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Abstract In a fog computing (FC) architecture, cloud services migrate towards the network
edge and operate via edge devices such as access points (AP), routers, and switches. These
devices become part of a virtualization infrastructure and are referred to as “fog nodes”.
Recently, software-defined networking (SDN) has been used in FC to improve its control
and manageability. The current SDN-based FC literature has overlooked two issues: (a) fog
nodes’ deployment at optimal locations and (b) SDN best path computation for data flows
based on constraints (i.e., end-to-end delay and link utilization). To solve these optimization
problems, this paper suggests a novel approach, called scalable and optimal near-sighted
location selection for fog node deployment and routing in SDN-based wireless networks
for IoT systems (SOSW). First, the SOSW model uses singular-value decomposition (SVD)
and QR factorization with column pivoting linear algebra methods on the traffic matrix of
the network to compute the optimal locations for fog nodes, and second, it introduces a
new heuristic-based traffic engineering algorithm, called the constraint-based shortest path
algorithm (CSPA), which uses ant colony optimization (ACO) to optimize the path compu-
tation process for task offloading. The results show that our proposed approach significantly
reduces average latency and energy consumption in comparison with existing approaches.
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1 Introduction

The fog computing (FC) architecture migrates services (i.e., computing, processing, and
storage) from the cloud to the network edge or devices located near end users by imple-
menting these services at the routers, switches, WiFi access points (APs), smart devices,
etc. The devices that host these services are named fog nodes [15,27]. The purpose of FC is
to minimize the average end-to-end delay for time-critical applications and reduce the core
network’s bandwidth usage. FC has been used for the Internet of Things (IoT) to support
time-critical applications (i.e., smart health and smart cities) [19], which demand substan-
tial computing resources for real-time processing, leading to high energy consumption on
resource-constrained devices1. For instance, IoT devices offload tasks to fog nodes for pro-
cessing. Then, fog nodes make the resource-constrained IoT devices virtually limitless and
provide better services in terms of latency. Nevertheless, ubiquitous fog node deployment is
still unrealistic in the near future because of cost issues [27, 38]. Accordingly, in this work,
we consider a scenario in which IoT devices offload tasks to fog nodes via multihop wireless
networks.

1.1 Motivation

Fog nodes are the primary FC units and can include any network device that uses dedicated
servers, processing capabilities, and computational servers to coordinate underlying IoT de-
vices. An FC architecture usually consists of several levels of fog nodes. The processing
of a given task may be adequate for a specific layer due to its requirements, like scalabil-
ity, security, latency, and mobility. The number of layers and the position of nodes depend
on the FC architecture. R. Vilata et al. proposed an architecture in which fog nodes are
placed in the nearest base stations (BSs) for 5G applications [33]. Kem et al. described an
FC architecture [17], where end users provide household fog nodes and receive incentives
for serving nodes. More recent work [10, 12, 16, 17, 23, 24, 27, 33, 38] has studied the influ-
ence of fog nodes connected to other network devices in an FC architecture. However, the
abovementioned authors have not addressed the impact of fog node deployment on different
physical locations. Existing works randomly deploy the fog nodes and result in low network
performance; importantly, these works do not consider fog node deployment costs.

To address this problem, we intend to deploy the fog nodes in optimal physical loca-
tions, minimizing the average end-to-end delay from IoT devices to fog nodes [?]. The
singular-value decomposition (SVD) and QR factorization with column pivoting linear al-
gebra methods [13] are used to select the optimal locations of the fog nodes because the
traffic matrix is a sparse matrix [9]. Additionally, the placement of fog nodes in optimal lo-
cations in a network minimizes both the energy consumption and average end-to-end delay
of IoT devices during task offloading.

In the FC-IoT architecture, the existing literature has mainly focused on the energy
consumption and computational power of IoT devices during task offloading. However, it
has overlooked network dynamics and their related performance, such as delay and link
utilization, when computing the path from IoT devices to fog nodes. For reliable packet
delivery, the IoT uses application layer protocols (i.e., CoAP [26] and MQTT-SN [29]),
which results in congestion and extra energy consumption. Therefore, there is a need to
consider network performance parameters when addressing task offloading.

