Skip to main content

Advertisement

Log in

Secrecy capacity analysis of untrusted relaying energy-harvesting systems with hardware impairments

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

In this paper, we study the impact of hardware impairments, which can act as one of the factors that cause degradation in the performance of communication systems, on the secrecy capacity of an untrusted relaying wireless energy-harvesting (WEH) system. In the system, the energy-constrained relay is an untrusted node which can overhear the source’s confidential signal while assisting the source-destination communication. The relay operates in the amplify-and-forward (AF) mode and uses the power-splitting (PS) protocol for harvesting energy. The destination sends an artificial noise (AN) signal during the source-relay communication. The AN signal acts as an additional energy source and an interference source at the relay. In our study, we derive an approximation of the average secrecy capacity (ASC) for the high-power-regime approximation in order to evaluate the secrecy performance of the proposed system, which is also the upper bound for the ASC. The analytical results are confirmed via Monte Carlo simulations. The numerical results provide valuable insights into the effect of the various system parameters, such as the power-splitting ratio, the relay’s location, the trade-off between the source’s power and the destination’s power, and the level of hardware impairments, on the secrecy performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The values of \(\sigma _{[a]}^{2}\) and \(\sigma _{[c]}^{2}\) are not necessarily the same and can be found in the receiver’s specification documents.

References

  1. Ding Z., Perlaza S. M., Esnaola I., Poor H. V. (2014) Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wireless Commun. 13(2):846–860

    Article  Google Scholar 

  2. Nasir A., Zhou X., Durrani S., Kennedy R (2015) Wireless-powered relays in cooperative communications: time-switching relaying protocols and throughput analysis. IEEE Trans. Commun. 63:1607–1622

    Article  Google Scholar 

  3. Zhu G., Zhong C., Suraweera H., Karagiannidis G., Zhang Z., Tsiftsis T. (2015) Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Trans. Commun. 63:1400–1418

    Article  Google Scholar 

  4. Hu L., et al. (2018) Cooperative jamming for physical layer security enhancement in internet of things. IEEE Internet Things J. 5(1):219–228

    Article  Google Scholar 

  5. Liu Y., Chen H. H., Wang L. (2017) Physical layer security for next generation wireless networks: theories, technologies, and challenges. IEEE Commun. Surv. Tutorial. 19(1):347–376

    Article  Google Scholar 

  6. Lee J., Choi W. (2014) Multiuser diversity for secrecy communications using opportunistic jammer selection: Secure DoF and jammer scaling law. IEEE Trans. Signal Process. 62:828–839

    Article  MathSciNet  Google Scholar 

  7. Xing H., Liu L., Zhang R. (2016) Secrecy wireless information and power transfer in fading wiretap channel. IEEE Trans. Veh. Technol. 65:180–190

    Article  Google Scholar 

  8. Liu L., Zhang R., Chua K. C. (2014) Secrecy wireless information and power transfer with MISO beamforming. IEEE Trans. Signal Process. 62:1850–1863

    Article  MathSciNet  Google Scholar 

  9. Zhang H., Li C., Huang Y., Yang L. (2015) Secure beamforming for SWIPT in multiuser MISO broadcast channel with confidential messages. IEEE commun. lett. 19:1347–1350

    Article  Google Scholar 

  10. Hoang T. M., Duong T. Q., Vo N.S., Kundu C. (2017) Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Commun. Lett., (Accepted)

  11. Kalamkar S. S., Banerjee A. (2017) Secure communication via a wireless energy harvesting untrusted relay. IEEE Trans. Veh. Technol. 66:2199–2213

    Article  Google Scholar 

  12. Björnson E., Matthaiou M., Debbah M. (2013) A new look at dual-hop relaying: performance limits with hardware impairments. IEEE Trans. Commun. 61:4512–4525

