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Abstract
In modern wireless systems such as ZigBee, sensitive information which is produced by the network is transmitted through
different wired or wireless nodes. Providing the requisites of communication between diverse communication system types,
such as mobiles, laptops, and desktop computers, does increase the risk of being attacked by outside nodes. Malicious (or
unintentional) threats, such as trying to obtain unauthorized accessibility to the network, increase the requirements of data
security against the rogue devices trying to tamper with the identity of authorized devices. In such manner, focusing on
Radio Frequency Distinct Native Attributes (RF-DNA) of features extracted from physical layer responses (referred to as
preambles) of ZigBee devices, a dataset of distinguishable features of all devices can be produced which can be exploited
for the detection and rejection of spoofing/rogue devices. Through this procedure, distinction of devices manufactured by
the different/same producer(s) can be realized resulting in an improvement of classification system accuracy. The two most
challenging problems in initiating RF-DNA are (1) the mechanism of features extraction in the generation of a dataset
in the most effective way for model classification and (2) the design of an efficient model for device discrimination of
spoofing/rogue devices. In this paper, we analyze the physical layer features of ZigBee devices and present methods based
on deep learning algorithms to achieve high classification accuracy, based on wavelet decomposition and on the autoencoder
representation of the original dataset.

Keywords Physical layer · Wireless networks · ZigBee devices · Data preamble · RF-DNA · Autoencoder learning ·
Wavelet-transform

1 Introduction

In recent decades, the development of wireless communica-
tion networks has lead to the use of portable devices any-
time and anywhere. This desired wireless device portability
for legitimate users, has also lead to vulnerability threats,
like eavesdropping of unauthorized listeners, resulting in
increasing the risks of information leakage for instance.
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Consequently, different security protocols such as Wi-
Fi Protected Access (WPA) and WPA2 provided a
higher degree of security for short or high range radio
communication systems over the last years [1]. In 2019, the
Wi-Fi Alliance presented a new standard, WPA3, enhancing
the security level in communication systems [2]. One of
the communication protocols is ZigBee, introduced in 1999
[3], which is considered an attractive wireless system for
commercial and military applications, because of its low
cost and low complexity [4].

Despite the advantages in security protocols and systems
in the last decade, fast evolution of physical attacks
by rogue (unauthorized) guests (unseen devices that
attempt to access the wireless network by falsifying
their bit-level credentials to match the identity of the
known/authorized devices) to the ZigBee networks makes
physical layer attacks prevention and countermeasures
very complicated, because of the intrinsic importance of
physical layer attacks in comparison with cryptanalytic
attacks [5]
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An approach to improve the security of data commu-
nication through a vulnerable network channel consists in
defining RF Distinct Native Attributes (RF-DNA) features
of hardware devices (PHY layers) [6], which are inherently
unique for a given device [7]. In this paper, these RF-DNA
features are analyzed and processed for the discrimination
and rejection of spoofing devices.

The structure of this paper is as follows. First, in
Section 2, a short review of the current research work on
rogue devices discrimination is presented. Later, Section 3
introduces the methodology adopted in this paper for secu-
rity purpose classification. In Section 4, outcome of the pro-
posed method on real data is explained. Finally, Section 5
summarizes different findings of this research work.

2 Related works

2.1 Classificationmethods

Classification of devices for discrimination of authorized
(spoofed) identities from unauthorized (rogue or spoofing)
ones has been one of the most investigated areas in security
in the last several years. In conjunction with evolution of
physical attacks in last years, security strategies emphasize
on the extraction of physical features of authorized devices
to detect the incoming attacks effectively. A common
feature extraction approach for ZigBee devices consists
of analyzing a fixed length header, such as a preamble
or a synchronization header (SHR), to obtain statistical
parameters such as the mean, variance, skewness, and
kurtosis features of the physical signal characteristics such
as its amplitude, phase, and frequency, on equal length
sub-regions (time windows) of the received signal [8–
11]. It has been shown that phase is the most appropriate
physical characteristic for the classification of ZigBee
devices. Beside the reported methods, another common
approach is to employ RF fingerprinting by measuring the
transient behavior of a device. In [12], the authors present
a classification research method using the RF fingerprinting
concept, focusing on the extraction of features from the
amplitude of the transient parts of the Wi-Fi transmissions,
acquired from 8 IEEE 802.11b Wi-Fi cards.

2.2 Deep learning classificationmethods

Significant improvements in computational hardware
capabilities during the last few years have permitted the
implementation of deep learning methods for feature
extraction and classification. In [13], the authors introduced
a high performance classification scheme based on con-
volutional neural networks (CNN) operating on the time
domain complex baseband signals. Moreover, a CNN used

wireless interference identification for classification pur-
poses in IEEE 802.11, 802.15.4, and 802.15.1 protocols, by
identifying the channel frequency and the type of wireless
technology employed [14].

Although the strategies focusing on a fixed length pream-
ble [8–11, 15] or signal transients [12] and [16] showed
satisfactory discrimination accuracy, one of the recent
approaches for feature extraction proposed by [17] empha-
sizes the feature extraction using a deep learning model
on the steady state component of the initial transmission
samples (or data points).