As a potential solution, the software-defined networking (SDN) architecture has been
proposed for FC-IoT applications [1, 28]. With the help of a controller, SDN obtains an

1 This is true in terms of storage, energy, and computing
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abstract global view of the network, achieves centralized control of the dynamic network
conditions, and supports rule-based flow forwarding. Furthermore, the programmable SDN
architecture also supports network management simplification, network flexibility, and the
management and orchestration of the FC-IoT architecture [14,30], which, in turn, makes the
SDN architecture attractive for addressing the task offloading issues in the dynamic wireless
FC-IoT architecture [1, 24]. The SDN controller can use network management abstraction
and obtain information about heterogeneous wireless devices [6, 36], as well as employ
global view information to compute the optimal path for task offloading.

1.2 Contributions

In a successful wireless FC-IoT architecture, the number of fog nodes should be less than the
number of APs to limit operating expenses (OPEXs) and capital expenditures (CAPEXs) [24].
Unlike existing work, we consider a multihop FC-IoT paradigm, where the IoT device tasks
traverse through multiple intermediate AP nodes to reach the fog node for processing.

This paper proposes a scalable and optimal nearsighted location selection approach for
fog node deployment and routing in SDN-based wireless networks for IoT systems (SOSW).
The SOSW model solves two problems: fog node deployment and the computation of the
best path between the device and fog nodes, based on existing network constraints.

This contributions of this paper are as follows:

– The deployment of fog nodes in wireless FC-IoT architecture in optimal locations is
an optimization problem. Therefore, the SOSW model proposes a traffic-monitoring
scheme using SVD and QR factorization with column-pivoting techniques of linear al-
gebra. This scheme accurately identifies important APs based on traffic load for fog
node deployment. Following this identification, we connect the minimal number of fog
nodes with the most important APs. The intended solution aims to reduce the end-to-end
delay and energy consumption in SDN-based FC-IoT.

– The SOSW model introduces a new heuristic algorithm called the constraint-based
shortest path algorithm (CSPA) for task offloading in SDN-based FC-IoT. As the
CSPA problem is NP-complete, we use an ant colony optimization (ACO) algorithm
as a solution. The CSPA considers dynamic network conditions like end-to-end delay,
link utilization, and energy consumption.

The remainder of this paper is structured as follows. The related work is reviewed in
Section 2. Section 3 presents the proposed solution related to deployment and routing in
the SDN-based FC-IoT architecture. A performance evaluation is included in Section 4, and
conclusions are drawn in Section 5.

2 Related Works

The cost-effective deployment of fog nodes in SDN-based wireless networks is crucial for
satisfying delay-sensitive tasks in an FC architecture for IoT systems. Many approaches in
the literature have highlighted the concerns regarding fog node deployment for real-time ap-
plications in FC. These approaches offer relevant solutions for the deployment of fog nodes,
and some of them will be briefly described and discussed below. Fog node location issues
in SDN-based wireless networks for FC-IoT have been mostly studied for static fog nodes.
However, little attention has been paid to optimal physical location selection solutions for
these fog nodes. The primary goal of these solutions is to improve the method of providing
services to fog nodes with reduced cost in SDN-based wireless networks for FC-IoT.
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In general, fog nodes have heterogeneous space and time characteristics. The deploy-
ment of fog nodes at optimal locations is a prior provision and is also expected to provide
high-performance services to IoT devices. For instance, Wang et al. proposed a fog node
deployment solution based on space-time characteristics, called the TSBP [34]. The main
objectives of this proposed TSBP model are balancing the load among fog nodes and min-
imizing the response time by introducing an innovative discrete differential evolution algo-
rithm. The fog smart gateway (FSG) [22] model was proposed to improve the quality of
services (QoS), i.e., to minimize service latency. In the FSG approach, the above authors
consider the gateway nodes to be fog nodes; the gateway nodes collect the data from the end
devices but do not have decision-making and processing capabilities. The proposed model
makes the gateway node smarter, as it distributes the tasks of IoT devices among various vir-
tual machines. Through VM processing and traffic aggregation, the FSG model decreases
the number of service delays. A three-layer architecture (i.e., thing-fog-cloud) [7] is pro-
posed to minimize the transmission delay and average data rate. The three-layer architecture
shows that the performance of a network can be optimized if it increases the number of fog
nodes in the fog layer.

