Skip to main content

Advertisement

Log in

Joint mobile vehicle–UAV scheme for secure data collection in a smart city

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

A vehicular delay-tolerant network (VDTN) allows mobile vehicles (MVs) to collect data from widely deployed delay-tolerant sensors in a smart city through opportunistic routing, which has proven to be an efficient and low-cost data collection method. However, malicious MVs may report false data to obtain rewards, which will compromise applications. In this paper, the Active Trust Verification Data Collection (ATVDC) scheme is proposed for efficient, cheap, and secure data collection. In this scheme, an unmanned aerial vehicle (UAV) is adopted to collect baseline data from sensors to evaluate the trust of MVs, and a high-trust MV priority recruitment (HTMPR) strategy is proposed to recruit credible MVs at a low cost. In addition, a genetic-algorithm-based trajectory planning (GATP) algorithm is proposed to allow the UAV to collect more baseline data at the minimum flight cost. After sufficient experiments, the strategy proposed in this paper is seen to greatly improve performance in terms of the error-free ratio EF, the symbol error ratio ES, and the data coverage ratio ϑ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hafeez KA, Zhao L, Ma B, Mark JW (2013) Performance analysis and enhancement of the DSRC for VANET's safety application. IEEE Trans Veh Technol 62(7):3069–3083

    Article  Google Scholar 

  2. Hu L, Liu A, Xie M, Wang T (2019) UAVs joint vehicles as data mules for fast codes dissemination for edge networking in smart city. Peer-to-Peer Netw Appl 12(6):1550–1574

    Article  Google Scholar 

  3. Negi D, Ray S, Lu R (2019) Pystin: enabling secure LBS in smart cities with privacy-preserving top-k spatial-textual query. IEEE Internet Things J 6(5):7788–7799

    Article  Google Scholar 

  4. Zhao Y, Wang T, Zhang S, Wang Y. (2020). Towards minimum code dissemination delay through UAV joint vehicles for smart city," IET Communications. DOI: https://doi.org/10.1049/iet-com.2019.1205.

  5. Sultana A, Zhao L, Fernando X (2017) Efficient resource allocation in device-to-device communication using cognitive radio technology. IEEE Trans Veh Technol 66(11):10024–10034

    Article  Google Scholar 

  6. Zhang N, Yang P, Ren J, Chen D, Yu L, Shen X (2018) Synergy of big data and 5G wireless networks: opportunities, approaches, and challenges. IEEE Wirel Commun 25(1):12–18

    Article  Google Scholar 

  7. Li X, Ma J, Wang W, Xiong Y, Zhang J (2013) A novel smart card and dynamic ID based remote user authentication scheme for multi-server environment. Math Comput Model 58(1-2):85–95

    Article  Google Scholar 

  8. Wang X, Liu Z, Gao T, Zheng X, Dang Z, Shen X. (2019). A near-optimal protocol for the grouping problem in RFID systems. IEEE Trans Mob Comput, DOI:https://doi.org/10.1109/TMC.2019.2962125.

  9. Rebai M, Khoukhi L, Snoussi H, Hnaien F. (2012, June). Optimal placement in hybrid VANETs-sensors networks. In 2012 Wireless Advanced (WiAd). 54-57, doi: https://doi.org/10.1109/WiAd.2012.6296567.

  10. Liu X, Lin P, Liu T, Wang T, Liu A, Xu W. (2020). Objective-variable tour planning for mobile data collection in partitioned sensor networks. IEEE Trans Mob Comput, DOI https://doi.org/10.1109/TMC.2020.3003004

  11. Li X, Xiong Y, Ma J, Wang W (2012) An efficient and security dynamic identity based authentication protocol for multi-server architecture using smart cards. J Netw Comput Appl 35(2):763–769

    Article  Google Scholar 

  12. Liu Q, Hou P, Wang G, Peng T, Zhang S (2019) Intelligent route planning on large road networks with efficiency and privacy. J Parallel Distrib Comput 133:93–106

    Article  Google Scholar 

  13. Li H, Yang Y, Luan TH, Liang X, Zhou L, Shen XS (2015) Enabling fine-grained multi-keyword search supporting classified sub-dictionaries over encrypted cloud data. IEEE Trans Dependable Secure Comput 13(3):312–325

    Article  Google Scholar 

  14. Li X, Niu J, Khan MK, Liao J (2013) An enhanced smart card based remote user password authentication scheme. J Netw Comput Appl 36(5):1365–1371