The method presented in [17] is not restricted by which
part of the signal is used and does not assume that a
preamble is being transmitted. For this algorithm, a priori
knowledge of the transmitted signal is not required for
feature extraction such as in [8–11], [15]. This allows
the network to learn the features that best distinguish the
devices without requiring any a priori knowledge of the tar-
get devices features. In [17], frequency compensation of the
signal was also used for the first time in RF fingerprinting
experiments. Removing device-dependent carrier frequency
offsets which may appear in low signal-to-noise ratio
(SNR) transmissions results in the rejection of unauthorized
(rogue or spoofing) devices trying to mitigate this feature
by use of a precise local oscillator. On the other hand,
compensation of frequency offsets lowers the probability
of frequency variations at baseband. While the results from
[17] are promising, the training dataset, i.e., the dataset
used for training the model toward achieving its tasks, con-
tained data points from devices that were also included in
the test set, i.e., the dataset used for evaluating the results
of the model. As the test set does not contain devices that
were never used in training the model, we cannot conclude
on the performance of the model when facing new, unseen
units. The work of this paper addresses this issue. The idea
behind proposed scenario of this work is one-vs-all.

2.3 Transform-based classificationmethods

Other device classification methods based on Hilbert-
Huang [18] and wavelet [19] transforms have demonstrated
successful RF fingerprinting performances in this field,
using neural networks to develop models of nonlinear power
amplifiers and to perform predistortion [20], [21].

In this paper, an approach combining the advantages of the
time-scale features of wavelet transform, with feature extrac-
tion and classification using deep learning designs, is presented.

3 Proposed classificationmethod

In this paper, a binary classification system is used
to provide a mechanism of device discrimination into
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two classes: legitimate devices and (unauthorized) rogue
devices. The classification strategy is one-vs-all where the
system generates a model for each specific device, and
considers the detection of all other devices other than the
main target device. If a model is made for a specific device,
when any new device enters the network, this model tries to
detect if this device is an authorized device, will be granted
access to the network. If not, it will be rejected by the
network.

3.1 Dataset acquisition

For training a model, the first step is the dataset acquisition
from real devices. This consists in creating the data points of
different devices from the signal acquisitions of the ZigBee
devices. The IEEE 802.15.4 protocol (ZigBee protocol)
communicates through the 11 channels from 2.4 to 2.48355
GHz, each with a 2-MHz bandwidth. The central frequency
of each channel can be calculated:

Fc = 2405 + 5(h − 11) [MHz]
h = 11, 12, . . . , 26

(1)

where h indicates the channel index. Different manufac-
turers set the central carrier frequency of their ZigBee units
to different channels in this frequency range. For instance,
RZUSBSticks work in channel 20 with a central frequency
of 2.45 GHz, whereas XBEE Digi units and Texas Instru-
ments devices use channel 11 with a central frequency of
2.405 GHz. The responses of these devices are captured as
successive partial signals, or bursts.

Each burst begins with a known preamble [22], followed
by 8 successive modulated I and Q components of zero
symbols, labeled with indices 1 to 8 as shown in Fig. 1. Each
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Fig. 1 Modulated I and Q components of the IEEE 802.15.4 reference
preamble

preamble contains a repetitive pattern of a single symbol.
The duration of each symbol is 16 μs, and thus the length of
8 × 16 μs = 128 μs.

3.2 Received preamble extraction

In real-life systems, the beginning of a preamble is not
exactly located at the beginning of the signal burst.
Therefore, the beginning of a preamble must be extracted
from the received signal. For this purpose, a symbol for
each of the 8 successive sub-regions is convoluted with the
received signal. In such manner, there will be 8 successive
peaks in the calculated convolution coefficients. The first
one determines the beginning of the preamble in the
received burst.

After the determination of the beginning of preamble,
and knowing its length, extraction of the preamble itself can
be done.

3.3 Dataset phase and frequency compensation

The received signals must be phase and frequency
compensated because of the time-varying difference in the
modulation and demodulation frequencies. This results in a
shift in the slope of the phase of the received and reference
preambles: phase compensation consists of reducing the
slope difference between these two. The dataset phase and
frequency compensation are done as follows:

1. Generation of a reference symbol and corresponding
theoretical (reference) preamble, as shown in Fig. 1.

2. Calculation of the phase error:

ϕerr = ϕ(refpr) − ϕ(recpr ) (2)

where ϕ(refpr) and ϕ(recpr) are the phase of
the reference and the received (non-compensated)
preambles, respectively.

3. As will be shown in Section 4.2.2, the phase error is
almost linear. Therefore, the corrected phase of each
data point can be calculated by fitting a first degree
polynomial (linear regression):

�ϕlinear = ϕerr2 − ϕerr1

N
× n + b (3)

where b is a constant, ϕerr1 and ϕerr2 are the first and
the last elements in ϕerr , n = 0, 2, 3, . . . , N − 1 and
N is the preamble length. The corrected phase of the
received preamble, ϕcorr is given by

ϕcorr = ϕ(recpr) − �ϕlinear (4)

where ϕcorr is the corrected phase of the received
preamble.
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4. Using Eq. 5, the compensated in-phase (I) and also
quadrature (Q) components of preamble are obtained
as:

Icomp = A(cos(ϕcorr ))

Qcomp = A(sin(ϕcorr ))
(5)

with A being the amplitude of received preamble:

A =
√

�(recpr )
2 + �(recpr)

2

where �(recpr ) and �(recpr ) are the real and
imaginary parts of the received preamble recpr ,
respectively.

An example of a phase compensated signal is presented
in Section 4.2.2. Once phase compensation is done, the
extracted preambles can be processed for feature extraction,
signal analysis, etc.

3.4 Dataset transformation

In this paper, the discrete wavelet transform is investigated
as a means to improve the discrimination process between
the devices. Before feeding the data points of the dataset
to the classifier, a special kind of domain transformation,
the dyadic discrete wavelet transform (DDWT), is applied
to the dataset. The dyadic wavelet transform of the received
ZigBee signal, r(t), is given by [23, 24]:

cj,k = 1√
2j

∞∫

−∞
r(t)ψ(

t − k2j

2j
)dt (6)

where j, k = 0, 1, 2, ..., and ψ(t) is the wavelet window.
The decomposition level of the wavelet coefficients is
determined by the wavelet parameters (j, k). As the size
of the wavelet window changes, the number of features
extracted will change too.