    Article  Google Scholar 

  13. Mokhtar M., Boulogeorgos A. A., Karagiannidis G., Al-Dhahir N. (2014) OFDM opportunistic relaying under joint transmit/receive I/Q imbalance. IEEE Trans. Commun. 62:1458– 1468

    Article  Google Scholar 

  14. Zhang X., Matthaiou M., Coldrey M., Björnson E. (2015) Impact of residual transmit RF impairments on training-based MIMO systems. IEEE Trans. Commun. 63:2899–2911

    Article  Google Scholar 

  15. Duy T. T., Duong T., Costa D. B., Bao V. N. Q., Elkashlan M. (2015) Proactive relay selection with joint impact of hardware impairment and co-channel interference. IEEE Trans. Commun. 63:1594–1606

    Article  Google Scholar 

  16. Zhou X., Zhang R., Ho C. K. (2013) Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans. Commun. 61:4754–4767

    Article  Google Scholar 

  17. Gradshteyn I.S., Ryzhik I. M. (2007) Table of integrals, series and products, 7th edn. Academic Press, New York

    MATH  Google Scholar 

  18. Khafagy M. G., Ismail A., Alouini M. S., Aïssa S. (2015) Efficient cooperative protocols for full duplex relaying over Nakagami-m fading channels. IEEE Trans. Wireless Commun. 14(6):3456–3470

    Article  Google Scholar 

  19. Holma H., Toskala A. (2011) LTE for UMTS: evolution to LTE-advanced, 2nd edn. Wiley, New Yorks

    Book  Google Scholar 

  20. Nasir A. A., Zhou X., Durrani S., Kennedy R. A. (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 12(7):3622– 3636

    Article  Google Scholar 

  21. Zhu G., Zhong C., Suraweera H. A., Zhang Z., Yuen C., Yin R. (2014) Ergodic capacity comparison of different relay precoding schemes in dual-hop AF systems with co-Channel interferer. IEEE Trans. Commun. 62(7):2314–2328

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2021 Research Fund of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Phu Tuan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A:: Proof of Proposition 1

From Eq. (16), \(F_{\gamma _{\{r,d\}}}\left (\gamma \right )|_{\gamma < \tfrac {1}{\mathcal AC}}\) can be rewritten as

$$ \begin{array}{@{}rcl@{}} F_{\gamma_{\{r,d\}}}\left( \gamma \right)|_{\gamma < \tfrac{1}{\mathcal AC}} = \int\limits_{0}^{\infty} {{f_{{X_{2}}}}\left( t \right)} {F_{{X_{1}}}}\left( {t\frac{{\omega {\mathcal B}}}{{{{\left( {{\mathcal C}\gamma } \right)}^{- 1}} - {\mathcal A}}}} \right)dt. \end{array} $$
(27)

Using the PDF of X2 given by \(f\left ({{m_{2}},{{\bar \gamma }_{2}};x} \right )\) and the CDF of X1 given by \(F\left ({{m_{1}},{{\bar \gamma }_{1}};x} \right )\), Eq. (16) can be rewritten as

$$ \begin{array}{@{}rcl@{}} F_{\gamma_{\{r,d\}}}\left( \gamma \right)|_{\gamma < \tfrac{1}{\mathcal AC}} &=& 1 - \frac{{{{\bar \gamma }_{2}}^{{m_{2}}}}}{{\Gamma \left( {{m_{2}}} \right)}}\sum\limits_{i = 0}^{{m_{1}} - 1} {\frac{1}{{i!}}} {\left( {\frac{{{{\bar \gamma }_{1}}\omega {\mathcal B}}}{{{{\left( {{\mathcal C}\gamma } \right)}^{- 1}} - {\mathcal A}}}} \right)^{i}} \\ & \times &\int\limits_{0}^{\infty} {{t^{{m_{2}} + i - 1}}{e^{- t\left( {{{\bar \gamma }_{2}} + \frac{{{{\bar \gamma }_{1}}\omega {\mathcal B}}}{{{{\left( {{\mathcal C}\gamma } \right)}^{- 1}} - {\mathcal A}}}} \right)}}} dt. \end{array} $$
(28)

With the help of [17, Eq. (3.381.4)], Eq. (28) can be expressed as given in Eq. (17).