    Article  Google Scholar 

  15. Liu Q, Tian Y, Wu J, Peng T, Wang G (2019) Enabling verifiable and dynamic ranked search over outsourced data. Trans Serv Comput. https://doi.org/10.1109/TSC.2019.2922177

  16. Li T, Liu W, Wang T, Zhao M, Li X, Ma M (2020) Trust data collections via vehicles joint with unmanned aerial vehicles in the smart Internet of Things. Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.3956

  17. Huang M, Zhang K, Zeng Z, Wang T, Liu Y (2020) An AUV-assisted data gathering scheme based on clustering and matrix completion for smart ocean. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2020.2988035

  18. Xiong H, Zhang H, Sun J (2018) Attribute-based privacy-preserving data sharing for dynamic groups in cloud computing. IEEE Syst J 13:2739–2750. https://doi.org/10.1109/JSYST.2018.2865221

    Article  Google Scholar 

  19. Liang W, Fan Y, Li C, Zhang D, Gaudiot JL (2020) Secure data storage and recovery in industrial blockchain network environments. IEEE Trans Ind Inform:1. https://doi.org/10.1109/TII.2020.2966069

  20. Somasundara AA, Kansal A, Jea DD, Estrin D, Srivastava MB (2006) Controllably mobile infrastructure for low energy embedded networks. IEEE Trans Mob Comput 5(8):958–973

    Article  Google Scholar 

  21. Kuang Z, Li G, Zhang L, Zhou H, Li C, Liu A. (2020). Energy efficient mode selection, base station selection and resource allocation algorithm in D2D heterogeneous networks, Peer-To-Peer Networking and Applications, DoI: https://doi.org/10.1007/s12083-020-00915-4.

  22. Wang T, Liang Y, Yang Y, Xu G, Peng H, Liu A, Jia W (2020) An intelligent edge-computing-based method to counter coupling problems in cyber-physical systems. IEEE Netw 34(3):16–22

    Article  Google Scholar 

  23. Soares VNGJ, Farahmand F, Rodrigues JJPC. (2009). A layered architecture for vehicular delay-tolerant networks. 2009 IEEE Symposium on Computers and Communications, 2009: 122-127.

  24. Bonola M, Bracciale L, Loreti P, Amici R, Rabuffi A, Bianchi G (2016) Opportunistic communication in smart city: experimental insight with small-scale taxi fleets as data carriers. Ad Hoc Netw 43:43–55

    Article  Google Scholar 

  25. Giannini C, Shaaban AA, Buratti C, et al. (2016). Delay tolerant networking for smart city through drones. 2016 International Symposium on Wireless Communication Systems (ISWCS), 2016: 603-607.

  26. Liang W, Li K C, Long J, Kui X., Zomaya A. Y. (2019). An industrial network intrusion detection algorithm based on multi-characteristic data clustering optimization model. IEEE Trans Ind Inf https://doi.org/10.1109/TII.2019.2946791, 16, 2063, 2071.

  27. Liang W, Huang W, Long J, Zhang K, Li KC, Zhang D (2020) Deep reinforcement learning for resource protection and real-time detection in IoT environment. IEEE Internet Things J 7:6392–6401. https://doi.org/10.1109/JIOT.2020.2974281

    Article  Google Scholar 

  28. Lu R, Lin X, Zhu H, Shen X, Preiss B (2010) Pi: A practical incentive protocol for delay tolerant networks. IEEE Trans Wirel Commun 9(4):1483–1493

    Article  Google Scholar 

  29. Oleshchuk V (2017) A trust-based security enforcement in disruption-tolerant networks. 2017 9th. IEEE Int Conf Intell Data Acquis Adv Comput Syst 2017(1):514–517

    Google Scholar 

  30. Asokan N, Kostiainen K, Ginzboorg P, Ott J, Luo C. (2007). Applicability of identity-based cryptography for disruption-tolerant networking. Proceedings of the 1st international MobiSys workshop on Mobile opportunistic networking, 2007: 52-56.