The Haar wavelet window is used in this paper. All the
classifications with the wavelet transform, referred to as the
DDWT dataset, are done based on the extracted details at the
first wavelet decomposition level. For comparison purposes,
the dataset obtained before wavelet transform calculation
(received, extracted, and phase and frequency compensated
dataset with respect to Sections 3.1, 3.2, and 3.3) will be
referred to as the RAW dataset in the remaining of the paper.

3.5 Model definition

As explained in Section 2.1, methods focusing on known
RF-DNA features such as statistical parameters (mean,
variance, skewness, and kurtosis) of amplitude, phase, and
frequency [8–11] try to extract the best features measured
data, resulting in the maximum possible classification rate.

This is the reason why phase is known as the most effective
feature of this collection of RF-DNA set for classification
purposes. Based on this aim, the question that arises
here is about the feature selection mechanism. Should the
feature extraction be limited to this known set of statistical
information of PHY parameters, or is it possible to use other
elements more effective than those? The strategy that is
used in this paper focuses on utilization of an autoencoder
to extract the most dominant features of the input data,
which give the maximum inter-class and minimum intra-
class distances [25]. Later, feeding the extracted features to
a fully connected classifier will result in acceptable correct
classification and rejection rates. The proposed Autoencoder
(AE) combined with Fully Connected Classifier is shown in
Fig. 2.

3.5.1 Autoencoder

An autoencoder consists of two parts, an encoder and a
decoder, as shown in Fig. 2. The input vector x̄u represents
a data point:

x̄u ∈ {x̄0, x̄1, · · · , x̄U−1} (7)

where U is the total number of data points in the dataset.
Vector x̄u contains N samples:

x̄u = [
xu0 , xu1, · · · , xuN−1

]
(8)

The output of encoder, x̄uF
, is a simplified representation

of x̄u. The decoder is designed so that its output, ˆ̄xu, tries
to reproduce the original dataset, x̄u, from the encoder’s
representation, x̄uF

, by minimizing the difference between
x̄u and ˆ̄xu as illustrated in Fig. 2. The mechanism of
decreasing this difference is through the mean squared error
(MSE).

Feature extraction by the encoder Feature extraction is
to map the high-dimensional data to a simplified low-
dimensional space [26]. This transformation can be either
linear or nonlinear. Specifically, considering a given data
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point x̄u, feature extraction generates new feature x̄uF
. The

encoder can be described as a function f that maps an input
x̄u to a hidden representation x̄uF

:

x̄uF
= f (x̄u) = sf

(
ωx̄u + bx̄u

)
(9)

where sf is a linear or a nonlinear activation function. The
encoder is parameterized by a weight matrix ω and a bias
vector bx̄u ∈ R

n.

Input reconstruction by the decoder The decoder function
g maps the hidden representation x̄uF

back to a reconstruc-
tion (or reproduction) vector ˆ̄xu:

ˆ̄xu = g
(
x̄uF

) = sg

(
ω′x̄uF

+ b′
x̄uF

)
(10)

where sg is the decoder’s activation function, typically
either the identity (yielding linear reconstruction) or a
sigmoid (as nonlinear function). The decoder’s parameters
are a bias vector b′

x̄uF
and weight matrix ω′.

Training an autoencoder involves finding parameter θ =
(ω, ω′, bx̄u , b

′
x̄uF

) using a loss function that minimizes
the difference between the original space x̄u and the
reconstruction space ˆ̄xu.

3.5.2 Classification

After extraction of the features from the input dataset, these
extracted features are fed to the classifier section depicted
in Fig. 2. The typical classification structure used in the
literature involves 2 connected layers. However, such a
structure may overfit the training data, unless the training
dataset is very large [27].

Since the strategy in this paper is one-vs-all, there
are 2 classifier outputs, each presenting the conditional
probability of the data points belonging to either positive
or negative class (see Fig. 2). wpos and wneg represent
the positive and negative (mutually exclusive) classes,
respectively, that is:

p
(
x̄u

∣∣wpos

) = 1 − p
(
x̄u

∣∣wneg

)
(11)

3.6 Model training/validation/testing

The classifier model selection requires three (3) tasks: a
training phase, a validation phase, and a testing phase [28].
During the training and validation phases, a new model is
generated for the discrimination of one specific device from
the others. Then, a testing phase with a new device is done
to assess the reliability of the classifier model.

3.6.1 Dataset subdivision into training, validation, and
testing datasets

Before training the model, the dataset is first subdivided
into three different datasets: a training dataset, a validation
dataset, and a testing dataset.

Selection of positive and negative devices The classifica-
tion strategy adopted for this paper is the one-vs-all strategy.
One device, devicem (0 ≤ m ≤ M − 1), is selected as the
positive device (with data points labeled + 1) while the other
M − 1 devices are identified as negative devices, allocated
to a negative class (−1) labeled data points. Either device
in the dataset can be labeled as the positive device: thus M

different scenarios are possible, each considering a different
device as the positive device with +1 labels.

Device allocation for training, validation and testing After
the selection of devicem and labeling the data points, the
devices are selected for training, validation, and testing. The
procedure of device allocation to each of these steps is as
follows:

1. In this step, devicem and at least one other device from
the same or another manufacturer are selected for the
training dataset.

2. Validation: In the validation procedure, beside the
models used in training, there should be one or more
additional devices which have never been seen by
the model during the training procedure. Feeding the
previously unseen devices improves the performance
efficiency of the model.

3. Testing: Beside the devices already selected for training
and validation, new devices are essential for the correct
final evaluation of the generated model.

