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Abstract:  Deepening our understanding of the characteristics and behaviors of population-based 
search algorithms remains an important ongoing challenge in Evolutionary Computation.  To date 
however, most studies of Evolutionary Algorithms have only been able to take place within tightly 
restricted experimental conditions.  For instance, many analytical methods can only be applied to 
canonical algorithmic forms or can only evaluate evolution over simple test functions.  Analysis of EA 
behavior under more complex conditions is needed to broaden our understanding of this population-
based search process.  This paper presents an approach to analyzing EA behavior that can be applied to 
a diverse range of algorithm designs and environmental conditions.  The approach is based on 
evaluating an individual’s impact on population dynamics using metrics derived from genealogical 
graphs.   

From experiments conducted over a broad range of conditions, some important conclusions are drawn 
in this study.  First, it is determined that very few individuals in an EA population have a significant 
influence on future population dynamics with the impact size fitting a power law distribution.  The 
power law distribution indicates there is a non-negligible probability that single individuals will 
dominate the entire population, irrespective of population size.  Two EA design features are however 
found to cause strong changes to this aspect of EA behavior: i) the population topology and ii) the 
introduction of completely new individuals.  If the EA population topology has a long path length or if 
new (i.e. historically uncoupled) individuals are continually inserted into the population, then power 
law deviations are observed for large impact sizes. It is concluded that such EA designs can not be 
dominated by a small number of individuals and hence should theoretically be capable of exhibiting 
higher degrees of parallel search behavior.   

Keywords: Evolutionary algorithms; Population dynamics; Genealogical graphs; Population topology; 
Historical coupling; Optimization; Algorithm analysis 



1 Introduction 

Over the last couple decades, there have been a number of studies aimed at understanding the behavior 
and dynamics of Evolutionary Algorithms.  One common approach to characterizing EA behavior is to 
assess how genetic material spreads through a population.  For example, the work presented in [1] 
measures the time required for the best individual to take over a population when crossover is not 
implemented.  Another approach is to measure the loss of a population’s genetic diversity from one 
generation to the next [2] [3].   

Other studies have assessed EA behavior based on the dynamics of the phenotype or fitness distribution 
in specific fitness landscapes as seen for instance in [4].  Still other studies have attempted to assess the 
evolvability of an EA in specific application domains [5] or have studied EA convergence behavior 
within specific fitness landscapes for specific EA design classes [6]. 

In almost all studies of EA behavior, experiments have been restricted to simple EA designs or to very 
specific fitness landscapes.  Although some of these studies have played an important role in expanding 
our understanding of Evolutionary Algorithms, it is important to make inroads in understanding EA 
behavior under more complex conditions.  For instance, it is important to determine what fundamental 
search behaviors are changed when we implement more sophisticated algorithm designs or when these 
algorithms are applied to specific application domains.  Such issues are relevant because many of the 
EA designs in use today are vastly different from the canonical forms derived decades ago.  
Furthermore, it is well-known that performance on real-world problems can be quite different from 
what is observed from experiments on artificial fitness landscapes.   

Similar to past studies of EA dynamical behavior, in this work we investigate how genetic material 
spreads through an EA population.  However, the methods presented here are designed to characterize 
the spread of genetic material for all individuals in a population and are not restricted to studying the 
behavior of the best population member.  Also, these methods have very few experimental 
requirements, meaning that a diverse range of EA designs can be explored with evolution taking place 
over any arbitrary fitness landscape.   

The next section presents the Event Takeover Value (ETV) which is a metric for real-time analysis of 
an individual’s impact on EA population dynamics and is derived using genealogical graphs.  Section 3 
presents experimental results, which focus primarily on characterizing the ETV distribution and its 
sensitivity to experimental conditions.  A discussion of our most interesting results is given in Section 4 
with conclusions finishing the paper in Section 5.   

2 Measuring an Individual’s Impact on Population 
Dynamics 

For a population-based optimization algorithm like an Evolutionary Algorithm, an empirical measure 
of the importance of an individual can be obtained by measuring the individual’s impact on the 



dynamics of the entire population.  Looking at population dynamics on a small timescale such as a 
single generation, an individual will only impact the population through competition for survival and/or 
competition to reproduce.  However, once longer timescales are considered, we find an individual’s 
impact is largely due to the survival and spread of its offspring.   

This section describes the Event Takeover Value (ETV) which is used for measuring an individual’s 
impact on population dynamics using genealogical graphs.  We start with a simple and straightforward 
explanation of ETV below and then proceed to address several of the practical challenges that arise 
with this measurement.  Throughout the discussion, the term event is used to describe the creation of a 
new individual.   