  31. Gupta L, Jain R, Vaszkun G (2015) Survey of important issues in UAV communication networks. IEEE Commun Surv Tutorials 18(2):1123–1152

    Article  Google Scholar 

  32. Mahjri I, Dhraief A, Belghith A, AlMogren AS (2017) Slide: a straight line conflict detection and alerting algorithm for multiple unmanned aerial vehicles. IEEE Trans Mob Comput 17(5):1190–1203

    Article  Google Scholar 

  33. Liu Y, Zeng Z, Liu X, Zhu X, Bhuiyan M (2019) A novel load balancing and low response delay framework for edge-cloud network based on SDN. IEEE Internet Things J 7:5922–5933. https://doi.org/10.1109/JIOT.2019.2951857

    Article  Google Scholar 

  34. Huang M, Liu A, Wang A, Liu A, Zhang S (2019) A Cloud-MEC collaborative task offloading scheme with service orchestration. IEEE Internet Things J 7:5792–5805. https://doi.org/10.1109/JIOT.2019.2952767

    Article  Google Scholar 

  35. Jiang B, Huang G, Wang T, Gui J, Zhu X. (2020). Trust based energy efficient data collection with unmanned aerial vehicle in edge network. Trans Emerging Telecommun Technologies. https://doi.org/10.1002/ett.3942.

  36. Deng X, Yang LT, Yi L, Wang M, Zhu Z (2018) Detecting confident information coverage hole in industrial Internet of Things: an energy-efficient perspective. IEEE Commun Mag 56(9):68–73

    Article  Google Scholar 

  37. Zhang Y, Xu C, Li H, Yang K, Zhou J, Lin X (2018) Healthdep: An efficient and secure deduplication scheme for cloud-assisted ehealth systems. IEEE Trans Ind Inform 14(9):4101–4112

    Article  Google Scholar 

  38. Li H, Yang Y, Dai Y, Bai J, Yu S, Xiang Y (2017) Achieving secure and efficient dynamic searchable symmetric encryption over medical cloud data. IEEE Trans Cloud Comput 8:484–494. https://doi.org/10.1109/TCC.2017.2769645

    Article  Google Scholar 

  39. Xie K, Li X, Wang X, Cao J, Xie G, Wen J, Zhang D, Qin Z (2018) On-line anomaly detection with high accuracy. IEEE/ACM Trans Networking 26(3):1222–1235

    Article  Google Scholar 

  40. Deng X, Jiang Y, Yang LT, Lin M, Yi L, Wang M (2019) Data fusion based coverage optimization in heterogeneous sensor networks: a survey. Information Fusion 52:90–105

    Article  Google Scholar 

  41. Wang T, Zhao D, Cai S, Jia W, Liu A (2020) Bidirectional prediction based underwater data collection protocol for end-edge-cloud orchestrated system. IEEE Trans Ind Inform 16(7):4791–4799

    Article  Google Scholar 

  42. Liu X, Liu A, Qiu T, Qiu B, Wang T, Yang L (2020) Restoring connectivity of damaged sensor networks for long-term survival in hostile environments. IEEE Internet Things J 7(2):1205–1215

    Article  Google Scholar 

  43. Wang T, Qiu L, Sangaiah AK, Liu A, Md B, Ma Y (2020) Edge computing based trustworthy data collection model in the Internet of Things. IEEE Internet Things J 7(5):4218–4227

    Article  Google Scholar 

  44. Xie K, Li X, Wang X, Xie G, Wen J, Cao J, Zhang D (2017) Fast tensor factorization for accurate internet anomaly detection. IEEE/ACM Trans Networking 25(6):3794–3807

    Article  Google Scholar 

  45. Zeng D, Gu L, Pan S, Cai J, Guo S (2019) Resource management at the network edge: a deep reinforcement learning approach. IEEE Netw 33(3):26–33

    Article  Google Scholar 

  46. Wang T, Cao Z, Wang S, Wang J, Qi l, Liu A, Xie M, Li X. (2020) Privacy-enhanced data collection based on deep learning for Internet of Vehicles. IEEE Trans Ind Inform 16(10):6663–6672

    Article  Google Scholar 

  47. Ren Y, Zeng Z, Wang T, Zhang S, Zhi G. (2020). A trust-based minimum cost and quality aware data collection scheme in P2P network. Peer-to-Peer Networking and Applications. https://doi.org/10.1007/s12083-020-00898-2.

  48. Xiao-wei F, Zhong L, Xiao-guang G. (2010). Path planning for UAV in radar network area. 2010 Second WRI Global Congress on Intelligent Systems. 3: 260-263.

  49. Meng B, Gao X. (2010). UAV path planning based on bidirectional sparse A* search algorithm. 2010 International Conference on Intelligent Computation Technology and Automation, 3: 1106-1109.

  50. De Paula Santos G, Marques LG, Neto MM, Cardoso A, Lamounier EA, Yamanaka K. (2013). Development of a genetic algorithm to improve a UAV route tracer applied to a man-in-the-loop flight simulator. 2013 XV Symposium on Virtual and Augmented Reality, 2013: 284-287.