Data points allocation for training, validation, and testing
To ensure that the classification model can distinguish
between the data points of the desired device, devicem, from
the other devices, a sufficiently large number of data points
from each of the devices allocated to the training should be
kept in training dataset. Then, after allocation of the devices
for training, validation, and testing phases, the data points
themselves are assigned for each of them. Therefore, almost
60% of the data points from training devices are used for
training. Next, 10% of the validation devices data points are
allocated to validation, and finally, the remaining data points
from all devices should be used as testing data points. In
this work, none of the devices used in training, validation,
and testing has data points in common: each data point from
each device is used only in one of these steps.
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3.6.2 Model training and validation procedure

During the training of the model, the part of the dataset of
the devices assigned to the training is fed to the classifier.
The output of the decoder and also the classifier output will
ideally converge to a unique solution. The reconstructed
data should approximate the input dataset as much as
possible. The MSE is used for assessing the output accuracy
of reconstruction shown in Fig. 2 during the training or the
validation processes. The MSE between the input and the
reconstructed data points, x̄u and ˆ̄xu, at the decoder output
is expressed as:

MSE(
x̄u, ˆ̄xu

) = 1

N

N−1∑
n=0

(
x̄un − ˆ̄xun

)2

MSEtr/val = 1

Utr/val

∑
utr/val

MSE(
x̄u, ˆ̄xu

)
(12)

where n is the sample index of a single data point (either
x̄u or ˆ̄xu), N is the number of samples in a data point,
and utr/val and Utr/val are the index and number of the
training/validation data points, respectively.

The binary cross-entropy H(y, p) between the distribu-
tion of extracted labels y(x) and the distribution of the input
data point p(x) is used to assess the accuracy of classifier
output during the training process [29]:

H(y, p) = Ey

[− logp
] = −

∑
x∈X

y(x) log (p(x))

H(y, p) = − (y log (p) + (1 − y) log (1 − p))

(13)

The mean square error (Eq. 12) and the cross-entropy
(Eq. 13) should evolve simultaneously during the training,
to ensure that the accuracy of the decoder output improves
in such a way that it provides meaningful features for the
classifier, and makes the label allocation more accurate. At
the end of training process, among all models, the one which
has the minimum validation cross-entropy loss function
value of the classifier’s output is selected as the best model
for testing purposes.

3.7 Model testing

The last step in the procedure of device discrimination is
the testing procedure. Although the model was evaluated
during the validation process with a new group of data
points (or even devices), since the design of the model is
based on its optimization for the best possible classification
of validation data points, there is a risk of overfitting
the model to the validation dataset. Therefore, testing the
model is required. This involves the verification of the
classifier: the output probabilities and classified labels of

the classifier are extracted and verified by machine learning
evaluation methods, such as the confusion matrix (CM), and
the receiver operating characteristics (ROC) curves.

4 Experimental results

4.1 Experimental equipment setup

Figure 3 shows the laboratory transmitter and receiver
for the signal measurements and dataset acquisition. As
depicted, a Zynq XC7Z020 FPGA was used as the signal
receiver. Eight (8) different ZigBee wireless devices were
tested, including five (5) RZUSBSticks (labeled RZ1, RZ2,
RZ3, RZ4, and RZ5), one (1) XBEE Digi module (AR1),
and two (2) Texas Instruments devices (T I1 and T I2).

4.2 Preprocessing of acquired signals

4.2.1 Preambles extraction from the received signal bursts

As shown in Fig. 1, a preamble must include 8 succes-
sive repeated modulated zero symbols. As explained in

XBEE 
(AR)

Texas Instrument 
(TI)

RZUSBStick 
(RZ)

Fig. 3 Data acquisition. (a) Receiver. (b) Devices
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Section 3.2, in practical situations the beginning of a pream-
ble may not be located exactly at the beginning of the burst.
Therefore, the first step in processing the sampled signals
is to determine the beginning of the preamble by convolv-
ing the received signal with a single known symbol (each
of 8 successive reference O-QPSK symbols in Fig. 1). The
result of the convolution and resulting 8 successive peaks
for a burst from ZigBee device RZ1 are shown in Fig. 4.
As shown, in majority of the cases, there is a large differ-
ence between the amplitude of resulting peak from the first
symbol and others. After extraction of 7 successive equal
peaks (numbers 2 to 8), the starting moment of preamble
would be 2 symbol lengths before the second peak. Since
the sampling frequency is set to 40 MHz, and based on the
Section 3.1, the length of a symbol is as follows: 16 μs × 40
MHz = 640 samples. Because the sample index for the sec-
ond peak in Fig. 4 is 1310, the starting index is as follows:
1310 − 2 × 640 = 30 samples.

After determining the starting sample, the preamble can
be extracted from the received signal. As mentioned in
Section 3.1, the length of a preamble is 128 μs, and since
the sampling frequency is set to 40 MHz, the number of
samples in a preamble is 5120. Knowing the length and
exact location of the beginning of the preamble, extraction
of the preamble can be done. As an example, the real and
imaginary components of an extracted preamble of device
RZ1 are shown in Fig. 5.

4.2.2 Phase and frequency compensation

As discussed in Section 3.3, after extraction of the preamble,
one can compare it with a reference preamble. The phase
difference between reference and received preambles should
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Fig. 4 Convolution of the received signal burst with the reference
O-QPSK symbol

be reduced as much as possible, with respect to Eqs. (3),
(4), and (5). Figure 6 depicts the extracted preamble phases
of device RZ1 before and after phase and frequency com-
pensation. The black line shows the phase of preamble
before compensation, the green line refers to the preamble’s
phase after compensation, and the orange line illustrates the
reference phase. As seen in the enlarged inset of this figure,
the phase of compensated and reference preambles over-
lap with each other (green and orange lines, respectively),
showing the effectiveness of compensation strategy.