To help understand ETV, Figure 1 shows a directed graph which represents the family tree of an 
individual’s lineage.  Here different generations are indicated by positioning on the horizontal axis, 
nodes represent individuals created in a particular generation and the parents and offspring of an 
individual are indicated by connections to the left and right (resp.).  Starting at the root node on the far 
left of Figure 1, one can observe how this individual’s genetic material is able to spread through the 
population.  At each generation, it is possible to count the number of individuals in the population that 
are historically linked to the root node.  This can be thought of as an instantaneous measure of the 
individual’s impact on population dynamics and is referred to as ETVgen.  A more detailed description 
of ETVgen is provided in the caption of Figure 1. 

Observing Figure 1, it appears that a reasonable calculation of an individual’s impact on population 
dynamics would be to count the total number of descendants for a given individual.  This is equivalent 
to summing up ETVgen for all generations where the individual’s lineage remains alive.  One problem 
with this measurement is that an individual’s lineage occasionally is able to spread throughout the 
entire population so that the cumulative ETVgen value increases indefinitely.  A useful alternative which 
is used in this work is to define ETV as the largest ETVgen value observed.  This value naturally has an 
upper bound equal to the population size of the system.  For the example given in Figure 1, the ETV 
value for the “Event Measured” would be ETV=7, which occurs in the sixth generation. 

2.1 Multiple Parents and Genetic Dominance 

Figure 1 shows how an individual can impact population dynamics through the spread of its genetic 
material, however it does not consider the fact that offspring are often created from multiple parents.  
Also, when using multi-parent search operations, offspring tend to be genetically biased to be more 
similar to one parent than the other(s).  An accurate measure of ETV should account for the possibility 
of multiple parents as well as account for the possibility of dominance by one of the parents.   On the 
other hand, when distributing credit, it is also important to account for the possibility of new 
innovations in an offspring that cannot be attributed to any of the parents.  This credit assignment 
problem is a fundamental challenge in ETV calculations that places limits on any analysis of influence 
or causality in complex adaptive systems.  

Due to these challenges in assigning a weighted importance to each of the parents, a dominant parent is 
chosen instead so that (for ETV calculation purposes) the offspring is seen as having only a single 
(dominant) parent.  By using dominance, it is no longer necessary to address the issue of distributing 
credit among multiple parents meaning that Figure 1 is still a valid representation of the ETV 
measurement process.  This also helps to greatly simplify implementation of the ETV calculation steps 



as seen later.  For the ETV calculation, genetic dominance is used where the dominant parent is 
selected to be the one most genetically similar to the offspring (by Normalized Euclidean Distance).   

2.2 Genetic Hitchhiking 

As described thus far, the ETV measurement implicitly assumes that an individual’s impact on future 
dynamics does not degrade with the passage of time.   However the stochastic nature of an EA makes 
this time dependency true and unavoidable.   Addressing time dependence in credit assignment has 
previously been done using exponential decay functions in [7], [8], [9], and [10].  Another possible 
approach is to set a time window beyond which an individual’s impact on population dynamics can no 
longer be measured.   

Through careful study of the genealogical branching process, it has been found that certain branching 
structures can indicate exactly when confidence in the ETVgen measurement is lost.  An example of 
these conditions is shown in Figure 2.  Looking at the ancestors (i.e. nodes to the left) of the white 
node, it is noticed that all ancestors have the same ETVgen value and that this value is obtained solely 
due to their historical linkage to an important future event.  Obtaining credit in this fashion is referred 
to here as Genetic Hitchhiking.   

This phenomenon actually happens quite often.  If an important event occurs, it will likely spread 
quickly throughout much of the population.  However, all events prior to the important event also 
spread because they are historically linked.  Care must be taken then to make sure an event has spread 
due to its own importance and not the importance of some later event.  To account for this, ETVgen 
measurements of hitchhikers are disregarded.   

2.3 ETV Calculation Procedure 

To calculate ETV, a procedure is needed for recording genealogical information.  The first step is to 
assign an ID to each event that uniquely identifies the offspring.  Historical information in the form of 
these ID values is stored in each individual as an ordered list which represents the direct line of 
ancestry for that individual.  An example of these ordered lists and their meaning within a genealogical 
tree is provided in Figure 3.  When a new offspring is created, it inherits the historical records of the 
genetically dominant parent, and a new ID (representing the offspring) is added to the offspring’s 
historical record.  

By going over the historical records that are stored in the individuals in the current population and 
counting the number of times that the ID of an event is observed, the ETVgen for that event (and that 
generation) can be calculated.  Given a maximum size Tobs  for the historical records list, an EA 
population size N, and individual population members M, the ETVgen measurement for event “ID” can 
be calculated using the equation below.  Tobs is set to 250 in all experiments.  
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To check for genetic hitchhiking, the ETVgen value of an event must be compared with one of its 
offspring.  If they are equal then the parent’s ETVgen value is set to zero.  Given two events ID1 and ID2, 
genetic hitchhiking can be defined by the equation below.   
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The final step in the ETV calculation is to compare each ETVgen value with the archived ETV value.  If 
ETVgen is larger than the archived ETV, then the ETV value is updated, otherwise the old value is 
retained.  The ETV calculation for an event is completed when an event’s ETVgen is found to be zero 
(i.e. a hitchhiker event).   

