Skip to main content

Advertisement

Log in

Many-objective optimization with corner-based search

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

The performance of multi-objective evolutionary algorithms can severely deteriorate when applied to problems with 4 or more objectives, called many-objective problems. For Pareto dominance based techniques, available information about some optimal solutions can be used to improve their performance. This is the case of corner solutions. This work considers the behaviour of three multi-objective algorithms [Non-dominated sorting genetic algorithm (NSGA-II), Speed-constrained multi-objective particle swarm optimization (SMPSO) and generalized differential evolution (GDE3)] when corner solutions are inserted into the population at different evolutionary stages. The problem of finding corner solutions is addressed by proposing a new algorithm based in multi-objective particle swarm optimization (MOPSO). Results concerning the behaviour of the aforementioned algorithms in five benchmark problems (DTLZ1-5) and respective analysis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adra SF, Fleming PJ (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans Evolut Comput 15(2):183–195 ISSN 1089–778X

    Article  Google Scholar 

  2. Bansal JC, Singh PK, Saraswat Mukesh, Verma Abhishek, Jadon Shimpi Singh, Abraham Ajith (2011) Inertia weight strategies in particle swarm optimization. In NaBIC, pp 633–640. IEEE, ISBN 978-1-4577-1122-0

  3. Bechikh S, Ben Said L, Ghedira K (2010) Estimating nadir point in multi-objective optimization using mobile reference points. In: Evolutionary computation (CEC), 2010 IEEE congress on, pp 1–9

  4. Bechikh Slim, Said Lamjed Ben, Ghédira Khaled (2010) Searching for knee regions in multi-objective optimization using mobile reference points. In SAC, pp 1118–1125

  5. Bentley PJ, Wakefield JP (1998) Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms. In: Chawdhry PK, Roy R, Pant RK (eds) Soft computing in engineering design and manufacturing. Springer, London, pp 231–240

  6. Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees in multi-objective optimization. In PPSN, pp 722–731

  7. Brockhoff Dimo, Zitzler Eckart (2009) Objective reduction in evolutionary multiobjective optimization: Theory and applications. Evolution Comput 17(2):135–166

    Article  Google Scholar 

  8. Chaudhuri S, Deb K (2010) An interactive evolutionary multi-objective optimization and decision making procedure. Appl Soft Comput 10(2):496–511 ISSN 15684946

    Article  Google Scholar 

  9. Corne D, Knowles J (2007) Techniques for highly multiobjective optimisation : some nondominated points are better than others. pp 773–780

  10. Dasgupta D, Hernandez G, Romero A, Garrett D, Kaushal A, Simien J (2009) On the use of informed initialization and extreme solutions sub-population in multi-objective evolutionary algorithms. In: Computational intelligence in miulti-criteria decision-making, 2009. MCDM ’09. IEEE symposium on, pp 58–65

  11. Deb K, Jain H (2012) Handling many-objective problems using an improved NSGA-II procedure. In: Evolutionary computation (CEC), 2012 IEEE congress on, pp 1–8

  12. Deb K, Miettinen K (2010) Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search. In: Multiple criteria decision making for sustainable energy and transportation systems, vol 634, pp 339–354. Springer, Berlin. ISBN 978-3-642-04044-3

  13. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization . In: Abraham A, Jain L, Goldberg R (eds) Evolutionary multiobjective optimization. Advanced information and knowledge processing. Springer, London, pp 105–145

  14. Deb K, Agrawal S, Pratap A, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolution Comput 6(2):182–197

    Article  Google Scholar 

  15. Deb K, Chaudhuri S, Miettinen K (2006) Towards estimating nadir objective vector using evolutionary approaches. In: Proceedings of the 8th annual conference on genetic and evolutionary computation, GECCO ’06, pp 643–650, New York, NY, USA, ACM. ISBN 1-59593-186-4