Appendix B: Proof of Proposition 2

2.1 B.1 The calculation of \(\mathcal {J}_{1}\)

In case 1 (\(\mu {\mathcal C}=1\)), \({\mathcal I}\left (\gamma \right )\) can be decomposed by using the partial-fraction expansion method as

$$ \begin{array}{@{}rcl@{}} {\mathcal I}\left( \gamma \right) = \frac{{{{\left( {\gamma - {\mathcal AC}} \right)}^{{m_{2}}}}}}{{\gamma {{\left( {1 + \gamma } \right)}^{{m_{2}} + i + 1}}}} = \frac{{{b_{1}}}}{\gamma } + \sum\limits_{j = 1}^{{m_{2}} + i + 1} {\frac{{{b_{2,j}}}}{{{{\left( {\gamma + 1} \right)}^{j}}}}}, \end{array} $$
(29)

where the values of b1 and b2,j are determined by

$$ \begin{array}{@{}rcl@{}} {b_{1}} = \gamma {{\mathcal I}_{1}}\left( \gamma \right){|_{\gamma = 0}} = {\left( { - {\mathcal AC}} \right)^{{m_{2}}}}, \end{array} $$
(30)
$$ \begin{array}{@{}rcl@{}} && {b_{2,j}} =\frac{1}{{\left( {{m_{2}} + i + 1 - j} \right)!}}\frac{{{d^{{m_{2}} + i + 1 - j}}}}{{d{\gamma^{{m_{2}} + i + 1 - j}}}}\left( {{{\left( {\gamma + 1} \right)}^{{m_{2}} + i + 1}}{{\mathcal I}_{1}}\left( \gamma \right)} \right){|_{\gamma = - 1}} \\ && = \frac{1}{{\left( {{m_{2}} + i + 1 - j} \right)!}}\frac{{{d^{{m_{2}} + i + 1 - j}}}}{{d{\gamma^{{m_{2}} + i + 1 - j}}}}\frac{{{{\left( {\gamma - {\mathcal A}{\mathcal C}} \right)}^{{m_{2}}}}}}{\gamma }{|_{\gamma = - 1}} \\ &&= \frac{1}{{\left( {{m_{2}} + i + 1 - j} \right)!}}\frac{{{d^{{m_{2}} + i + 1 - j}}}}{{d{\gamma^{{m_{2}} + i + 1 - j}}}}\left( {\sum\limits_{n = 0}^{{m_{2}}} \binom{m_{2}}{n} {{\left( { - {\mathcal A}{\mathcal C}} \right)}^{{m_{2}} - n}}{\gamma^{n - 1}}} \right){|_{\gamma = - 1}}\\ &&= \frac{1}{{\left( {{m_{2}} + i + 1 - j} \right)!}}\sum\limits_{n = 0}^{{m_{2}}} \binom{m_{2}}{n} {\left( { - {\mathcal A}{\mathcal C}} \right)^{{m_{2}} - n}} \\ && \!\times\! \left\{\begin{array}{lll} {-\left( {m_{2}} + i + 1 - j \right)!}&;{\textup{ if }} \textbf{1}\left( {n = 0} \right) \\ {\frac{{\left( {n - 1} \right)!}}{{\left( {n + j - {m_{2}} - i - 2} \right)!}}{{\left( { - 1} \right)}^{n + j - {m_{2}} - i - 2}}}&;{\textup{ if }} \textbf{1} \left( n \!\ge\! 1,n - 1 \!\ge\! {m_{2}} + i + 1 - j\right)\\ 0&;{\textup{ if } \textbf{1} \left( {n \!\ge\! 1,n - 1 \!<\! {m_{2}} + i + 1 - j}\right)} \end{array}\right.. \end{array} $$
(31)

The expression of b2,j in Eq. (31) can be simplified by Eq. (22).