Le et al. proposed a solution to deploy fog nodes in the local area network (LAN) to opti-
mize the objective parameters, i.e., the response time of services and network data [18]. The
authors of [16, 20, 21, 35] deployed cloudlets at optimal locations to reduce the access la-
tency between edge users and cloudlets in large-scale wireless metropolitan area networks.
The authors of [21] used particle swarm optimization and heuristic algorithms to address
fog node deployment issues. To minimize the number cloudlets, the authors of [16] pro-
posed two algorithms: cloudlet placement based on density and cloudlet placement based
on traffic load. Although these two algorithms increase the network performance in terms of
load balancing and network latency, the proposed model does not achieve the optimal solu-
tion. Sudip et al. proposed a heuristic algorithm [24] to control the dynamic task offloading
problem in SDN Fog-IoT. The proposed model computes the task locally or on fog nodes
to minimize the energy consumption of IoT devices. Additionally, the proposed model also
computes the optimal fog node and path for IoT task offloading. However, the above au-
thors deploy fog nodes randomly in the network. Moreover, the authors in [2, 4] proposed a
solution to optimize the tradeoff between energy consumption and network usage in mobile-
to-fog/cloud-code offloading. Furthermore, they also proposed a self-aware decision-making
mechanism to minimize the network latency from a mobile device perspective [3, 5]. How-
ever, their code-offloading frameworks did not take into account the QoS parameter, which
is to find the best fog node for different types of traffic.

The authors of [27] aimed to address the issue of locating fog nodes to reduce latency
and cost. The proposed solution was based on a mixed-integer linear programming formula-
tion concerning multiple workload criteria. These workload criteria were divided into strict
and flexible demands. The performance evaluation of the proposed solution showed im-
proved performance in terms of providing services to fog nodes at a reduced cost. Online
seRvice caching for mobile edge cOmputing (OREO) [31] was proposed to jointly optimize
the caching and task offloading problem in a dense cellular network. Yu et al. used a fully
polynomial-time approximation (FPA) [38] scheme to study joint data routing and place-
ment with both delay and bandwidth guarantees. However, the proposal did not consider the
optimal location for fog node deployment. Another related work also addressed the fog node
location problem [10] while considering human mobility and location problems. In [16], de-
mand variables over time were employed to obtain end-user movement. Various traffic load
types were also considered—an issue related to the communication between cloud and fog
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nodes. However, these approaches considered network dynamics such as traffic, delay and
link utilization in SDN-based wireless networks for IoT systems.
3 SOSW: Scalable and Optimal Nearsighted Location Selection for Fog Node
Deployment and Routing in SDN-based Wireless Networks for IoT Systems

This section describes the proposed SOSW approach in the following two steps:
1) the deployment of fog nodes at an optimal location and
2) the computation of the optimal path-based new heuristic constraint-based shortest

path algorithm (CSPA).
Assume that we have a wireless network represented by an undirected graph G (V ∪ F,

E), as shown in Fig. 1. In graph G, V describes the set of APs (i.e., V = {v1,v2, ...,vn}), F
=
{

fi, f j... fk
}

shows the set of fog nodes, and E represents the set of links between nodes
(i.e., ei(vi,v j)), such that vi, v j ∈ V , and vi 6= v j.

3.1 Fog Node Deployment

As the traffic matrix of the network is sparse [9], computing the important APs for fog node
deployment can utilize SVD and QR factorization with the column-pivoting method [13].

We assume that the wireless network runs for a long time (i.e., days or weeks) and has
a network traffic log. From this traffic log, a matrix, κ , is used to represent the number of
flows passing through each AP at different time intervals, i.e., κ ∈Rt×s. t indicates the total
number of rows of κ in sequential timer interval ti, while s is the total number of columns of
κ (i.e., the total number of APs). More precisely, in matrix κ , row ri denotes a snapshot of
the total number of flows transitory through all V at ti, and column c j represents the number
of flows transitory through an AP (v j ∈ V ) at ti. Additionally, it is assumed that t � s.
Subsequently, following the obtaining of traffic matrix κ , we compute important APs.

To compute important APs in the network and check their spatial correlation property,
first, we perform the SVD technique on traffic matrix κ . The SVD decomposes traffic matrix
κ into three matrices, as shown in Eq. (1).