  51. Li X, Zhao Y, Zhang J, Dong Y. (2016). A hybrid PSO algorithm based flight path optimization for multiple agricultural UAVs. 2016 IEEE 28th international conference on tools with artificial intelligence (ICTAI), 2016: 691-697.

  52. Chen CY, Gui WH, Wu L, Liu Z, Yan H (2019) Tracking performance limitation of MIMO NCSs with multiple communication constraints. IEEE Trans Cybern 2019:2982–2995. https://doi.org/10.1109/TCYB.2019.2912973

    Article  Google Scholar 

  53. Chen CY, Liu F, Wu L, Yan H, Gui W, Stanley HE (2020) Tracking performance limitations of networked control systems with repeated zeros and poles. IEEE Trans Autom Control 2020. https://doi.org/10.1109/TAC.2020.2999444

  54. Xiong H, Zhao Y, Peng L, Zhang H, Yeh KH (2019) Partially policy-hidden attribute-based broadcast encryption with secure delegation in edge computing. Futur Gener Comput Syst 97:453–461

    Article  Google Scholar 

  55. Teng H, Ota K, Liu A, Wang T, Zhang S (2020) Vehicles joint UAVs to acquire and analyze data for topology discovery in large-scale IoT systems. J Peer-to-Peer Netw Appl. https://doi.org/10.1007/s12083-020-00879-5

  56. Tan J, Liu W, Wang T, Zhao M, Liu A, Zhang S (2020) A high-accurate content popularity prediction computational modelling for mobile edge computing by using matrix completion technology. Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.3871

  57. Wang T, Wang P, Cai S, Ma Y, Liu A, Xie M (2020) A unified trustworthy environment based on edge computing in industrial IoT. IEEE Trans Ind Inform 16(9):6083–6091

    Article  Google Scholar 

  58. Morra L, Lamberti F, Pratticó FG, La Rosa S, Montuschi P (2019) Building trust in autonomous vehicles: role of virtual reality driving simulators in HMI design. IEEE Trans Veh Technol 68(10):9438–9450

    Article  Google Scholar 

  59. Tang Z, Liu A, Li Z, Choi YJ, Sekiya H, Li J (2016) A trust-based model for security cooperating in vehicular cloud computing. Mob Inf Syst 2016:9083608

    Google Scholar 

  60. Liu Y, Dong M, Ota K, Liu A (2016) ActiveTrust: Secure and trustable routing in wireless sensor networks. IEEE Trans Inform Forensics Sec 11(9):2013–2027

    Article  Google Scholar 

  61. Cho E, Myers SA, Leskovec J. (2011). Friendship and mobility: user movement in location-based social networks. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. 2011: 1082-1090.

  62. Hanna SR, Anderson AH, Elley YK, et al. (2006). Trust ratings in group credentials: U.S. Patent 7,085,925. 2006-8-1.

  63. Kim YA, Le MT, Lauw HW, Lim EP, Liu H, Srivastava J. (2008). Building a web of trust without explicit trust ratings. In 2008 IEEE 24th International Conference on Data Engineering Workshop, 2008: 531-536.

  64. Wang Y, Li L (2010) Two-dimensional trust rating aggregations in service-oriented applications. IEEE Trans Serv Comput 4(4):257–271

    Article  MathSciNet  Google Scholar 

  65. Li X, Niu JW, Ma J, Wang WD, Liu CL (2011) Cryptanalysis and improvement of a biometrics-based remote user authentication scheme using smart card. J Netw Comput Appl 34(1):73–79

    Article  Google Scholar 

  66. Wang T, Luo H, Zeng X, Yu Z, Liu A, Sangaiah A (2020) Mobility based trust evaluation for heterogeneous electric vehicles network in smart cities. IEEE Trans Intell Trans Syst:1–10. https://doi.org/10.1109/TITS.2020.2997377

  67. Seth A, Keshav S. (2005). Practical security for disconnected nodes. 1st IEEE ICNP Workshop on Secure Network Protocols, 2005: 31-36.

  68. Yuan J, Zheng Y, Xie X, Sun G. (2011). Driving with knowledge from the physical world. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011: 316-324.

  69. Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G, Huang Y. (2010). T-drive: driving directions based on taxi trajectories. Proceedings of the 18th SIGSPATIAL International conference on advances in geographic information systems, 2010: 99-108.

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (61772554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Gui, J., Wang, T. et al. Joint mobile vehicle–UAV scheme for secure data collection in a smart city. Ann. Telecommun. 76, 559–580 (2021). https://doi.org/10.1007/s12243-020-00798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-020-00798-9

Keywords

Navigation