The computational costs of the ETV calculations are reasonably small if properly implemented.  
Details of these costs are provided in [11]. 

3 Analysis of EA dynamics 

This section studies EA population dynamics using the ETV measurement.  Section 3.1 first describes 
the range of experimental conditions that are used in this paper.  Section 3.2 then investigates the 
experimental conditions that affect the distribution of ETV sizes in EA population dynamics.  Section 
3.3 follows with an investigation of the conditions affecting the distribution of ETV ages where the age 
is the total amount of time that an individual is able to influence EA population dynamics.  For 
additional studies that look at the relationship between ETV and an individual’s fitness, see [11]. 

3.1 Experimental Setup 

Experiments were conducted using the test problems listed in Table 1.  Definitions and test problem 
descriptions are provided in Appendix A in [11].  A number of Evolutionary Algorithm designs have 
also been used in these experiments as elaborated on below.   

3.1.1 Panmictic EA designs 

The Panmictic EA design refers to the standard EA design where spatial restrictions are not imposed on 
the population.  A high level pseudocode is given below with the parent population of size μ at 



generation t defined by P(t).  For each new generation, an offspring population P`(t) of size λ is created 
through variation of the parent population.  The parent population for the next generation is then 
selected from P`(t) and Q, where Q is subset of P(t).  Q is derived from P(t) by selecting those in the 
parent population with an age less than or equal to κ.   

Pseudocode for Panmictic EA designs 
t=0 
Initialize P(t) 
Evaluate P(t) 
Do 
 P`(t) = Variation(P(t)) 
 Evaluate (P`(t)) 
 P(t+1) = Select(P`(t) ∪ Q) 
 t=t+1 
Loop until termination criteria 

Population updating: The generational (Gen) EA designs that were tested in these experiments used 
elitism for retaining the best parent and parameter settings μ=N/2, λ=N, κ=1 (κ=∞ for best individual).  
The steady state (SS) EA design that was used in these experiments actually involves a pseudo steady 
state population updating strategy with parameter settings μ=λ=N, κ=∞. 

Selection:  Selection occurs by either binary tournament selection without replacement (Tour), 
deterministic truncation selection (Trun), or random selection (Rand).  Random selection is 
implemented in the same fashion as binary tournament selection except the winner of a tournament is 
chosen at random (without regard for fitness of the individuals).   

Search Operators:  For each EA design, an offspring is created by using a single search operator that 
is selected at random from the list in Table 2.  Search operator descriptions are provided in Appendix B 
in [11]. 

Crowding:  Crowding in Panmictic populations was implemented using Deterministic Crowding (DC) 
which is described in [12].   

3.1.2 Spatially Distributed Populations 

All distributed EA designs that are tested involve a cellular Genetic Algorithm (cGA) which is 
described in the pseudocode below.  The algorithm starts by defining the initial population P on a ring 
topology with each node connected to exactly two others.  For a given generation t, each node in the 
population is subject to standard genetic operators.  Each node N1 is selected as a parent and a second 
parent N2 is selected among all neighbors within a radius R using linear ranking selection.  An 
offspring is created using the two parents plus a single search operator selected at random from the list 
in Table 2.  The better fit between the offspring and N1 is then stored in a temporary list Temp(N1) 
while genetic operators are used on each of the remaining nodes in the population.  To begin the next 
generation, the population is updated with the temporary list.  This process repeats until some stopping 
criteria is met.    

Although not typically discussed in these terms, the neighborhood radius R actual changes the 
population topology for the cGA.  When R=1, the topology is a ring structure as described above.  



However, as R increases, the topology takes on more of a toroidal structure until finally reaching a 
Panmictic state at R=N/2.  The path length is a term used to describe the distance between two 
individuals in the population.  One will find that the average path length (also known as the 
characteristic path length) decreases with increasing R.   

Pseudocode for cGA  
t=0 
Initialize P(t) (at random)  
Initialize population topology (ring structure) 
Evaluate P(t) 
Do  

For each N1 in P(t)  
 Select N1 as first parent 

Select N2 from Neighborhood(N1,R) 
 Select Search Operator (at random) 

Create and evaluate offspring 
Temp(N1) = Best_of(offspring, N1) 

 Next N1 
 t=t+1 
 P(t) = Temp() 
Loop until stopping criteria 

Crowding:  Distributed EA designs that include crowding procedures are modified so that the 
offspring competes with the parent (N1 or N2) that is most similar in phenotype.   