The effect of phase compensation on the received
signal is illustrated in Fig. 7 for the same device. As
shown in the insets of this figure, comparison of the
compensated real and imaginary signals with related parts
of the reference preamble, shows a good concordance
between the compensated and reference ones, confirming
the efficiency of the presented phase and frequency
compensation approach, like Fig. 6.

4.3 Datasets processing

4.3.1 DDWT dataset generation

After preprocessing the data, with respect to Sections 3.2
and 3.3, the DDWT is applied to the resulting data points as
described in Section 3.4.

4.3.2 Model generation

The model, summarized in Table 1, is constructed with
respect to the model of Fig. 2. The model is composed
of 22 layers described in each row. The second column
(titled as layer name), shows the name of layer, starting
with En., Dec., or Cl. referring to encoder, decoder, or
classifier part of Fig. 2. The third column determines the
type of the layer as input layer, convolutional, maxpooling,
upsampling, or dense layer. Besides, at the end of layer type
for each row, 1D or 2D refers to the one- or two-dimentional
size of input/output data to that layer in encoder/decoder
part. The fourth column as output shape shows the size
of output data from each layer. Finally, last two columns
show the activation function (the function which is applied
to the output data of layer), and the number of parameters
in each layer which should be set during the training
of the model. It is worth mentioning that the larger the
number of parameters in the model, the more computational
power will be needed for training. In this paper, the
presented structure of the model has 708,003 trainable
parameters.

In this work, the model training, validation, and testing
were performed using a computing unit GPU NVIDIA
Quadro K620 hardware, and Python 3.6, Tensorflow 1.0.8,
and Keras 2.2.0 software. The whole set of data points was
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Fig. 5 Real and imaginary
components of an extracted
preamble from device RZ1
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fed to the classifier batch by batch. The batch size was set
to 20 data points.

As mentioned in Section 3.5, the device feature
extraction and classification are based on deep learning, and
more specifically on autoencoders, shown in rows 0 to 18 of
Table 1.

An InputLayer with 9 successive MaxPooling/Conv.
layers, referred to as the encoder, extract the features from
the input data, and reduce the dataset size from (5120, 2)
at the input layer to (2, 1) at the output of 32 filters of the
encoder layer, shown in rows 0 to 9 of Table 1.

In decoder part for the autoencoder, 9 successive
Upsampling/Deconv. layers (rows 10 to 18 of Table 1) are
used to reconstruct the dataset at the output of decoder layer
with the same size as the input layer.

In both the encoder and the decoder, no dropout or batch
normalization is used.

The classification layers consist of 2 successive fully
connected (dense) layers. Rows 20 and 21 of Table 1
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Table 1 Autoencoder model summary

Index Layer Name Layer Type Output Shape Activ. Func. Parameters No.
0 En.layer_0 InputLayer (None, 5120, 2, 1) - 0

1 En.layer_1 Conv2D (None, 4800, 1, 32) Relu 20576       

2 En.layer_2 MaxPooling1D (None, 960, 1, 32)   - 0

3 En.layer_3 Conv1D (None, 800, 1, 32)   Relu 164896      

4 En.layer_4 MaxPooling1D (None, 160, 1, 32) - 0

5 En.layer_5 Conv1D (None, 80, 1, 32)    Relu 82976       

6 En.layer_6 Conv1D (None, 40, 1, 32) Relu 42016       

7 En.layer_7 Conv1D (None, 20, 1, 32) Relu 21536       

8 En.layer_8 Conv1D (None, 10, 1, 32)    Relu 11296       

9 En.layer_9_encoder MaxPooling1D (None, 2, 1, 32) - 0

10 Dec.layer_0 UpSampling1D (None, 10, 1, 32)    - 0

11 Dec.layer_1 Conv1DTranspose (None, 20, 1, 32) Relu 11296       

12 Dec.layer_2 Conv1DTranspose (None, 40, 1, 32) Relu 21536       

13 Dec.layer_3 Conv1DTranspose (None, 80, 1, 32) Relu 42016       

14 Dec.layer_4 Conv1DTranspose (None, 160, 1, 32) Relu 82976       

15 Dec.layer_5 UpSampling1D (None, 800, 1, 32) - 0       

16 Dec.layer_6 Conv1DTranspose (None, 960, 1, 32) Relu 164896             

17 Dec.layer_7 UpSampling1D (None, 4800, 1, 32) - 0

18 Dec.layer_8_decoder Conv2DTranspose (None, 5120, 2, 1) Relu 20545

19 Cl.layer_0 Flatten (None, 64) - 0

20 Cl.layer_1 Dense (None, 320) Sigmoid 20800       

21 Cl.layer_2_classifier Dense (None, 2) Sigmoid 642

Total parameters: 708,003

Trainable parameters: 708,003

identify these layers, using a Sigmoid as an activation
function for binary (or binomial) discrimination.

4.4 Dataset processing

4.4.1 Training and validation of model using acquired
datasets

After defining the model, it is trained using the training part
of the dataset. The chosen optimizer function for training the
model is the adaptive learning rate optimization algorithm
Adam [29, 30] with a learning rate value lr = 0.0001.
Meanwhile, the number of epochs for training are selected
to be 100 with early stopping.

Data points allocation for training, validation and testing
There are two datasets: the RAW and DDWT datasets.

