in a data ce

to implement topology awareness in a cluster. In order
configure any custom geographic topology, some lines sha
be added to the Hadoop configuration filere — site.xml.
The following lines explain the complete process:

<property>
<nane>t opol ogy. script.file. name</ nane>
<val ue>/ usr/| ocal / hadoop/ conf/rack_t opol ogy. sh
</ val ue>
<description>ldentifies the network |ayout.
</ descri ption>
</ property>

<property>
<nane>t opol ogy. scri pt. nunber . ar gs</ nane>
<val ue>1</val ue>
<descri ption>Li st of
</ descri ption>
</ property>

I Ps to check

# Adj ust/Add the property
# "net.topol ogy.script.file.nane"
# to core-site.xm with the "absolute" path the this

result="${ar[1]}"
# echo "$result"”
# this returns the 2nd colum in
# the rack_topol ogy.data file
f
done
€ shift
M€t [ -z "$result” ] ; then
2N- echo -n "/ $RACK_PREFI X/ r ack"
pts el se
echo -n "/ $RACK PREFI X/ rack_\$result"
ntefri
tone

uld
el'se

echo -n "/ $RACK_PREFI X/ r ack"
fi

The above script reads a topology information file

"rack_toplology.data” that specifies racks (in our case, lo-
cations) and machines in a key-pair relationship using a

simple format. Given that our clusters were distributediatb
Australia, it was natural to organize the different rackgs
the different locations available on the NeCTAR cloud.

The bash script used in our experiments is based on the stan-

dard Hadoop topology awareness code, provided at Had
Wiki [35]. We modified the code, based on other commun
references, generating the following code for our geo+dive
cluster:

#!/ bi n/ bash

oop
ity
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