3.2 ETV Size Results 

This section discusses the experimental conditions that can influence the ETV distribution.  There are 
many aspects of an EA design that have been modified or extended over the years meaning that any 
attempt at making broad statements about EA population dynamics requires a broad range of 
experimental conditions to be tested.  Because a large number of experiments were necessary, only 
selected results are presented based on their capacity to illuminate system behavior.    Section 3.2.1 
looks at the impact that EA design features have on the ETV distribution while Section 3.2.2 
investigates the impact of the fitness landscape.  Section 3.2.3 follows up with an investigation of 
whether the ETV distribution is sensitive to the amount of time that evolution is observed.   

3.2.1 Impact of EA design  

The first EA design factors tested consisted of selection methods and population updating strategies for 
Panmictic EA designs, with results shown in Figure 4a and Figure 4b.  Selection pressures varied from 
very weak (e.g. random selection) to very strong (e.g. truncation selection) and the population updating 
strategy varied from infinite maximum life spans (steady state) to single generation life spans 
(generational).  The most remarkable conclusion from these results is that the ETV distribution has 
very little sensitivity to these design factors and consistently takes on a power law distribution.  
Particularly surprising was the results using random selection, which has no sensitivity to the fitness 



landscape of the test problem being used.  When random selection is used, the ETV distribution 
appears to take on a  slightly smaller distribution tail although a power law is still clearly observed.   

Experiments were also conducted to determine the impact of the population size.  As seen in Figure 5a, 
EA designs which differ only in the value of N have nearly identical ETV distributions.  The 
insensitivity to N was also observed for the other EA designs tested in Figure 4a and Figure 4b with N 
varying from 50 to 400 (results not shown).   

The results in Figure 5 present what was found to be the most important factor impacting the ETV 
distribution.  These experiments, which were run using the cellular Genetic Algorithm, found that 
spatial restrictions result in power law deviations for large ETV sizes.  Furthermore, the extent of the 
deviation was clearly dependent upon the degree of spatial restrictions in the system.  As seen in Figure 
5b, the use of random selection changes the exponent of the power law (that best approximates the 
data) however power law deviations are still present.   

Given that spatial restrictions are thus far the only EA design factor significantly influencing the ETV 
distribution, it was decided to consider other mechanisms for restricting interactions within an EA 
population.  A common approach for restricting interactions are so called crowding methods where 
offspring are forced to compete with similar individuals in the population.   The results in Figure 6 
show that crowding does have a significant impact on the ETV distribution, but only for spatially 
distributed EA designs.  For all but the smallest ETV value (ETV=1), the use of crowding decreases the 
ETV’s probability of occurrence by roughly an order of magnitude in the cGA.  However, for 
Panmictic EA designs, the use of crowding did not appear to have a significant impact on the ETV 
distribution which is demonstrated using Deterministic Crowding (see inset of Figure 6).   

All results presented thus far have been taken with evolution occurring on the 30-D Hyper-Ellipsoid 
test function.  This test function was selected because each of the EA designs were able to evolve for 
long periods of time (achieving 1 million to 10 million events) which allowed for greater clarity in the 
distribution results.  The next section addresses the impact of the fitness landscape.   

3.2.2 Fitness Landscape Dependencies 

The fitness landscape that an EA population evolves on will obviously impact the trajectory that the 
population takes through parameter space.  Hence, it was somewhat surprising to see how little the 
fitness landscape influenced the ETV distribution results.  Test functions were selected from Table 1 
and include unimodal and multimodal functions, linear and nonlinear functions, functions with strong 
and weak epistasis, as well as deceptive and non-deceptive functions.  Results shown in Figure 7 and 
Figure 8 demonstrate little sensitivity to the fitness landscape on which evolution occurs.  Other 
Panmictic EA designs were also tested with similar results (results not shown).  For the distributed EA 
results, some sensitivity to the fitness landscape was observed when strong spatial restrictions were 
present in the EA population (e.g. see Figure 8a).  However, the general conclusions from the previous 
section remain unchanged; only spatial restrictions in the EA population result in significant changes to 
the ETV distribution.   

There are other experimental conditions that can influence the fitness landscape.  One way to test the 
influence of the fitness landscape on ETV results is to use random selection, as was done in the 
previous section.  The use of random selection in an EA design is similar to evolving on a completely 
flat fitness landscape.  Implementing different search operators is also expected to have an impact that 



is somewhat similar to changing the fitness landscape.  Experiments conducted using different search 
operators (results not shown) were found to have a similar effect to varying the test function, although 
these results displayed even less sensitivity.  This low sensitivity could be a consequence of the range 
of operators tested.   

3.2.3 Impact of time length of evolution 

In this section, tests were conducted with evolution taking place over different lengths of time.  As seen 
in Figure 9, during the initial stages of evolution, the ETV distribution displays power law deviations 
for large ETV sizes however these deviations disappear as evolution is observed over longer periods of 
time.   

The fact that ETV distribution results have only a brief transient where the distribution is sensitive to 
time, but is insensitive thereafter, possibly indicates that the distribution approaches a stationary state.  
The record statistics of ETV in Figure 10 also provide evidence that maximum ETV sizes have an 
initial time dependency.  This could mean that the system does not initially start with population 
dynamics being defined by a power law distribution but instead that the system evolves to achieve that 
state over time.   