Then, different scenarios for training, validation, and
testing, based on Section 3.6.1, are provided in Table 2.
Based on this assumption, and with respect to Table 2, in
each scenario one device is considered the authenticated
device and is labeled as +1, while the others are
rogue devices (labeled as −1). Besides, as mentioned in
Section 3.6.1, at least one of these spoofing devices must
be used in training. For such purpose, 3 devices are used as
rogue devices for training (total of 4 devices). On the other
hand, since there should be new device(s) in validation, one

new device is added at validation phase for each scenario
(5 devices for validation). Finally, all used devices in the
training and validation phases along with 3 new devices
(added up to 8 devices) are used for testing. As shown,
the whole set of testing devices in each scenario is divided
into 3 different groups: group A, group B, and group C.
Group A consists of devices which have been seen by the
model during the training phase (although a new set of data
points from these devices will be used in the testing phase).
Group B includes devices which have never been seen by
the model before the testing phase, but for which at least
a device from the same family of devices (devices from the
same manufacturer, such as devices RZ1 and RZ2) are used
in the training phase. Finally, in group C are devices that
neither them, nor their family members have been seen by
the model during the training phase.

After allocating the devices for training, validation, and
testing, referring to Section 3.6.1, the assigned percentages
of the data points from the dataset for each stage are 60%,
10%, and 30%, respectively. The number of allocated data
points from each device for each stage is indicated in the
last row of Table 2. The total number of data points for each
device in the dataset is higher than 11,000 data points.

Decoding and classification convergence During the train-
ing of the model, a decoder loss function, such as the MSE,
is measured to ensure that the reconstructed data points at
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Table 2 Different scenarios for label allocation

the decoder output is as close as possible to the input data
points. Also, to verify the efficiency of the trained autoen-
coder at each iteration, a validation dataset is fed to the
classifier to test the accuracy of model.

4.5 Evaluating (testing) the classificationmethod

After the training and validation, the trained classification
model is tested against new devices previously unseen by
the classifier. As stated in Section 4.4.1, 30% of data points
in dataset are allocated to testing. The resulting percentage
values of correct and false classification of data points for
each device are discussed in terms of confusion matrices and
receiver operating characteristic (ROC) plots.

4.5.1 Confusionmatrix results

The confusion matrices for each of the 8 scenarios of Table 2
for both RAW and DDWT datasets are computed, and the
ranges of classification rates for groups A, B, and C of
Table 2 are reported in Table 3.

The ranges reported in this table correspond to the lowest
and highest rates of classification for groups A, B, and C of
RAW or DDWT datasets, in each scenario.

For example, in the first scenario of RAW dataset (for
model trained based on positive device RZ1), the range
of correct classification rate for group A is [0.99, 1.0].
This means that, using RAW dataset, looking at the
classification rates for testing devices used in training,
the minimum and maximum classification rates are 0.99
and 1.00, respectively. However, for group B, the unseen

devices for testing which at least have one family member
in training, gives the minimum and maximum classification
rates of 0.37 and 0.100. Finally, the group C, with device
AR1 as an unseen device which does not have any family
member in training or validation, gives a classification rate
of 1.00.

The minimum correct classification rate for group A
devices in both of RAW and DDWT datasets are close, with
maximum difference of 7%.

There is a degradation in results of groups B and C
compared with group A. The results for group B show that
for 5 scenarios of RAW dataset (RZ2, RZ3, RZ4, T I1, and
AR1) and 5 scenarios of DDWT dataset (RZ3, RZ4, RZ5,
T I1, and AR1), the range of correct classification rate starts
from a value higher than 0.6 and reaches to 1.0, and the
worst cases for both RAW and DDWT datasets belong to
the T I2 scenario with the minimum classification rate equal
to 0.01 and 0.00, respectively. Also, the results for group C
illustrate that for all models trained using RAW dataset, and
all scenarios except for the RZ2 device for DDWT dataset,
the range of correct classification rate is higher than 0.7. The
worst case for RAW dataset in group C is obtained from
RZ3 model, equal to 0.72, and the similar factor for the
DDWT dataset in group C is 0.39 for RZ2 scenario.

4.5.2 Receiver operating characteristics

The ROC plots are shown in Figs. 8 and 9. For each ROC
plot, the area under the curve (AUC), is given in the legend.
The devices selected as groups A, B, and C, are labeled with
A, B, and C, respectively.
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Table 3 Correct classification rate range for the RAW and DDWT datasets

A summary of the ROC plots for A, B, and C groups of
devices is given in Table 4 for both the RAW and DDWT
datasets. The correct classification rate of target (authorized
or spoofed) device, pd (detection probability), and its
corresponding misclassification rate of rogue (unauthorized
or spoofing) device, pf a (false alarm probability), in this
table are related to the worst cases using RAW and DDWT
datasets.

For instance, in the first scenario, feeding the model
trained for positive device RZ1 with the RAW dataset in
Fig. 8 (b), the range of correct classification rate (pd )
for the values of pFA in the [0, 1.0] is almost equal to
1.0, corresponding to the group A of testing devices. As
mentioned in Table 2, this group of devices is those used in
training, too. In addition, looking at the same plot, group B
gives the pd values higher than 0.9 for pFA in [0.2, 1.0] for
the same set of dataset. Finally, the group C (as a new device
which does not have any family member in the training)
presents the correct classification rate (pd ) almost equal to
1.0 for all possible values of pFA. A similar definition can
be allocated to other rows of this table in both RAW and
DDWT datasets.

As observed, although the pd for a specific range of pf a

for devices from group A in the RAW dataset is better than
DDWT dataset, the ROC plots for devices of groups B and C
show the advantage of feeding the classifier with the DDWT
dataset in specific cases. For instance, in one of these cases
(device T I2), using the DDWT dataset increases the worst
pf a range by about 25% for the same correct classification
rate pd in the group B of devices: that is from 0.65 to 1
for the RAW dataset, and from 0.4 to 1 for the DDWT
dataset. Therefore, although the comparison of confusion
matrix results shows a better classification rate using the

RAW dataset, the ROC plots of Fig. 9 results in a better
performance using the DDWT dataset for the cases where
the classifier tolerates larger false alarm range values pf a .

