Skip to main content
Log in

A bare-bones ant colony optimization algorithm that performs competitively on the sequential ordering problem

  • Regular research paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

EigenAnt is a bare-bones ant colony optimization algorithm that has been proven to converge to the optimal solution under certain conditions. In this paper, we extend EigenAnt to the sequential ordering problem (SOP), comparing its performance to Gambardella et al.’s enhanced ant colony system (EACS), a model that has been found to have state-of-the-art performance on the SOP. Our experimental results, using the SOPLIB2006 instance library, indicate that there is no statistically significant difference in performance between our proposed method and the state-of-the-art EACS method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdelbar AM (2008) Stubborn ants. In: Proceedings SIS-08, St. Louis, pp 1–5

  2. Abdelbar AM (2012) Is there a computational advantage to representing evaporation rate in ant colony optimization as a Gaussian random variable?. In: Proceedings GECCO-12, Philadelphia, pp 1–8

  3. Abdelbar AM, Wunsch DC (2012) Improving the performance of MAX-MIN ant system on the TSP using stubborn ants. In: Proceedings GECCO-12, Philadelphia, pp 1395–1396

  4. Anghinolfi D, Montemanni R, Paolucci M, Gambardella LM (2009) A particle swarm optimization approach for the sequential ordering problem. In: Proceedings MIC-09. Hamburg, Germany

  5. Anghinolfi D, Montemanni R, Paolucci M, Gambardella LM (2011) A hybrid particle swarm optimization approach for the sequential ordering problem. Comput Operat Res 38(7):1076–1085

    Article  MATH  MathSciNet  Google Scholar 

  6. Ascheuer N (1995) Hamiltonian path problems in the on-line optimization of flexible manufacturing systems, PhD Thesis, Technische Universität Berlin

  7. Bentley JJ (1992) Fast algorithms for geometric traveling salesman problems. ORSA J Comput 4(4):387–411

    Article  MATH  MathSciNet  Google Scholar 

  8. Bullnheimer B, Hartl RF, Strauss C (1999) An improved ant system algorithm for the vehicle routing problem. Ann Operat Res 89:25–38

    Article  MathSciNet  Google Scholar 

  9. Chen S, Smith S (1996) Commonality and genetic algorithms, Technical Report CMURI-TR-96-27, Robotic Institute, Carnegie Mellon University

  10. Chica M, Cordón O, Damas S, Bautista J (2011) A new diversity induction mechanism for a multi-objective ant colony algorithm to solve a real-world time and space assembly line balancing problem. Memet Comput 3:15–24

    Article  Google Scholar 

  11. Cordón O, de Viana IF, Herrera F (2002) Analysis of the best-worst ant system and its variants on the TSP. Mathw Soft Comput 9(2–3):177–192

    MATH  Google Scholar 

  12. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Mach Learn Res 7:1–30

    MATH  MathSciNet  Google Scholar 

  13. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evolut Comput 1(1):35–66

    Article  Google Scholar 

  14. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperative agents. IEEE Trans Syst Man Cybern 26(1):29–41

    Article  Google Scholar 

  15. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  16. Dorigo M, Stützle T (2010) Ant colony optimization: overview and recent advances. In: Gendreau M, Potvin Y (eds) Handbook of metaheuristics, 2nd edn. Springer, New York, pp 227–263

    Chapter  Google Scholar 

  17. Escudero LF (1988) An inexact algorithm for the sequential ordering problem. Eur J Operat Res 37:232–253

    Article  MathSciNet  Google Scholar 

  18. Ezzat A, Abdelbar AM (2013) A less-exploitative variation of the enhanced ant colony system applied to SOP. In: Proceedings CEC-2013, Canćun, Mexico, pp 1917–1924

  19. Gambardella LM, Dorigo M (2000) An ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS J Comput 12(3):237–255

    Article  MATH  MathSciNet  Google Scholar 

  20. Gambardella LM, Montemanni R, Weyland D (2012) Coupling ant colony systems with strong local searches. Eur J Operat Res 220(3):831–843