It has been determined that the reason for this initial dynamical behavior is actually due to the lack of a 
genealogical or a historical coupling between individuals in the initial population.  To confirm this, 
Figure 11 shows ETV distribution results where each new offspring has a probability Pnew of being 
historically uncoupled from the rest of the population.  Historical uncoupling is simply done by 
preventing offspring from inheriting historical data from their parents.  From a population dynamics 
perspective, this is equivalent to an EA design which includes a steady introduction of new individuals 
into the EA population (e.g. randomly generated individuals).  As seen in Figure 11, a small amount of 
historical uncoupling can result in power law deviations for the largest ETV sizes.  However, as Pnew is 
increased, the extent that the distribution deviates from a power law is found to increase only slightly.   

3.2.4 Other Experimental Conditions 

Additional tests were also conducted (results not shown) to help ensure that the ETV distribution 
results that have been presented in this work were not biased due to other experimental factors.  This 
included experiments on selected EA designs at population sizes up to N=500, running evolution up to 
100,000 generations, and experiments with the ETV calculation parameter Tobs set as high as 500.   
These experiments resulted in no observable changes to ETV distribution results.   

3.3 ETV Age Results 

In addition to measuring the size of an individual’s impact, one can also measure the amount of time 
that an individual is able to impact population dynamics.  This is measured by recording the number of 
generations required for an individual’s ETV calculation to finish, which is referred to here as the ETV 
age.  This section investigates this aspect of EA dynamics more closely, again with the aim of 
determining what experimental conditions impact the ETV age distribution. 



Looking at Figure 12 and Figure 13, these results demonstrate that the ETV age repeatedly 
approximates a power law however different sensitivities to EA design conditions have emerged 
(compared with ETV size distribution results shown previously).  Although there is still no sensitivity 
to the population size, these results reveal that the selection method and population updating strategy 
do have an impact on the ETV age distribution for Panmictic populations.  This is seen for instance in 
the results presented in Figure 13b where EA designs with steady state population updating and 
tournament selection are found to have a clear power law deviation for large ages.   On the other hand, 
the introduction of spatial restrictions to the EA population does not have any influence on this 
characteristic of population dynamics as seen in Figure 12.  This is surprising considering the 
importance of spatial restrictions in the previous ETV size distribution results.  Also shown in Figure 
12, the addition of crowding to the cGA has a completely unexpected impact on the age distribution 
and appears to result in an almost log-periodic behavior that on average still tends toward a power law 
distribution.  On the other hand, the addition of crowding in Panmictic Populations (e.g. Deterministic 
Crowding) was found to have little influence on the age distribution.  In summary, these results indicate 
that most ETV age distributions are well approximated by power laws although changes to the 
distribution shape do occur under certain conditions.   

As a final comment on these results, it is also worth mentioning that although the ETV has a maximum 
size equal to N, the ETV age measured here is only constrained by the amount of time that the system 
is observed.  For these experiments, evolution was observed for up to 20,000 generations and ETV ages 
were found approaching 1000 without any evidence of power law deviations at large ages.   Based on 
the observed distributions, it is concluded that the maximum age of events in EA dynamics is only 
limited by the amount of time that evolution is allowed to take place.1   

4 Discussion 

In previous work [11], it was suggested that the power law behavior observed in ETV results has some 
similarities to the evolutionary dynamics in natural evolution.  Arguments were also presented that 
highlighted the possible compatibility of these results with the theory of Self-Organized Criticality (e.g. 
see [11]), as well as highlighting similarities to simple branching processes.   

Regardless of the actual causes of the ETV power law, it is important to understand what this implies 
about the dynamical behavior of these systems.  First and foremost, it provides us with a better sense of 
the upper bounds to parallel computation for population based search heuristics.   As long as power law 
behavior is observed, we can expect that the entire system can (and will) be occasionally driven by 
low-probability individual events.  In this paper, such power law behavior was found to be prevalent in 
many EA designs.  However some EA designs displayed clear power law deviations so that there was 
almost no chance that single events could cause system-wide changes.  Furthermore, the particular 
form of the power law deviation was found to be insensitive to population size suggesting that such 

                                                 

1 The maximum age can also be limited by the ETV calculation procedure, for instance by limits placed on the size of the 
historical records kept in the EA population.   In these experiments, the maximum record size was set to Tobs=250 and under 
these conditions, it was found that roughly one in every 50,000 events failed to finish the ETV calculation before reaching a 
maximum record position.   



deviations would play an increasingly important role (in modifying system behavior) as the system is 
scaled up to larger sizes.   

The influence of the test function was also interesting.  For most EA designs, the macroscopic features 
of population dynamics that were being measured here were not influenced by the landscape over 
which evolution takes place.  However, when spatially distributed EA designed were implemented, we 
found that the ETV distribution shape was highly sensitive to the test function.   