Then, \(\mathcal J\) can be calculated by

$$ \begin{array}{@{}rcl@{}} {{\mathcal J}_{1}} &=& \int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\mathcal I} d\gamma = \int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{1}}}}{\gamma }} d\gamma + \int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{2,1}}}}{{\gamma + 1}}} d\gamma + \sum\limits_{j = 2}^{{m_{2}} + i + 1} {\int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{2,j}}}}{{{{\left( {\gamma + 1} \right)}^{j}}}}} d\gamma } \\ &=& \underbrace {{b_{1}}\mathop {\lim }\limits_{M \to \infty } \ln \left( {\frac{M}{{M + 1}}} \right)}_{= 0} + {b_{1}}\ln \left( {1 + {{\left( {{\mathcal A}{\mathcal C}} \right)}^{- 1}}} \right) \\ && + \sum\limits_{j = 2}^{{m_{2}} + i + 1} {\frac{{{b_{2,j}}}}{{j - 1}}{{\left( {{\mathcal A}{\mathcal C} + 1} \right)}^{1 - j}}}. \end{array} $$
(32)

Finally, \({\mathcal J}_{1}\) can be expressed as in Eq. (21).

2.2 B.2 The calculation of \(\mathcal {J}_{2}\)

In case 2 (\(\mu {\mathcal C}=0\)), \({\mathcal I} \left (\gamma \right )\) can be decomposed by using the partial-fraction expansion method as

$$ \begin{array}{@{}rcl@{}} {\mathcal I}\left( \gamma \right) = \frac{{{{\left( {\gamma - {\mathcal A}{\mathcal C}} \right)}^{{m_{2}}}}}}{{\left( {1 + \gamma } \right){\gamma^{{m_{2}} + i + 1}}}} = \frac{{{b_{3}}}}{{\gamma + 1}} + \sum\limits_{j = 1}^{{m_{2}} + i + 1} {\frac{{{b_{4,j}}}}{{{\gamma^{j}}}}}, \end{array} $$
(33)

where the values of b3 and b4,j are determined by

$$ \begin{array}{@{}rcl@{}} {b_{3}} = \left( {\gamma + 1} \right){{\mathcal I}_{1}}\left( \gamma \right){|_{\gamma = - 1}} = {\left( { - 1} \right)^{i + 1}}{\left( {1 + {\mathcal A}{\mathcal C}} \right)^{{m_{2}}}}, \end{array} $$
(34)
$$ \begin{array}{@{}rcl@{}} && {b_{4,j}} = \frac{1}{{\left( {{m_{2}} + i + 1 - j} \right)!}}\frac{{{d^{{m_{2}} + i + 1 - j}}}}{{d{\gamma^{{m_{2}} + i + 1 - j}}}}\left( {{\gamma^{{m_{2}} + i + 1}}{{\mathcal I}_{1}}\left( \gamma \right)} \right){|_{\gamma = 0}}\\ && = \frac{1}{{\left( {{m_{2}} + i + 1 - j} \right)!}}\frac{{{d^{{m_{2}} + i + 1 - j}}}}{{d{\gamma^{{m_{2}} + i + 1 - j}}}}\frac{{{{\left( {\gamma - {\mathcal A}{\mathcal C}} \right)}^{{m_{2}}}}}}{{1 + \gamma }}{|_{\gamma = 0}}\\ && = \frac{1}{{\left( {{m_{2}} + i + 1 - j} \right)!}}\frac{{{d^{{m_{2}} + i + 1 - j}}}}{{d{\gamma^{{m_{2}} + i + 1 - j}}}} \end{array} $$
(35)
$$ \begin{array}{@{}rcl@{}} &&\quad\times\left( {\sum\limits_{n = 0}^{{m_{2}}} \binom{m_{2}}{n} {{\left( { - 1 - {\mathcal A}{\mathcal C}} \right)}^{{m_{2}} - n}}{{\left( {\gamma + 1} \right)}^{n - 1}}} \right){|_{\gamma = 0}}\\ && = \frac{1}{{\left( {{m_{2}} + i + 1 - j} \right)!}}\sum\limits_{n = 0}^{{m_{2}}} \binom{m_{2}}{n} {\left( { - 1 - {\mathcal A}{\mathcal C}} \right)^{{m_{2}} - n}}\\ && \!\times\! \left\{\begin{array}{lll} {{\left( { - 1} \right)}^{{m_{2}} + i + 1 - j}}\left( {{m_{2}} + i + 1 - j} \right)!&;{\textup{ if }} \textbf{1}\left( {n = 0} \right) \\ {\frac{{\left( {n - 1} \right)!}}{{\left( {n + j - {m_{2}} - i - 2} \right)!}}}&;{\textup{ if }} \textbf{1} \left( n \!\ge\! 1,n - 1 \!\ge\! {m_{2}} + i + 1 - j\right)\\ 0&;{\textup{ if } \textbf{1} \left( {n \!\ge\! 1,n - 1 \!<\! {m_{2}} + i + 1 - j}\right)} \end{array}\right.. \end{array} $$
(36)