  16. Deb K, Miettinen K, Chaudhuri S (2010) Toward an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans Evolution Comput 14(6):821–841

    Article  Google Scholar 

  17. di Pierro F, Khu S-T, Savic DA (2007) An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans Evolution Comput 11(1):17–45

    Article  Google Scholar 

  18. Durillo JJ, Nebro AJ (2011) Jmetal:a java framework for multi-objective optimization. Adv Eng Softw 42:760–771 ISSN 0965–9978

    Article  Google Scholar 

  19. Fleming PJ, Purshouse RC, Lygoe RJ (2005) Many-objective optimization: an engineering design perspective. Design 3410(6):14–32 ISSN 15393755

    Google Scholar 

  20. Freire H, de Moura Oliveira PB, Solteiro Pires EJ, Lopes António M (2011) Maximin MOPSO design of parallel robotic manipulators. In: Emilio et al. Corchado, editor, SOCO, volu 87 of advances in soft computing, pp 339–347. Springer, Berlin. ISBN 978-3-642-19643-0

  21. Freire H, Moura Oliveira PB, Solteiro Pires EJ, Bessa M (2014) Corner based many-objective optimization. In: German T, Fernando EB, Otero, Antonio DM (eds) Nature inspired cooperative strategies for optimization (NICSO 2013), volume 512 of studies in computational intelligence, pp 125–139, Springer International Publishing. ISBN 978-3-319-01691-7

  22. Garza-Fabre M, Toscano-Pulido G, Coello Coello CA, Rodriguez-Tello E (2011) Effective ranking speciation many-objective optimization

  23. Gutierrez AL, Lanza M, Barriuso I, Valle L, Domingo M, Perez JR, Basterrechea J (2011) Comparison of different PSO initialization techniques for high dimensional search space problems: a test with FSS and antenna arrays

  24. Hadka D, Reed PM, Simpson TW (2012) Diagnostic assessment of the borg MOEA for many-objective product family design problems. In: Evolutionary computation (CEC), 2012 IEEE congress on, pp 1–10

  25. Hughes Evan J (2006) Radar waveform optimisation as a many-objective application benchmark. In EMO, pp 700–714

  26. Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. 2008 IEEE Congress on evolutionary computation IEEE world congress on computational intelligence (March), pp 2419–2426

  27. Jaimes Antonio L, Coello Coello CA, Chakraborty D (2008) Objective reduction using a feature selection technique. In GECCO, pp 673–680

  28. Jaimes Antonio L, Coello C, Oyama A, Fujii K (2013) An alternative preference relation to deal with many-objective optimization problems. In EMO, pp 291–306

  29. Kasprzyk Joseph R, Reed Patrick M, Characklis Gregory W, Kirsch Brian R (2012) Many-objective de novo water supply portfolio planning under deep uncertainty. Environ Model Softw, 34(0): 87–104, ISSN 1364–8152. Emulation techniques for the reduction and sensitivity analysis of complex environmental models

  30. Kennedy J, Eberhart R (1995) Particle swarm optimization. In Neural Networks, 1995. In: Proceedings., IEEE international conference on, vol 4, pp 1942–1948, 1995. ISBN 0-7803-2768-3. doi:10.1109/icnn.1995.488968

  31. Köppen M, Yoshida K (2007) Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In EMO07, pp 727–741

  32. Kukkonen S, Lampinen J (2005) GDE3: the third evolution step of generalized differential evolution. In Evolutionary computation, 2005. The 2005 IEEE congress on, vol 1, pp 443–450

  33. Latiff IA, Tokhi MO (2009) Fast convergence strategy for particle swarm optimization using spread factor. In Evolutionary computation, 2009. CEC ’09. IEEE congress on, pp 2693–2700, May 2009

  34. Li G, Hu H (2014) Risk design optimization using many-objective evolutionary algorithm with application to performance-based wind engineering of tall buildings. Struct Safety 48(0):1–14 ISSN 0167–4730