It is also worth noting the relevance of other features of the ETV distribution such as the power law 
exponent.  This paper focused primarily on the existence of power laws, however one might have 
noticed that different EA designs were found to have different power law exponents.  Only slight 
changes to this exponent are expected to have a significant influence on the probability of large scale 
events (e.g. ETV≈N) taking place, particularly in large populations.   

Another observation worth noting is that the presence of crowding in distributed EA designs causes a 
large proportion of events to have a negligible impact (e.g. ETV=1), which is expected to result in a 
highly parallel search process.  Evidence of this is given in Figure 6 where one can see that the 
probability of larger ETV sizes is reduced by roughly an order of magnitude 

It should also be mentioned that, despite considerable efforts, the experiments were not exhaustive and 
so it is possible that other EA designs and certain landscape characteristics could result in ETV 
distributions which deviate from a power law or are otherwise different from what was presented here.  
As an example, EA designs which parameterize the amount of interaction between population 
subgroups (i.e. island model population structure) could be one unaccounted for situation where power 
laws would only be observed with the appropriate parameter settings.  In addition, EA designs with a 
dynamic population size might also cause significant changes to the ETV distribution results.   

4.1 Challenges and opportunities in ETV analysis 

The ETV analysis is designed to characterize large scale features emerging within population-based 
adaptive systems that employ spatially and/or temporally localized operators. Requirements for this 
type of analysis include the ability to define a scope (unit) where operations are taking place and the 
ability to track influence among units that are created (and possibly change) over time.  The generality 
of these conditions should permit an ETV analysis to be extended to other population-based search 
processes and potentially to other scales of observation within these systems.  In the following 
discussion, we elaborate on some of the opportunities and challenges that arise with this direction of 
research. 

4.1.1 Extensions 

One scale of observation that is of considerable interest is that of individual genes.  Because allelic 
frequencies change over time as a direct consequence of variation and selection operators, we suspect 
that an ETV analysis could be applied to the dynamics of genetic composition.  While some of the 
conclusions drawn here may extend to this scale of observation, additional relevant factors are also 
likely to emerge.  For example, search operators such as random mutation (i.e. unbiased sampling of 



alleles) could have an effect similar to the introduction of historically uncoupled individuals as was 
tested in this study.   

On the other hand, fitness landscape characteristics dramatically influence the speed and extent that 
genes become fixated and lost within a population.  The transitory nature of simulated evolutionary 
processes also complicates such an analysis since many problems will only allow for brief periods of 
data collection.  More generally, investigations at this scale of observation expose interactions between 
the algorithm and problem, raising new challenges but also potentially providing for new application 
opportunities.  For instance, correlations in ETV growth could provide a means for discovering genetic 
building blocks and exploiting fitness landscape patterns. 

At a larger scale of observation, one could apply a similar analysis to memetic algorithms to understand 
how the hybridization of local search and global meta-heuristics can influence emergent system 
properties such as the ETV distribution.  For instance, each individual can be labelled to indicate the 
search operator used when creating that individual.  By doing this, it is possible to establish ETV 
distributions for each search operator used, which then allows for a comparison of the relative influence 
of local search and recombinant search operations.  Such information might be useful for the adaptive 
hybridization of memetic algorithms 

Indeed, there is already some evidence to suggest that this application of ETV to memetic algorithms 
could prove useful.  Previous studies have found ETV to be a useful metric for assigning value to 
different search operators in order to adapt their usage rates during a search process.  For instance, in 
[11] it was concluded that the power law ETV distribution implies that most individuals have a 
negligible impact on population dynamics and do not provide useful information (i.e. act as noise) 
when determining the relative utility of different search operators.  Statistical arguments were then used 
to filter out most ETV measurements, with the remaining ETV measurements used to adaptively 
modify search operator usage rates during algorithm runtime.  Comparison to conventional “fitness-
based” adaptive methods taken from the literature indicated that ETV provided more useful 
information than direct fitness measurements.  Furthermore, these conclusions did not appear to be 
sensitive to fitness landscape characteristics including modality, epistasis, neutrality, or search space 
size.    

4.1.2 Challenges 

An overarching goal in the study of algorithm behavior is to derive methods that are flexible enough to 
accommodate a broad range of search algorithm designs.  At the same time, analysis methods should 
aim to provide tools that probe algorithm behavior and allow for a better understanding, better 
comparisons, and intuitive classification of the ever expanding list of search algorithms described in the 
literature. 

The ETV analysis improves upon past studies in terms of the breadth of experimental conditions that it 
can accommodate.  Prior studies of EA behavior, as discussed in the introduction, have only been 
applicable to specific algorithm designs, specific fitness landscapes, or both.  However serious attempts 
at general-purpose search algorithm analysis are still in their infancy.  Moreover, there are limitations 
to the ETV analysis that need to be recognized and appreciated.  For instance, it is straightforward to 
uncover limitations in the application of ETV to several meta-heuristics and hybrids, particularly those 
incorporating group based operations (e.g. Estimation of Distribution, Swarm, and Ant Colony 
Optimization). 



