Skip to main content
Log in

Extreme learning machine via free sparse transfer representation optimization

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a general framework for Extreme Learning Machine via free sparse transfer representation, which is referred to as transfer free sparse representation based on extreme learning machine (TFSR-ELM). This framework is suitable for different assumptions related to the divergence measures of the data distributions, such as a maximum mean discrepancy and K-L divergence. We propose an effective sparse regularization for the proposed free transfer representation learning framework, which can decrease the time and space cost. Different solutions to the problems based on the different distribution distance estimation criteria and convergence analysis are given. Comprehensive experiments show that TFSR-based algorithms outperform the existing transfer learning methods and are robust to different sizes of training data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen CP, Zhang CY (2014) Data-intensive applications, challenges, techniques and technologies: A survey on big data. Inform Sci 275:314–347

    Article  Google Scholar 

  2. Zhou ZH, Chawla N, Jin Y, Williams G (2014) Big data opportunities and challenges: Discussions from data analytics perspectives. IEEE Comput Intell Mag 9(4):62–74

    Article  Google Scholar 

  3. Kasun LLC, Zhou H, Huang GB, Vong CM (2013) Representational learning with extreme learning machine for big data. IEEE Intell Syst 28(6):31–34

    Google Scholar 

  4. Platt J (1999) Fast training of support vector machines using sequential minimal optimization, Advances in kernel methods—support vector learning 3

  5. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MathSciNet  MATH  Google Scholar 

  6. Hetch-Neilsen R (1989) Theory of the backpropagation neural network, In International Joint Conference on Neural Networks 593–605

  7. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  8. Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Networks 17(4):879–892

    Article  Google Scholar 

  9. Han F, Huang DS (2006) Improved extreme learning machine for function approximation by encoding a priori information. Neurocomputing 69:2369–2373

    Article  Google Scholar 

  10. Kim CT, Lee JJ (2008) Training two-layered feedforward networks with variable projection method. IEEE Trans Neural Networks 19:371–375

    Article  Google Scholar 

  11. Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Patt Recogn 38:1759–1763

    Article  MATH  Google Scholar 

  12. Wang Y, Cao F, Yuan Y (2011) A study on effectiveness of extreme learning machine. Neurocomputing 74:2483–2490

    Article  Google Scholar 

  13. Li GH, Liu M, Dong MY (2010) A new online learning algorithm for structure-adjustable extreme learning machine. Comp Math Appl 60:377–389

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70:3056–3062

    Article  Google Scholar 

  15. Huang GB, Li MB, Chen L, Siew CK (2008) Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 71:576–583

    Article  Google Scholar 

  16. Feng G, Huang GB, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Networks 20:1352–1357

    Article  Google Scholar 

  17. Rong HJ, Ong YS, Tan AH, Zhu Z (2008) A fast pruned-extreme learning machine for classification problem. Neurocomputing 72:359–366

    Article  Google Scholar 

  18. Rong HJ, Huang GB, Sundararajan N, Saratchandran P (2009) Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cyber Part B Cyber 39:1067–1072

    Article  Google Scholar 

  19. Yoan M, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Networks 21:158–162

    Article  Google Scholar 

  20. Lan Y, Soh YC, Huang GB (2010) Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing 73:3191–3199

    Article  Google Scholar 

  21. Zong WW, Huang GB, Chen Y (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229–242

    Article  Google Scholar 

  22. Fu H, Vong CM, Wong PK, et al (2014) Fast detection of impact location using kernel extreme learning machine. Neural Comp Appl 1–10

  23. Dai W, Yang Q, Xue G, Yu Y (2007) Boosting for transfer learning. Proc. 24th Int Confe Mach Learn 193–200

  24. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Know Data Eng 22:1345–1359

    Article  Google Scholar 

  25. Pan J, Wang X, Cheng Y et al (2014) Multi-source transfer ELM-based Q learning. Neurocomputing 137:57–64

    Article  Google Scholar 

  26. Zhang L, Zhang D (2015) Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans Instru Measur 64:1790–1801. doi:10.1109/TIM.2014.2367775

    Article  Google Scholar 

  27. Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cyber 44(12):2405–2417

    Article  Google Scholar 

  28. Huang GB (2014) An insight into extreme learning machines: Random neurons, random features and kernels. Cogn Comp 6(3):376–390

    Article  Google Scholar 

  29. Huang GB, Bai Z, Kasun LLC et al (2015) Local receptive fields based extreme learning machine. IEEE Comp Intell Magaz 10(2):18–29

    Article  Google Scholar 

  30. Tang J, Deng C, Huang GB (2015) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Networks Learn Syst. doi:10.1109/TNNLS.2015.2424995

  31. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: Theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  32. Widrow B, Greenblatt A, Kim Y, Park D (2013) The no-prop algorithm: A new learning algorithm for multilayer neural networks. Neural Networks 37:182–188

    Article  Google Scholar 

  33. Rao CR, Mitra SK (1971) Generalized inverse of matrices and its applications. Wiley, New York

    MATH  Google Scholar 

  34. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cyber Part B Cyber 42:513–529

    Article  Google Scholar 

  35. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  36. Zheng M, Bu J, Chen C, Wang C et al (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    Article  MathSciNet  Google Scholar 

  37. Lee H, Battle A, Raina R, Ng A (2006) Efficient sparse coding algorithms. Advances in Neural Information Processing Systems 801–808

  38. ORL Face Database (2005) AT&T Laboratories Cambridge, http://www.camorl.co.uk/facedatabase.html

  39. Yale Face Database (2005) Columbia Univ., http://www.cs.columbia.edu/belhumeur/pub/images/yalefaces/

  40. The USPS dataset, http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html

  41. The MNIST dataset, http://yann.lecun.com/exdb/mnist/

  42. Feng L, Ong YS, Lim MH (2013) ELM-guided memetic computation for vehicle routing. IEEE Intell Syst 8(6):38–41

    Google Scholar 

  43. Cambria E, Huang GB, Kasun LLC et al (2013) Extreme learning machines [trends & controversies]. IEEE Intell Syst 28(6):30–59

    Article  Google Scholar 

  44. Kan EM, Lim MH, Ong YS et al (2013) Extreme learning machine terrain-based navigation for unmanned aerial vehicles. Neural Comp Appl 22(3–4):469–477

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the anonymous reviewers for the valuable comments. This work was supported by the National Natural Science Foundation of China (No. 61473252) and the National Natural Science Foundation of China (No. 61375049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Mao, W., Jiang, W. et al. Extreme learning machine via free sparse transfer representation optimization. Memetic Comp. 8, 85–95 (2016). https://doi.org/10.1007/s12293-016-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-016-0188-z

Keywords

Navigation