4.6 Classifier performance comparison

Before comparison, the following points of work strategy
adopted in this paper are summarized:

– First, device discrimination is repeated for two different
types of datasets: the RAW and the DDWT datasets.

– As indicated in Table 2, focusing on each device allows
us to consider different scenarios for device allocation
for training, validation, and testing leading to a specific
model for each device as authorized/spoofed unit.

– The devices used in the testing phase are separated into
3 groups (with respect to Sections 3.6.1 and 4.4.1): A,
B, or C.

Referring to this short summarization, 3 cases of compar-
ison are done with respect to their approach about each
of the mentioned criteria above, based on the following
definitions:

To have a better comparison of the results presented
in Figs. 8 and 9 with those reported in the literature, the

37Ann. Telecommun. (2021) 76:27–42



0
.2

0
.8

1
.0

0.0

0.2

0.8
0.9
1.0

p d

Spoofed Device: AR1

0
.0

0
.4

0
.6

0.4

0.6

Spoofing Dev. | AUC.

RZ1 | 1.0000
RZ2 | 1.0000
RZ3 | 1.0000
RZ4 | 1.0000
RZ5 | 1.0000
TI1 | 1.0000
TI2 | 1.0000A

B

A

0
.2

0
.8

1
.0

0.0

0.2

0.8
0.9
1.0

Spoofed Device: RZ1

0
.0

0
.4

0
.6

0.4

0.6

Spoofing Dev. | AUC.
AR1 | 0.9988
RZ2 | 0.9997
RZ3 | 0.9993
RZ4 | 0.9965
RZ5 | 0.9544
TI1 | 0.9997
TI2 | 0.9999A

B

A

C

0
.2

0
.8

1
.0

0.0

0.2

0.8
0.9
1.0

p d

Spoofed Device: RZ2

0
.0

0
.4

0
.6

0.4

0.6

Spoofing Dev. | AUC.

AR1 | 0.9953
RZ1 | 1.0000
RZ3 | 1.0000
RZ4 | 0.9980
RZ5 | 0.9997
TI1 | 1.0000
TI2 | 1.0000A

B

A

C

0
.2

0
.8

1
.0

0.0

0.2

0.8
0.9
1.0

Spoofed Device: RZ3

0
.0

0
.4

0
.6

0.4

0.6

Spoofing Dev. | AUC.

AR1 | 0.9430
RZ1 | 0.9999
RZ2 | 0.9997
RZ4 | 1.0000
RZ5 | 0.9992
TI1 | 0.9981
TI2 | 0.9993A

B

A

C

0
.2

0
.8

1
.0

0.0

0.2

0.8
0.9
1.0

p d

Spoofed Device: RZ4

0
.0

0
.4

0
.6

0.4

0.6

Spoofing Dev. | AUC.
AR1 | 0.9997
RZ1 | 0.9998
RZ2 | 0.9996
RZ3 | 0.9999
RZ5 | 0.9971
TI1 | 0.9998
TI2 | 0.9999A

B

A
B
A
C

Spoofing Dev. | AUC.

AR1 | 0.9441
RZ1 | 0.9995
RZ2 | 0.9991
RZ3 | 0.9947
RZ4 | 0.8815
TI1 | 0.9992
TI2 | 0.9999A

B

A
B
A
C

0
.2

0
.8

1
.0

0.0

0.2

0.8
0.9
1.0

Spoofed Device: RZ5

0
.0

0
.4

0
.6

0.4

0.6

0
.2

0
.8

1
.0

0.0

0.2

0.8
0.9
1.0

pFA

p d

Spoofed Device: TI1

0
.0

0
.4

0
.6

0.4

0.6

Spoofing Dev. | AUC.

AR1 | 1.0000
RZ1 | 1.0000
RZ2 | 1.0000
RZ3 | 1.0000
RZ4 | 1.0000
RZ5 | 1.0000
TI2 | 0.9999

B

A

C
Spoofing Dev. | AUC.

AR1 | 1.0000
RZ1 | 1.0000
RZ2 | 1.0000
RZ3 | 1.0000
RZ4 | 1.0000
RZ5 | 1.0000
TI1 | 0.3926

B

A

C

0
.2

0
.8

1
.0

0.0

0.2

0.8
0.9
1.0

pFA

Spoofed Device: TI2

0
.0

0
.4

0
.6

0.4

0.6

Fig. 8 ROC plot for all 8 scenarios of Table 2 for the RAW dataset and spoofed devices (a) AR1 (b) RZ1 (c) RZ2 (d) RZ3 (e) RZ4 (f) RZ5 (g) TI1
(h) TI2

close-up of groups A/B of RAW/DDWT datasets are
presented in Fig. 10. The main purpose for showing these
close-up plots is to have a precise comparison of AUCmin

and its related p
AUCmin
FA.9

(or AUCmax and its corresponding

p
AUCmax
FA.9

) for each of these groups of devices with reported
values in the literature.
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Fig. 9 ROC plot for all 8
scenarios of Table 2 for the
DDWT dataset and spoofed
devices (a′) AR1 (b′) RZ1 (c′)
RZ2 (d′) RZ3 (e′) RZ4 (f′) RZ5
(g′) TI1 (h′) TI2
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For instance, if the presented testing values in a work
from the literature focus on the time domain dataset of
the same devices as those used for training, then in the
comparison, AUCmin/AUCmax and its p

AUCmin
FA.9

/pAUCmax
FA.9

of
group A of all plots of RAW dataset in Fig. 8 are presented.
On the other hand, if the literature work focuses on the
new devices in testing phase, from the same time domain
dataset, Group B or C of the RAW dataset will be used for
comparison.