The expression of b4,j in Eq. (35) can be simplified by Eq. (24).

Then, \(\mathcal J\) can be calculated by

$$ \begin{array}{@{}rcl@{}} {{\mathcal J}_{2}} &= &\int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\mathcal I} d\gamma = \int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{3}}}}{{\gamma + 1}}} d\gamma + \int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{4,1}}}}{\gamma }} d\gamma\\ &&+ \sum\limits_{j = 2}^{{m_{2}} + i + 1} {\int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{4,j}}}}{{{\gamma^{j}}}}} d\gamma} \end{array} $$
(37)
$$ \begin{array}{@{}rcl@{}} &= &\underbrace {{b_{3}}\mathop {\lim }\limits_{M \to \infty } \ln \left( {\frac{{M + 1}}{M}} \right)}_{= 0} - {b_{3}}\ln \left( 1 + \frac{1}{{\mathcal AC}} \right)\\ &&+ \sum\limits_{j = 2}^{{m_{2}} + i + 1} {\frac{{{b_{4,j}}}}{{j - 1}}{{\left( {{\mathcal AC}} \right)}^{1 - j}}}. \end{array} $$
(38)

Finally, \({\mathcal J}_{2}\) can be expressed as in Eq. (23).

2.3 B.3 The calculation of \(\mathcal {J}_{3}\)

In ccase 3 (\(\mu {\mathcal C} \notin \{0,1\}\)), \({\mathcal I}\left (\gamma \right )\) can be decomposed by using the partial-fraction expansion method as

$$ \begin{array}{@{}rcl@{}} {\mathcal I}\left( \gamma \right) &=& \frac{{{{\left( {\gamma - {\mathcal A}{\mathcal C}} \right)}^{{m_{2}}}}}}{{\gamma \left( {1 + \gamma } \right){{\left( {\gamma + \mu {\mathcal C}} \right)}^{{m_{2}} + i}}}}\\ &=& \frac{{{b_{5}}}}{\gamma } + \frac{{{b_{6}}}}{{\gamma + 1}} + \sum\limits_{j = 1}^{{m_{2}} + i} {\frac{{{b_{7,j}}}}{{{{\left( {\gamma + \mu {\mathcal C}} \right)}^{j}}}}}, \end{array} $$
(39)

