Skip to main content
Log in

On genetic logic circuits: forcing digital electronics standards?

  • Regular research paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Information processing is widely understood as the ability to change data in any meaningful manner. As such, this task is performed by natural systems as well as human-defined devices. The rational design of highly standardized electronic-based machines is a great source of inspiration for the synthetic biology community, which implements the same abstract concepts and theoretical functions with genetic technology in cells. For example, bacteria can be engineered to function as logic gates, adders or counters. However, the rules and concepts of electronic circuitry should not be literally translated into genetics. At least, not to the same extent in all cases. This issue needs to be addressed in order to establish a robust gene-based logic technology with its own specifications. This paper revise briefly the basics of genetic logic and, standing at the edge of biological and engineering sciences, tackles some recurrent misleading concepts and open questions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oldham P, Hall S, Burton G (2012) Synthetic biology: mapping the scientific landscape. PLoS One 7:e34368

    Article  Google Scholar 

  2. Heinemann M, Panke S (2006) Synthetic biology-putting engineering into biology. Bioinformatics 22:2790–9

    Article  Google Scholar 

  3. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(2006):0028

    Google Scholar 

  4. De Lorenzo V, Danchin A (2008) Synthetic biology: discovering new worlds and new words. EMBO reports 9:822–827

    Article  Google Scholar 

  5. Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13:455–468

    Article  Google Scholar 

  6. Wang B, Kitney RI, Joly N, Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2:508

  7. Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:224–230

    Article  Google Scholar 

  8. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in escherichia coli. Nature 403:339–342

    Article  Google Scholar 

  9. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  Google Scholar 

  10. Purcell O, Savery NJ, Grierson CS, di Bernardo M (2010) A comparative analysis of synthetic genetic oscillators. J R Soc Interface 7:1503–24

    Article  Google Scholar 

  11. Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotech 31:448–452

    Article  Google Scholar 

  12. Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340:599–603

    Article  Google Scholar 

  13. Lou C, Liu X, Ni M, Huang Y, Huang Q et al (2010) Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol Syst Biol 6

  14. Friedland AE, Lu TK, Wang X, Shi D, Church G et al (2009) Synthetic gene networks that count. Science 324:1199–1202

    Article  Google Scholar 

  15. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–9

    Article  Google Scholar 

  16. Maca J, Posas F, Sol RV (2012) Distributed computation: the new wave of synthetic biology devices. Trends Biotechnol 30:342–349

    Article  Google Scholar 

  17. Goñi-Moreno A, Redondo-Nieto M, Arroyo F, Castellanos J (2011) Biocircuit design through engineering bacterial logic gates. Nat Comput 10:119–127

    Article  MathSciNet  Google Scholar 

  18. Tamsir A, Tabor JJ, Ca Voigt (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ’wires’. Nature 469:212–5

    Article  Google Scholar 

  19. Regot S, Macia J, Conde N, Furukawa K, Kjellen J et al (2011) Distributed biological computation with multicellular engineered networks. Nature 469:207–211

    Article  Google Scholar 

  20. Goñi-Moreno A, Amos M, de la Cruz F (2013) Multicellular computing using conjugation for wiring. PLoS ONE 8:e65986

    Article  Google Scholar 

  21. Niazov T, Baron R, Katz E, Lioubashevski O, Willner I (2006) Concatenated logic gates using four coupled biocatalysts operating in series. Proc Natl Acad Sci 103:17160–17163

    Article  Google Scholar 

  22. Strack G, Pita M, Ornatska M, Katz E (2008) Boolean logic gates that use enzymes as input signals. ChemBioChem 9:1260–1266

    Article  Google Scholar 

  23. de Lorenzo V (2014) From the selfish gene to selfish metabolism: revisiting the central dogma. BioEssays

  24. Goñi-Moreno A, Amos M (2012) Continuous computation in engineered gene circuits. Biosystems 109:52–56

    Article  Google Scholar 

  25. Goñi-Moreno A, Amos M (2012) A reconfigurable nand/nor genetic logic gate. BMC Syst Biol 6:126

    Article  Google Scholar 

  26. Daniel R, Rubens JR, Sarpeshkar R, Lu TK (2013) Synthetic analog computation in living cells. Nature 497:619–623

    Article  Google Scholar 

  27. Kelly J, Rubin A, Davis J, Ajo-Franklin C, Cumbers J et al (2009) Measuring the activity of biobrick promoters using an in vivo reference standard. J Biol Eng 3:4

    Article  Google Scholar 

  28. Garg A, Lohmueller JJ, Silver PA, Armel TZ (2012) Engineering synthetic tal effectors with orthogonal target sites. Nucl Acids Res 40:7584–7595

    Article  Google Scholar 

  29. Blount BA, Weenink T, Vasylechko S, Ellis T (2012) Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS ONE 7:e33279

    Article  Google Scholar 

  30. Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA (2012) Genetic programs constructed from layered logic gates in single cells. Nature 491:249–253

    Article  Google Scholar 

  31. Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci USA 102:3581–3586

    Article  Google Scholar 

  32. Dublanche Y, Michalodimitrakis K, Kümmerer N, Foglierini M, Serrano L (2006) Noise in transcription negative feedback loops: simulation and experimental analysis. Mol Syst Biol 2

  33. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–64

    Article  Google Scholar 

  34. Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814

    Article  Google Scholar 

  35. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Article  Google Scholar 

  36. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134

    Article  Google Scholar 

  37. Goi-Moreno A, Amos M (2011) Model for a population-based microbial oscillator. Biosystems 105:286–294

    Article  Google Scholar 

  38. Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Micro 10:191–202

    Article  Google Scholar 

  39. Beal J, Lu T, Weiss R (2011) Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks. PLoS ONE 6:e22490

    Article  Google Scholar 

  40. Beal J, Weiss R, Densmore D, Adler A, Appleton E et al (2012) An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Syn Biol 1:317–331

    Article  Google Scholar 

  41. Kratz A, Tomita M, Krishnan A (2008) GeNESiS: gene network evolution simulation software. BMC Bioinf 9:541

  42. Crespo I, Krishna A, Le Bchec A, del Sol A (2013) Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states. Nucl Acids Res 41:e8

    Article  Google Scholar 

  43. Thomas S, Jin Y (2014) Reconstructing biological gene regulatory networks: where optimization meets big data. Evol Intel 7:29–47

    Article  Google Scholar 

  44. Xu R, Wunsch D, Frank R (2007) Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Trans Computat Biol Bioinf 4:681–692

    Article  Google Scholar 

  45. Lienert F, Lohmueller JJ, Garg A, Silver PA (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15:95–107

    Article  Google Scholar 

  46. Auslander S, Auslander D, Muller M, Wieland M, Fussenegger M (2012) Programmable single-cell mammalian biocomputers. Nat Adv 123–127 (online publication)

  47. Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35

    Google Scholar 

  48. Merulla D, Buffi N, Beggah S, Truffer F, Geiser M et al (2013) Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr Opin Biotechnol 24:534–541

  49. Cho MK, Relman DA (2010) Synthetic life, ethics, national security, and public discourse. Science 329:38–39

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish MINECO (PIM2010 EEI-00609), project PSEUDOMONAS 2.0: Utilización de células vivas en biocatálisis industrial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Goñi-Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goñi-Moreno, A. On genetic logic circuits: forcing digital electronics standards?. Memetic Comp. 6, 149–155 (2014). https://doi.org/10.1007/s12293-014-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-014-0136-8

Keywords

Navigation