The same rule applies to the case where the emphasized
dataset in the literature is the transformed signal, and in such

manner, the comparison will be done with DDWT dataset.
To have a better understanding, some of these cases will be
explained in more details, by examples, in the rest of this
section.

In [17], the authors present a framework for training a
convolutional neural network for the identification ZigBee
devices in the time domain. Comparison with [17] is done
based on group A for the 8 strategies of Table 2 with the
RAW dataset. Referring to Fig. 8 for the same group of
devices, the AUCmin is 0.9947 with spoofing/rogue device
RZ3 as shown in Fig. 8 (f) (close-up view in Fig. 10 (a)).
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Table 4 ROC plot summary for the RAW and DDWT datasets

Scenario Positive Device
RAW Dataset DDWT Dataset

1

2

3

4

5

6

7

8 - - - -

Moreover, the p
AUCmin
FA.9

is equal to 0.013. The AUCmax for
12 cases shown in Fig. 8 (a, c, g, h) reach the maximum
value of 1.0000 and the related p

AUCmax
FA.9

= 0.000. These
results are comparable to those reported by [17], that is,
AUCmin = 0.9653 and AUCmax = 0.9971.

In [31], the dataset consists of time domain information
(RAW dataset) of the signal characteristics of ZigBee
devices, a(t),ϕ(t), and f (t) and their statistical features:
σ 2, γ , and κ . The devices used for testing are different
from those used for training, but belong to the same
family. Therefore, the results reported in [31] are compared
with those obtained with group B for all 8 strategies
with the RAW dataset (Table 2). Using these devices,
the AUCmin, corresponding to device T I1 in Fig. 8 (h)
is 0.3926 (close-up view in Fig. 10 (b)). As shown,
pFA.9 = 0.832.

TheAUCmax and its related p
AUCmax
FA.9

among the different
devices in Fig. 8 (a, c, d, g, h) are equal to 1.0000,
and 0.000, respectively. Again, comparable results are
reported in [31]: pAUCmin

FA.9
and p

AUCmax
FA.9

are 0.540 and 0.000,
respectively.

In [4], Multiple Discriminant Analysis (MDA) is
employed to train and classify ZigBee devices from their
RF-DNA (Radio Frequency Distinct Native Attributes). The
used dataset consists of the statistical features (σ 2, γ , and
κ of physical signal characteristics a(t), ϕ(t), and f (t) and
2-D features from wavelet and Gabor transforms of the
recorded signals. The devices used for the testing phase
are either the same or family members of those involved
in training. We compare the performance of our proposed
discrimination method with those obtained in [4] for two
cases.

Fig. 10 Close-up view of the
ROC plots around the 90% of
pd for (a) group A of RAW
dataset related to RZ5 model (b)
group B of RAW dataset related
to T I2 model (c) group A of
DDWT dataset corresponding to
RZ2 model (d) group B of
DDWT dataset corresponding to
T I2 model
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In the first case, where the same devices are used
for training and testing, the group A of all 8 scenarios
(strategies) of the DDWT dataset described in Table 2 is
used. As shown in the ROC plots for this group of devices
in Fig. 9, the AUCmin occurs with device T I2 (Fig. 9 (c′)).
AUCmin and its related p

AUCmin
FA.9

(see Fig. 10 (c)), equal
to 0.9901 and 0.003, respectively. The AUCmax and its
related p

AUCmax
FA.9

in Fig. 9 (a′, g′, h′) are equal to 1.000

and 0.000, respectively. In [4], the probabilities p
AUCmin
FA.9

≈
0.038 and p

AUCmax
FA.9

≈ 0.005 for a similar group of
devices.

For the second case, the comparison is for group B with
the 8 scenarios with the DDWT dataset in Table 2. The ROC
plots for the same group of devices in Fig. 9 (h′) indicate a
AUCmin = 0.8115 (see Fig. 10 (d)) and the corresponding
p

AUCmin
FA.9

= 0.847. AUCmax = 1.0000 and p
AUCmax
FA.9

=
0.000 in Fig. 9 (a′, g′, h′). In [4], p

AUCmin
FA.9

≈ 0.850 and

p
AUCmax
FA.9

≈ 0.030 for a similar group of devices.

5 Conclusion

In this paper, a rogue device discrimination method in
a vulnerable network channel at the physical layer is
presented. The main strategy relies on discrimination of
target/authorized/spoofed devices from rogue (unauthorized
or spoofing) ones, using RF-DNA features. The separation
of devices for training, validation, and testing is done by
allocating specific devices for verification and/or testing
which have never been seen by the model during training.
The classifier structure consists of an autoencoder for the
feature extraction process. Feature extraction is investigated
for (time domain) RAW and (time-scale domain) DDWT
datasets of the received RF signals. The classification
rate for testing devices has shown an acceptable accuracy
for both seen and new (unseen) devices. The suggested
rogue device discrimination method compares favorably
with recent results reported in the literature. The results are
promising, since 7 out of 8 deep models for the devices
in the dataset demonstrated area under the curve for all
spoofing devices higher than 0.8815 for RAW dataset,
and 0.8337 for DDWT dataset. Also, the related false
alarm probabilities (pf a) for a 90% detection probability
(pd ) corresponding to the spoofing devices in all of
these 7 cases are lower than 40% for both cases of
datasets.
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Mathieu Lévesque, Guillaume Godbout and Samuel Brin-Marquis for
their help with data acquisition setup development as well as Sébastien
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