κt×s = Lt×t {t×s Rs×s, (1)

where Eq. (1) shows that L ∈Rt×t and L T L = I. R ∈Rs×s and RT R = I, and { is a t×s
diagonal matrix. The left singular matrix is denoted as L , and the columns of L are known
as left singular vectors, represented by {`i | i ∈ {1,2,3, ..., t}}, and are orthogonal to each
other. The right singular matrix is represented by R, and the columns of R are known as
right singular vectors, represented by {κi | i ∈ {1,2,3, ...,s}}. These values are also orthog-
onal to each other. { is a t× s diagonal matrix, the diagonal values (a.k.a. singular values)
of which in descending order are indicated by ϑi ≥ ϑi+1 ≥ 0 (i.e., {ϑi | i ∈ {1,2,3, ..., t}}).
These singular values in traffic matrix κ represent the importance level/value of an AP. The
most important property of SVD is the relation shown in Eq. (2):

κt×s = ϑ1`1κT
1 +ϑ2`2κT

2 + ...+ϑs`sκT
s . (2)

In Eq. (2), note that every singular value may be either zero or positive (i.e., ϑi ≥ 0).
Assume that among all s singular values, there is a range of p positive singular values. p is
referred to as the rank of matrix κ because Eq. (2) shows that each column of matrix κ is
equal to a linear combination of p left singular vectors {`i | i ∈ {1,2,3, ...,p}}, and every
one of these left singular vectors `i has a positive singular value, called its coefficient. Every
column in matrix κ is a linear combination of the p primary vectors, which means that there
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Fig. 1: SDN-based Wireless FC-IoT Network.

are p left singular vectors {`i | ϑi > 0; i ∈ {1,2,3, ...,p}} from a set of primary orthogonal
vectors spanning the column space of matrix κ . More precisely, p primary vectors can be
recovered using exactly the p column of matrix κ . In this paper, we denote these p columns
in matrix κ as its primary columns. Consequently, by considering matrix κ ∈ Rt×s of rank
p, we can compute its p primary columns, and the p primary columns indicate the p primary
APs in our network. Therefore, the traffic information of every AP in the network can be
jointly represented by a linear combination of the traffic information of these p primary
APs. Additionally, we may completely and accurately represent the matrix κ ∈ Rt×s using
primary q columns. The traffic information passed through p APs may be useful for correctly
and entirely recovering the global traffic matrix by collecting the traffic information passing
through the rank p of traffic matrix κ ∈ Rt×s.

However, traffic matrix κ ∈ Rt×s often has a lower rank of q. This lower rank q is
referred to as a useful rank. The lower rank q can be much smaller than the rank p (i.e.,
q� p), which shows that the set of singular values is distributed sparsely. In other words,
traffic matrix κ ∈ Rt×s has more small values q and only a few large values p. For example,
Eq. (2) shows that the traffic information contained in κ is disseminated into s terms on the
right-hand side of the equation. Each term ϑi`iκT

i is the product of both the matrix, `iκT
i ,

and a coefficient, ϑi.
For instance, first, we consider q large singular values and that the remaining singular

values are small (i.e., q� p) in matrix κ , which means that the first large singular values of
q represent a significant portion of matrix κ’s information (see Eq. (2)). This theory suggests
that only the first-largest singular values of q (i.e., q primary vectors) can represent the entire
matrix κ . Considering these q primary columns only significantly decrease the computation
time compared to those recorded when p primary columns or all columns of matrix κ are
considered, it is essential to find q primary columns (i.e., q� p) of matrix κ such that they
can be used to approximately represent matrix κ . This problem is NP-complete and is a
subset selection problem in linear algebra [13].
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Unfortunately, there are no algorithms to give an optimal solution to subset selection
problems. However, our proposed method uses the estimated solution proposed in [13] to
compute a subset of q columns of matrix κ that can represent the space formed by its first
q primary vectors {`i | i ∈ {1,2,3, ...,q}}. Now, in Eq. (2), the right-hand side represents
the p primary vectors and the primary vectors `i in the first q terms. In matrix κ , the APs
associated with q basic columns are denoted as important (or target) APs. Furthermore, the
solution for finding the p basic columns in the subset selection problem is described next.

Problem-1 Consider given matrix κ ∈Rt×s and integer q. The subset selection problem
is to find matrix H , which is a permutation matrix of κ , κH = (κ1,κ2), where κ1
indicates a t× q matrix, and κ2 represents a t× (s− q) matrix. The main objective is
to maximize the information contained in κ1. Additionally, the goal is to enable all
columns to be adequately independent in matrix κ1.