Some of the difficulties with this type of analysis arise due to fundamental challenges related to the 
“credit assignment problem”.  Credit assignment describes the tracking of influence or causality over 
time; an issue that is both highly relevant and highly challenging in the study of complex adaptive 
systems including population-based meta-heuristics. The difficulty comes from the assignment of credit 
for future system states to individual decisions in the past.  In contrast to the assumptions made in this 
study, the value of an offspring is not derived by a single dominant parent.  On the other hand, nor 
should we view this issue simply as one of distributing credit proportionately to the respective parents.  
In general, the effect of combining genes from individual parents is not additive or linear.  It is not only 
the genes contributed by a parent that matters, but also how these effectively combine with 
contributions from the other parent(s).  Stated another way, a full accounting of influence (or lack 
thereof) needs to account for the possibility of new innovations that cannot be attributed solely to 
historical bias.  This is a fundamental issue in evolution (both natural and artificial) that places bounds 
on any analysis of causality.    

Besides the issue of innovation, there are other additional challenges in the assignment of credit over 
long timescales.  One challenge discussed in this paper is hitchhiking.  A similar phenomenon occurs in 
natural evolution, where genetic hitchhiking refers to the fixation of both neutral and slightly 
maladaptive alleles when these are presented concurrently with a highly advantageous mutation [13] 
[14].  Although this study introduces a graph-based heuristic for reducing a similar type of hitchhiking 
within ETV calculations, it is important to note that there are implicit assumptions being made when 
using this heuristic.   

In biological evolution, the phenotypic significance of genetic mutations can at times be cryptic, 
showing little immediate influence yet being highly relevant to the expression of future phenotypic 
novelty [15] [16].  This is a hotly researched topic in the study of biological evolution that is sometimes 
referred to as genetic buffering or cryptic genetic variation [17] [18] [19] [20] [21].  Similar 
phenomena can occur in an EA population and can limit the utility of information from an ETV 
measurement.  In particular, an individual may be of modest reproductive value in a given generation 
yet prove important to longer term evolutionary dynamics.  In other words, the hitch-hikers we 
eliminate from the ETV calculation could in some cases be of actual importance to the success or 
failure of future generations.  This hitchhiking problem relates directly to the issue of search bias 
assumptions that are used in optimization research, which is discussed in some detail in Chapter 3.2 in 
[11] and also in [10]. 

There are other practical issues that also need to be addressed before the ETV measurement can 
effectively account for multi-parent operations.  The current algorithm design (e.g. see Section 3.2.2 in 
[11] for relevant algorithm details) is not readily amendable to the expansive branching influence 
graphs that emerge when attempting to assign credit to more than a single parent.  This, along with 
associated computational costs, is another reason why a single dominant parent is chosen in these 
experiments instead of distributing credit across multiple parents.   

Finally, it is worth questioning whether credit should be distributed based on genotype or fitness?  
Although inheritance has a genetic basis, selection is based entirely on fitness.  Ad hoc experiments 
have found that replacing genetic dominance with fitness dominance (i.e. similarity in parent and 
offspring fitness values) in the ETV calculation does not have a dramatic influence on the results or 
conclusions drawn in this study.  On the other hand, it is worth investigating this issue in greater detail, 
as we suspect fitness dominance should allow for some sensitivity to fitness landscape properties. 



5 Conclusions 

A number of conclusions can be drawn from the results presented in this paper.  First, it was found that 
the probability of an individual’s impact on EA dynamics fits a power law (exponent between 2.2 and 
2.5).   This is a robust property of the system which is largely insensitive to most experimental 
conditions including changes to population size, search operators, fitness landscape, selection scheme, 
population updating strategy, and the presence of crowding mechanisms.  From these results, it is 
concluded that the large majority of individuals will have a negligible impact on future population 
dynamics. 

Two experimental conditions were however found to result in power law deviations for large ETV 
sizes.  The first was the steady introduction of new individuals that have no relation to others in the 
population (i.e. historically uncoupled).  The second condition was the introduction of spatial 
restrictions into an EA population.  Using either of these conditions effectively removes the possibility 
of single individuals dominating the dynamics of the entire population.  The associated power law 
deviations can be understood as an indicator of increased parallel computation within the system.   