    Google Scholar 

  21. Guerriero F, Mancini M (2003) A cooperative parallel rollout algorithm for the sequential ordering problem. Parallel Comput 29(5):663–677

    Article  Google Scholar 

  22. Jackson DE, Bicak M, Holcombe M (2011) Decentralized communication, trail connectivity and emergent benefits of ant pheromone trail networks. Memet Comput 3:25–32

    Article  Google Scholar 

  23. Jayadeva, Shah S, Bhaya A, Kothari R, Chandra S (2013) Ants find the shortest path: a mathematical proof. Swarm Intell 7(1):43–62

    Article  Google Scholar 

  24. Kindervater G, Savelsbergh M (1997) Vehicle routing: handling edge exchanges. In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. Wiley, Chichester, pp 337–360

    Google Scholar 

  25. Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech J 44:2245–2269

    Article  MATH  Google Scholar 

  26. Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling-salesman problem. Operat Res 21:498–516

    Article  MATH  MathSciNet  Google Scholar 

  27. Montemanni R. SOPLIB2006 Problem Instance Library. http://www.idsia.ch/~roberto/SOPLIB06.zip

  28. Montemanni R, Smith DH, Gambardella LM (2007) Ant colony systems for large sequential ordering problems. In: Proceedings SIS-07, Honolulu, pp 60–67

  29. Montemanni R, Smith DH, Gambardella LM (2008) A heuristic manipulation technique for the sequential ordering problem. Comput Operat Res 35(12):3931–3944

    Article  MATH  Google Scholar 

  30. Montemanni R, Smith DH, Rizzoli AE, Gambardella LM (2009) Sequential ordering problems for crane scheduling in port terminals. Int J Simul Process Model 5(4):348–361

    Article  Google Scholar 

  31. Or I (1976) Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking, PhD Thesis, Dept. of Industrial Engineering and Management Sciences, Northwestern University

  32. Otero FEB, Freitas AA, Johnson CG (2010) A hierarchical multi-label classification ant colony algorithm for protein function prediction. Memet Comput 2:165–181

    Article  Google Scholar 

  33. Pullyblank W, Timlin M (1991) Precedence constrained routing and helicopter scheduling: heuristic design, Technical Report RC17154 (#76032). IBM T.J. Watson Research Center

  34. Savelsbergh MWP (1990) An efficient implementation of local search algorithms for constrained routing problems. Eur J Operat Res 47:75–85

    Article  MATH  MathSciNet  Google Scholar 

  35. Seo DI, Moon BR (2003) A hybrid genetic algorithm based on complete graph representation for the sequential ordering problem. In: Proceedings GECCO-03, Chicago, pp 669–680

  36. Stützle T. ACOTSP: a software package for various ant colony optimization algorithms applied to the symmetric traveling salesman problem. http://www.aco-metaheuristic.org/aco-code/

  37. Stützle T, Hoos H (2000) MAX-MIN ant system. Future Gener Comput Syst 16(8):889–914

    Article  Google Scholar 

Download references

Acknowledgments

The partial support of the National Science Foundation, the Missouri University of Science and Technology Center for Infrastructure Engineering Studies and Intelligent Systems Center, and the Mary K. Finley Missouri Endowment are gratefully acknowledged. We would like to thank Jayadeva for providing the Matlab source code for the EigenAnt algorithm. Although our implementation, in C, did not directly incorporate this code, having access to it was useful in validating our implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf M. Abdelbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezzat, A., Abdelbar, A.M. & Wunsch, D.C. A bare-bones ant colony optimization algorithm that performs competitively on the sequential ordering problem. Memetic Comp. 6, 19–29 (2014). https://doi.org/10.1007/s12293-013-0129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-013-0129-z

Keywords

Navigation