To maximize the smallest singular value of κ1, we have to find the adequately indepen-
dent columns of κ1. For this purpose, we first apply SVD on κ ∈ Rt×s, as shown in Eq.
(2), then multiply H (permutation matrix) by R (the right singular matrix), and obtain Eq.
(3). In Eq. (3), R11 ∈ Rq × q. Assuming that R11 is a nonsingular value, then we have the
following lower bound on the smallest singular value ϑq(κ1) of κ1, as shown in Eq. (4):

H R =

(
R11 R12
R21 R22

)
, (3)

ϑq(κ1)≥

(
ϑq(κ1)∥∥R−1

11

∥∥
)
. (4)

In Eq. (4), ϑq(κ1) shows the lowermost (qth) singular value of matrix κ1. The maximiza-
tion of the lowermost bound value of ϑq(κ1) corresponds to the maximization of the value
of ϑq(κ1). In Eq. (4), this is equivalent to minimizing

∥∥R−1
11

∥∥. To handle this issue, we used
QR factorization with column pivoting [13] on matrix κ . The overall selection process of
important APs is described in Algorithm 1. After the computation process, we connect the
fog nodes to the important APs and obtain the required configuration.

Algorithm 1: Searching for Important APs
Input: traffic matrix κ ∈ Rt×s and an integer d
Result: κH = (κ1,κ2), where κ1 indicates t×d matrix

1 Compute the SVD of κ , where κ = L {RT

2 Use QR factorization with column pivoting to traffic matrix κ using the following equation:
κ = QRH T , where Q, R, and H are matrix, and the permutation matrix is H

3 Permute all columns of κ (i.e., by multiplying κ with H . Afterwards, the first d columns of the
matrix κ form κ1:
κH = (κ1,κ2), where κ1 indicates a t×d matrix and κ2 represents a t× (s−d) matrix.

3.2 Constraint-based Shortest Path Algorithm (CSPA)

In the FC-IoT architecture, the paramount constraints are end-to-end delay and bandwidth,
which means that any computed path between the IoT device and a fog node must meet
these constraints. The cost of the path must be less than or equal to a predefined acceptable
threshold. To ensure appropriate bandwidth and end-to-end delay for IoT applications in
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FC-IoT, the SDN controller computes the CSPA for IoT applications in this proposed work.
The notations are summarized in Table 1.

Table 1: Summary of Notations

Notation Explanation
G network graph
V set of APs, vi, ui ∈ V
E set of links, ei(vi,ui), ei ∈ E
DIoT set of IoT Device
F set of flows, fi ∈F
cei delay cost function is of a link ei
dei delay of link ei
λ delay of path λ > 0
uei utilization ratio of link ei, uei =

αei
Bei

, αei traffic value, Bei total bandwidth of ei

The computation of the CSPA follows a linear programming (LP) approach. The CSPA’s
cost function is defined to minimize the path cost function from the IoT device to the fog
node. In the proposed model, the controller computes the shortest path with the lowest cost.
The CSPA model is illustrated as follows:

min ∑
ei∈E

cei ei, ∀ei ∈ E, ei(vi,ui), vi,ui ∈V (5)

∑
ui|(vi,ui)∈E

ei(vi,ui)− ∑
ui|(vi,ui)∈E

ei(ui,vi) =


1 vi ∈ DIoT

-1 vi ∈ fi

0 otherwise

, (6)

∑
ei∈E

ei ∗ (−dei)−λ =−α, λ > 0 (7)

ei(ui,vi) = 1 or 0. ∀ei(ui,vi) ∈ E (8)

In the proposed model, the minimization delay cost function is cei of link ei, where
ei = (ui,vi) ∈ E, as shown in Eq. 5. The CSPA constraint (see Eq. 6) introduces the flow-
conservation constraints, ensuring that all tasks are served by the fog node only. Constraint
(Eq. 7) shows that the end-to-end delay of the computed path should be less than or equal
to the predefined threshold value α . The additional variable λ indicates that each path has
a delay, which is greater than 0 (i.e., λ > 0), and that it should be less than or equal to
the predefined threshold value. Consequently, the constraint in Eq. 8 converts the proposed
model into an integer linear model. ei(ui,vi) = 1 means that a link exists in the path, and
ei(ui,vi) = 0 indicates that a link is not present in the path.