    Article  Google Scholar 

  35. Lygoe Robert J, Cary M, Fleming Peter J (2013) A real-world application of a many-objective optimisation complexity reduction process. In EMO, pp 641–655

  36. Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello Coello CA, Luna F, Alba E (2009) SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: Computational intelligence in miulti-criteria decision-making, 2009. MCDM ’09. IEEE symposium on, pp 66–73

  37. Obayashi S, Sasaki D (2003) Visualization and data mining of pareto solutions using self-organizing map. In: Proceedings of the 2nd international conference on evolutionary multi-criterion optimization, EMO’03, pp796–809, Berlin, Heidelberg, Springer-Verlag. ISBN 3-540-01869-7

  38. Pryke A, Mostaghim S, Nazemi A(2006) Heatmap visualization of population based multi objective algorithms. In: Shigeru O, Kalyanmoy D, Carlo P, Tomoyuki H Tadahiko M (eds) EMO, volume 4403 of lecture notes in computer science, pp 361–375. Springer, 2006. ISBN 3-540-70927-4

  39. Reed PM, Hadka D, Herman JD, Kasprzyk JR, Kollat JB (2013) Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv Water Resour, 51(0):438–456, ISSN 0309–1708. 35th Year Anniversary Issue

  40. Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intel Res 2(3):287–308

    MathSciNet  Google Scholar 

  41. Saxena DK, Deb K (2007) Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding. In: Proceedings of the 4th international conference on evolutionary multi-criterion optimization, EMO’07, pp 772–787, Berlin, Heidelberg, Springer-Verlag. ISBN 978-3-540-70927-5

  42. Saxena DK, Duro JA, Tiwari A, Deb K, Zhang Q (2013) Objective Reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Tran Evolut Comput 17(1):77–99 ISSN 1089–778X

    Article  Google Scholar 

  43. Schott Jason R (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, MIT, May 1995

  44. Siegmund F, Bernedixen J, Pehrsson L, Ng Amos HC, Deb K (2012) Reference point-based evolutionary multi-objective optimization for industrial systems simulation. In: Proceedings of the winter simulation conference, WSC ’12, pp 130:1–130:11. Winter Simulation Conference

  45. Sierra Margarita R, Coello Coello CA (2005) Improving pso-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Proceedings of the third international conference on evolutionary multi-criterion optimization, EMO’05, pp 505–519. Springer-Verlag, 978–3, ISBN 3-540-24983-4-540-24983-2

  46. Singh HK, Isaacs A, Ray T (2011) A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans Evolut Comput 15(4):539–556

    Article  Google Scholar 

  47. Sinha A, Saxena DK, Deb K, Tiwari A (2013) Using objective reduction and interactive procedure to handle many-objective optimization problems. Appl Soft Comput 13(1):415–427 ISSN 15684946

    Article  Google Scholar 

  48. Wierzbicki AP, Szczepanski M (2003) Application of multiple criterion evolutionary algorithm to vector optimization, decision support and reference-point approaches. Telecommun Inf Technol 3(3):16–33

    Google Scholar 

  49. Van Veldhuizen David A, Lamont Gary B (1998) Evolutionary computation and convergence to a pareto front. In Stanford University, pp 221–228. Morgan Kaufmann

  50. Walker DJ, Everson RM, Fieldsend JE (2010) Visualisation and ordering of many-objective populations

  51. Wegman Edward J (1990) Hyperdimensional data analysis using parallel coordinates. J Am Stat Assoc 85(411):664–675 ISSN 01621459

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) under PhD studentship No. SFRH/BD/79463/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio Freire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freire, H., de Moura Oliveira, P.B., Solteiro Pires, E.J. et al. Many-objective optimization with corner-based search. Memetic Comp. 7, 105–118 (2015). https://doi.org/10.1007/s12293-015-0151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-015-0151-4

Keywords

Navigation