The amount of time than an individual influences EA dynamics (i.e. ETV age) also was found to fit a 
power law with most individuals influencing the system for only brief periods of time.  However, as 
suggested by the power law relation, there is a non-negligible probability that an individual will 
influence EA dynamics over very large time scales.  This behavior was found to be robust and was 
almost completely insensitive to all experimental conditions tested.   
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Figure 1:  Visualizing an individual’s impact on population dynamics using genealogical graphs.  An individual’s impact for a 
given generation (horizontal axis) is defined as the number of paths leading from the measured node to the current generation.  
This is referred to as ETVgen and is calculated for the “Event Measured” in the graph above by counting the number of nodes on 
the dotted vertical line for a given generation.  As the population moves from one generation to the next, the number of 
individuals in the population that are descendants of the “Event Measured” will change.  These changes are reflected in the 
ETVgen value as shown at the top of the graph.  The maximum impact of an event is the maximum ETVgen value that is observed.  
To simplify the illustration, we assume a generational population updating strategy is used, meaning that each individual exists in 
a single generation only.  Other updating strategies could also be used in which case some nodes would be stretched across 
multiple generations in the graph.   
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Figure 2:  Genetic Hitchhiking in EA population dynamics.  Considering ETVgen measurements based on the current generation, 
one can easily see that all nodes to the left of the white node will have the same ETVgen value (i.e. they all have the same number of 
paths leading to the current population).  However, these nodes are assigned their ETVgen values only because of a single 
important descendant (the white node).  These linear structures in the genealogical branching process are a sign of genetic 
hitchhiking and can be seen in several different places in the graph above (seven genetic hitchhiking occurrences in total).   
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Figure 3:  Transfer of Historical Data.  Each individual holds historical information in addition to genetic information.  The 
historical information represents the direct line of ancestry for an individual.  Examples of historical data lists are shown above 
for Parent 1 (ID=P21) and Parent 2 (ID=P23) and their meaning is demonstrated by the genealogical graph on the right.  A new 
offspring only takes historical information from the parent that is genetically most similar (i.e. genetically dominant).  In this 
example, Parent 1 is assumed to be the genetically dominant parent.  In addition, the offspring creates a new ID to indicate its 
placement in the genealogical tree.    

 

  

Figure 4  ETV size distributions for a number of panmictic EA designs.  Solid line represents a power law with exponent a) 2.5, b) 
2.3.  Results are taken over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test function. 

 



 

Figure 5 ETV size distributions for a number of spatially distributed EA designs.  Solid line represents a power law with exponent 
a) 2.2, b) 2.5.  Results are taken over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test function. 

 

 

 

Figure 6  ETV distributions for spatially distributed EA designs and EA designs using crowding.  Results from using 
Deterministic Crowding (DC) are presented in the inset.  Solid line represents a power law with exponent 2.2.   Results from each 
EA design are taken over 20,000 generations of evolution on the 30-D Hyper Ellipsoid test function.    

 

 

Figure 7 ETV distributions shown for selected EA designs on test functions taken from Table 1.  Evolution occurred over 2000 
generations and results shown are averages taken over 10 runs.  To help in viewing results from a large number of test functions, 
data is grouped into bins.  Solid line represents a power law with exponent a) 2.2, b) 2.2.   

 



 

 

Figure 8  ETV distributions shown for selected EA designs on test functions taken from Table 1.  Evolution occurred over 2000 
generations and results shown are averages taken over 10 runs.  To help in viewing results from a large number of test functions, 
data is grouped into bins. Solid line represents a power law with exponent a) 2.2, b) 2.2.   

 

 

Figure 9  ETV distribution results as a function of the time span of evolution.  Solid line represents a power law with exponent a) 
2.2, b) 2.5.  Data sets are labeled by a number which indicates the number of ETV measurements that are used to generate the 
distribution.  For each EA run, the first 100 events are given to the first data set, the next 500 are given to the next data set and so 
on.  Results for each EA design are averages over ten runs.  

 

 

Figure 10  Record ETV statistics for cellular Genetic Algorithms.  ETV(Max) is the largest ETV found in every 200 events.  
Values are averages over 10 experimental replicates. 

 



 

Figure 11  ETV distributions with varying amounts of historical uncoupling in EA population dynamics.  Experiments are 
conducted with a Steady State EA using truncation selection and population size N=100.  Evolution took place over 20,000 
generations on the 30-D Hyper Ellipsoid test function.  When conducting the standard ETV calculation, historical event 
information is copied from the genetically dominant parent to its offspring.  In these experiments, the step of historical transfer is 
skipped with probability Pnew.  The solid line in the graph represents a power law with exponent = 2.1 

 

 

Figure 12  ETV age distributions shown for spatially distributed EA designs and EA designs using crowding.  Solid line 
represents a power law with exponent 3.2.   

 



  

Figure 13  ETV age distributions for several EA designs.  Solid line represents a power law with exponent a) 3, b) 2.5, c) 3.5.   

 

Table 1  Names of test problems used in experiments.  Detailed information on each of the test 
problems can be found in Appendix A in [11].   

 

 

 

Table 2: List of search operators used in experiments.  Details provided in this table include the 
search operator name, other common name, reference for description, and parameter settings if 
different from reference. 
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