Similar to other communication networks, in a fog-IoT architecture, link congestion
is a factor that dramatically affects time-critical applications in terms of end-to-end delay
and packet loss [14]. Therefore, to minimize the end-to-end delay and loss for time-critical
applications in FC-IoT, the SDN controller takes into account delay and link utilization
parameters while computing the path for task offloading. This is the reason why in the
proposed work, the CSPA also considers link utilization along with link delay. The CSPA
computes the cost of each link as follows:
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ei = δ ∗uei +(1− γ)∗dei , (9)

where u and d are the utilization ratio uei =
αei
Bei

and delay of link ei, respectively. δ and γ are
additional parameters that reflect the importance of delay or utilization. For the sake of sim-
plicity, in the proposed model, we consider utilization and delay to be of equal importance.

In this work, we consider an FC-IoT topology in which the IoT devices are multiple
hops away from the fog node. In other words, IoT devices can interact with the fog node
through AP connectivity support. In such a multihop topology, the cost function delay can
be computed as follows:

d = ∑
task

T xd +Prd +Prod + ∑
task

Qud , (10)

where T xd is the transmitting time in which the IoT device transmits the data to the asso-
ciated AP, and Prod represents the propagation delay between any fog node and the IoT
device. Processing delay (task execution time) is indicated by Prod , and Qud is the queuing
delay at the fog node.

In the proposed model, we consider the log-distance path loss model with log-normal
shadowing [31], as shown in Eq. 11. The maximum data rate between the IoT device and
associated AP is shown in Eq. 12:

path− loss[dB] = 140.7+36.7log10dkm +N(8), (11)

data− rateIoT−AP = Blog2(1+
PwT x

IoT −Path− lossIoT−AP

η2 ), (12)

where PwT x
IoT is the transmitting power of the IoT device, and η2 shows the noise power.

Unfortunately, the CSPA cannot compute the optimal path with reasonable resources in an
extensive network because it is an optimization NP-complete problem [24]. In the proposed
work, for optimization purposes, we use an ACO algorithm to solve the CSPA problem,
which is described below.

3.3 Explanation and Complexity Analysis of CSPA-based ACO Algorithm

The proposed CSPA-based ACO algorithm, detailed in Algorithm 2, starts by receiving net-
work information about the cost function of the links, IoT devices, fog nodes, and max delay
(λ ) of IoT applications. In each iteration, the algorithm finds a path between the IoT device
and a fog node using Eq. 6. The algorithm checks if each path satisfies the maximum delay
value of IoT applications, and the pheromone value is updated. Next, the SDN controller
compares the computed path with the global solution and performs the following action. If
the computed path cost is less than the global solution, then the global solution is replaced
with the computed path. Finally, the algorithm returns the minimum cost path (mcp). The
proposed algorithm guarantees that this mcp is the optimal path cost. Algorithm 2 consists
of statements, loops, and a while loop to compute the minimum cost path (mcp) from the
available paths for a given flow fi. The statements in Algorithm 2 have constant complexity
O(c), and the NetworkX function has O(n+ c) complexity when computing all the avail-
able paths for a flow fi, as shown in Step 4. Consequently, the complexity of Steps 5 and 8
is O(n2) because it involves loops. Moreover, the worst-case complexity of Algorithm 2 is
O((c)+(n+ c)+(n2)) ≈ O(n2).
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Algorithm 2: CSPA: ALGORITHM BASED ON ANT COLONY OPTIMIZATION

(ACO)
Input: G(V, E), fi ∈ F, IoT-device (s∈S), path-cost, α , λ

Output: Compute minimum cost path
// constant complexity time O(c)

1 pop← initializePheromoneValues() // O(c)
2 mcp = ∅ /*min-path-cost*/// O(c)
3 while s ∈ S do // O(n)
4 paths← Networkx.all simple paths(G,s, fi)// O(n+ c)
5 for fi ∈ F do // O(n2)
6 compute a path between IoT device (s) and Fog node ( fi)
7 end
8 for fi ∈ F do // O(n2)
9 if path satisfies Max-delay (λ ) then // O(c)

10 update pop
11 if path-cost < mcp then // O(c)
12 mcp = path-cost /*Global Solution*/
13 end
14 end
15 return mcp

4 Experimental Work and Results

4.1 Simulation Settings

To evaluate the performance of the proposed approach, we used the Mininet2 network em-
ulator and the POX3 SDN controller. In our experiments, we employed an Intel core i7 PC
with a 3.40 GHz CPU and 12 GB of RAM, running Ubuntu 16.04 OS with Linux kernel
version 4.4. Table 2 shows a summary of the remaining simulation parameters. In this work,
we have used a Barabasi-Albert [8] topology for creating the network in Mininet. The APs
and fog nodes are placed in a small area (i.e., 1,000× 1,000). We distributed the IoT devices
uniformly within the convergence area.