where the values of b5, b6, and b7,j are determined by

$$ \begin{array}{@{}rcl@{}} {b_{5}} &= &\gamma {{\mathcal I}_{1}}\left( \gamma \right){|_{\gamma = 0}} = \frac{{{{\left( { - {\mathcal A}} \right)}^{{m_{2}}}}}}{{{\mu^{{m_{2}} + i}}{{\mathcal C}^{i}}}}, \end{array} $$
(40)
$$ \begin{array}{@{}rcl@{}} {b_{6}} &= &\left( {\gamma + 1} \right){{\mathcal I}_{1}}\left( \gamma \right){|_{\gamma = - 1}} = \frac{{ - {{\left( { - 1 - {\mathcal A}{\mathcal C}} \right)}^{{m_{2}}}}}}{{{{\left( {\mu {\mathcal C} - 1} \right)}^{{m_{2}} + i}}}}, \end{array} $$
(41)
$$ \begin{array}{@{}rcl@{}} {b_{7,j}} &= &\frac{1}{{\left( {{m_{2}} + i - j} \right)!}}\frac{{{d^{{m_{2}} + i - j}}}}{{d{\gamma^{{m_{2}} + i - j}}}}\\ &&\times\left( {{{\left( {\gamma + \mu {\mathcal C}} \right)}^{{m_{2}} + i}}{{\mathcal I}_{1}}\left( \gamma \right)} \right){|_{\gamma = - \mu {\mathcal C}}}\\ &= &\frac{1}{{\left( {{m_{2}} + i - j} \right)!}}\frac{{{d^{{m_{2}} + i - j}}}}{{d{\gamma^{{m_{2}} + i - j}}}}\\ &&\times\left( {{{\left( {\gamma - {\mathcal A}{\mathcal C}} \right)}^{{m_{2}}}}\left( {\frac{1}{\gamma } - \frac{1}{{\gamma + 1}}} \right)} \right){|_{\gamma = - \mu {\mathcal C}}} . \end{array} $$
(42)

By following similar calculations as in Eqs. (31) and (35), the expression of b4,j in Eq. (42) can be simplified by Eqs. (26). Then, \(\mathcal {J}\) can be calculated by

$$ \begin{array}{@{}rcl@{}} {{\mathcal J}_{3}} &=& \int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{5}}}}{\gamma }} d\gamma + \int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{6}}}}{{\gamma + 1}}} d\gamma + \int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{7,1}}}}{{\gamma + \mu {\mathcal C}}}} d\gamma\\ &&+ \sum\limits_{j = 2}^{{m_{2}} + i} {\int\limits_{{\mathcal A}{\mathcal C}}^{\infty} {\frac{{{b_{7,j}}}}{{{{\left( {\gamma + \mu {\mathcal C}} \right)}^{j}}}}} d\gamma } \\ &= &\underbrace {\mathop {\lim }\limits_{M \to \infty } \ln \left( {{M^{{b_{5}}}}{{\left( {M + 1} \right)}^{{b_{6}}}}{{\left( {M + \mu {\mathcal C}} \right)}^{{b_{7,1}}}}} \right)}_{= 0} \\ && - \ln \left( {{{\left( {{\mathcal A}{\mathcal C}} \right)}^{{b_{5}}}}{{\left( {{\mathcal A}{\mathcal C} + 1} \right)}^{{b_{6}}}}{{\left( {{\mathcal A}{\mathcal C} + \mu {\mathcal C}} \right)}^{{b_{7,1}}}}} \right)\\ &&+ \sum\limits_{j = 2}^{{m_{2}} + i} {\frac{{{b_{7,j}}}}{{\left( {j - 1} \right)}}{{\left( {{\mathcal A}{\mathcal C} + \mu {\mathcal C}} \right)}^{- \left( {j - 1} \right)}}} \end{array} $$
(43)

Finally, \(\mathcal {J}_{3}\) can be expressed as in Eq. (25).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, V.P., Kong, H.Y. Secrecy capacity analysis of untrusted relaying energy-harvesting systems with hardware impairments. Ann. Telecommun. 75, 397–405 (2020). https://doi.org/10.1007/s12243-020-00758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-020-00758-3

Keywords

Navigation