We have compared our proposed approach with two baseline models: (a) the random
offloading random path (RORP) model and (b) the delay-aware greedy path (DGP) [11]
model. The RORP model chooses the path randomly between the fog node and IoT device.
Additionally, in the RORP model, the fog nodes are deployed randomly. For task offloading,
the RORP model selects the closest fog node, i.e., based on the number of hop counts. For
the DGP model, the abovementioned authors suggested an efficient offloading algorithm to
minimize the delay while considering the energy constraints of end-user devices. For task
offloading, the DGP model considers the number of hops between the IoT and fog devices.
We consider a comparison between the DGP and RORP models to demonstrate the need for
intelligent fog node deployment and appropriate path selection in an SDN-based wireless
FC-IoT architecture and to assess the influence of parameters other than delay, i.e., multihop
path-based delay and link utilization as well as the efficient deployment of fog nodes in the
network in SDN-based wireless FC-IoT. In contrast to these models, our proposed solution
deploys the fog nodes at optimal locations in the network, and the path is computed between
the pair of IoTs and the fog node based on minimum link utilization and delay.

2 http://mininet.org
3 http://github.com/noxrepo/pox
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Table 2: Simulation Parameters

Parameters Value

Number of fog nodes 1-15
APs 40
Tasks 100-1000
Task size (average) 450 KB [31]
Transmitting power of IoT 60 mW [37]
Battery power of IoT 1,000 J [11]
Bandwidth of wireless channel 20 MHz [31]
Noise power -100 dB [31]
Computation amount for task 1,500-2,500 megacycles [31]

4.2 Results and Discussion

Following the above simulations, we compared our proposed model with the baseline mod-
els using the following parameters.

4.2.1 Impact of Optimal Location Selection for Fog Nodes

Fog node placement in a wireless network at an optimal location significantly impacts net-
work performance. Therefore, to demonstrate the impact of optimal location selection for
fog nodes, we examined two parameters: average latency (s) and average load by altering
the number of fog nodes. Fig. 2 shows that the average latency decreases as the number of
fog nodes in the network increases. In the proposed model, the average latency is very low
compared to those experienced in the DGP and RORP models. It can be observed that in the
proposed model, the average latency (s) almost becomes normal when the number of fog
nodes increases from 10 to 15. The reason behind the lowest average latency of the SOSW
model is that it installs the fog nodes in the optimal location in the wireless domain for IoT
applications. From the results, we can see that the selection of the optimal location for the
fog nodes provides efficient services in terms of the delay constraint.

When the number of fog nodes increases from 10 to 15, the average delay when em-
ploying the proposed SOSW model is less than 2 seconds, further improving system per-
formance, as expected. The delays experienced by the DGP and RORP models are higher
than 3 seconds, even when the number of fog nodes reaches 15. However, according to the
OPEX and CAPEX limitations, the deployment of more fog nodes is costly, and it is desir-
able to achieve good performance with a limited number of such nodes. The SOSW model
achieves the lowest latency, as it considers delay and link utilization when it computes the
path between the IoT device and fog node. Given the OPEX and CAPEX constraints, in the
remaining simulations, we limit our study to 10 fog nodes providing services to IoT devices.
Fig. 3 shows the average traffic load (%) on the fog nodes. From the results, we can see that
the average traffic load on the fog nodes decreases when the number of fog nodes increases
in all models. However, in the proposed SOSW model, the traffic load is lower than that of
the DGP and RORP models when the number of fog nodes increases from 6 to 10. Addition-
ally, the traffic load is balanced in the proposed model because the SOSW model accurately
estimates the optimal location for the fog nodes in the FC-IoT architecture. The results show
that the proposed SOSW model is 20% and 25% more effective in terms of load balancing
compared to the DGP and RORP models, respectively.
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Fig. 2: Average Latency and Number of Fog Nodes
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Fig. 3: Average Traffic Load and Number of Fog Nodes

4.2.2 Impact of Number of Flows on Average End-to-end Delay

Following the simulations, we examined the average end-to-end delay (s) w.r.t. the number
of tasks. The results illustrated in Fig. 4 show that the proposed model performs better
than the baseline RORP and DGP models. From the figure, we can conclude that when the
number of tasks increases, the average end-to-end delay also increases in all models. It is
obvious that more tasks exist, and the load in a network also increases in terms of bandwidth
utilization and load on the fog nodes. Therefore, the average end-to-end delay increases as
the congestion in the network increases. However, the figure shows that the average end-to-
end delay in the proposed model is much lower than that experienced by the baseline models,
which select the path based on hop count and fog nodes deployed randomly. In the proposed
model, the fog nodes are deployed at an optimal location, which results in decreases in the
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average delayes of IoT applications. Additionally, the proposed model also considers link
utilization as a paramount parameter in path computation. Notably, the baseline models do
not consider the utilization parameter, so they record further delays due to retransmissions
and congestion. From the results, it can be seen that the proposed SOSW model provides
service to IoT devices with lower delays when the number of tasks/flows reaches 1,000. For
instance, for 1,000 flows, the average delay is less than 50 ms. However, when the DGP
and RORP models are employed, the average delay computed is greater than 60 ms and
70 ms, respectively. These results show that the SOSW-based optimal deployment of fog
nodes and CSP-based path computation significantly improve the overall performance of
the SDN-based wireless FC-IoT architecture.
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Fig. 4: Number of Tasks vs. Average End-to-end Delay

4.2.3 Impact of Number of Flows on Average Energy Consumption

As previously mentioned, IoT devices are resource-constrained in terms of processing, stor-
age, and battery power. Therefore, in the proposed model, we also analyse average energy
consumption. Using the Provisioning of Wireless Access Points (CAPWAP), Simple Net-
work Management Protocol (SNMP) [25] or OpenNetMon [32], the SDN controller collects
information about the data rate and transmission power. In this work, we use OpenNetMon.
The energy required for transmitting the data is computed as T xenergy

data = T xIoT ×Γ t
AP, where

Γ t
AP shows the time taken to transmit the data to the associated AP.

The results show that the proposed model’s performance is better than that experienced
by the baseline models in terms of average energy consumption, as shown in Fig. 5. From
the results, we can see that energy consumption increases as the number of tasks increases in
all models. However, the proposed model performs relatively better than the other models.
The DGP and RORP models consume more energy than the proposed model because they
consider the shortest path, without considering link utilization. Therefore, the congestion
path and retransmissions determine extra energy consumption. Additionally, the proposed
SOSW model deploys the fog nodes at an optimal location for IoT devices, which leads to
the minimization of the energy consumption of IoT devices. Furthermore, the CSPA module
in the SDN controller computes the optimal path by taking into account the end-to-end delay
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Fig. 5: Number of Tasks vs. Energy Consumption

and utilization ratio of the links. The link utilization ratio minimizes the congestion problem
in the FC-IoT architecture. In the SOSW model, energy consumption is less than 1,100 mJ;
in the DPG model, energy consumption is almost 1,200 mJ; and in the RORP model, energy
consumption is almost 1,300 mJ.

When analysing the above results, it can be concluded that the proposed model decreases
the average end-to-end delay and energy consumption because it places the fog node at an
optimal location for task offloading. Additionally, the proposed SOSW solution computes
the path from the IoT device to the fog node by utilizing the proposed CSPA-based ACO
algorithm, which is also beneficial.

5 Conclusions and Future Research Directions

This paper considers two important parameters for optimizing the SDN-based wireless net-
work FC-IoT’s performance: end-to-end delay and link utilization. It proposes an innovative
solution that, first, places the fog nodes in an optimal location to serve IoT devices and, sec-
ond, computes the optimal IoT-fog device path for IoT applications based on given resource
constraints using the ACO algorithm. The results show that fog nodes’ optimal place in
the network increases the performance in terms of delay and load balancing. Additionally,
the computation of an optimal path based on end-to-end delay, energy consumption, and
link utilization significantly decreases average end-to-end delay and energy consumption.
In this paper, we have focused on static IoT devices. In future work, we will consider a more
realistic topology, including both mobile and fixed IoT devices.
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