Skip to main content
Log in

Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization (MBO), was proposed. In the present study, a novel chaotic MBO algorithm (CMBO) is proposed, in which chaos theory is introduced in order to enhance its global optimization ability. Here, 12 one-dimensional classical chaotic maps are used to tune two main migration processes of monarch butterflies. Meanwhile, applying Gaussian mutation operator to some worst individuals can effectively prevent premature convergence of the optimization process. The performance of CMBO is verified and analyzed by three groups of large-scale 0–1 knapsack problems instances. The results show that the introduction of appropriate chaotic map and Gaussian perturbation can significantly improve the solution quality together with the overall performance of the proposed CMBO algorithm. The proposed CMBO can outperform the standard MBO and other eight state-of-the-art canonical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Frome

    Google Scholar 

  2. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeding of world congress on nature and biologically inspired computing (NaBIC 2009), IEEE Publications, pp 210–214

  3. Karthikeyan S, Asokan P, Nickolas S, Page T (2015) A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems. Int J Bio-Inspir Comput 7(6):386–401

    Article  Google Scholar 

  4. Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspir Comput (accepted)

  5. Wang GG, Deb S, Gao XZ, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio-Inspir Comput (accepted)

  6. Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. In: 2015 3rd International symposium on computational and business intelligence (ISCBI 2015), Bali, Indonesia, pp 1–5

  7. Wang GG, Guo LH, Wang HQ et al (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871

    Article  Google Scholar 

  8. Wang GG, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370

    Article  Google Scholar 

  9. Cui ZH, Fan S, Zeng J et al (2013) Artificial plant optimization algorithm with three-period photosynthesis. Int J Bio-Inspir Comput 5(2):133–139

    Article  Google Scholar 

  10. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimization. Eng Optim 38(2):129–154

    Article  MathSciNet  Google Scholar 

  11. Tawhid MA, Ali AF (2016) A simplex social spider algorithm for solving integer programming and minimax problems. Mem Comput 1–20. doi:10.1007/s12293-016-0180-7

  12. Wang GG, Deb S, Cui ZH (2015) Monarch butterfly optimization. Neural Comput Appl 1–20. doi:10.1007/s00521-015-1923-y

  13. Feng YH, Wang GG, Deb S et al (2015) Solving 0–1 Knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 1–16. doi:10.1007/s00521-015-2135-1

  14. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  Google Scholar 

  15. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  16. Pecora L, Carroll T (1990) Synchronization in chaotic system. Phys Rev Lett 64:821

    Article  MathSciNet  Google Scholar 

  17. Yang DX, Li G, Cheng GD (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solit Fract 34(4):1366–1375

    Article  MathSciNet  Google Scholar 

  18. Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216:2687–2699

    MATH  Google Scholar 

  19. Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solit Fract 40(4):1715–1734

    Article  MathSciNet  Google Scholar 

  20. Gharooni-Fard G, Moein-Darbari F, Deldari H, Morvaridi A (2010) Scheduling of scientific workflows using a chaos-genetic algorithm. Proc Comput Sci 1(1):1445–1454

    Article  Google Scholar 

  21. Wang GG, Deb S, Gandomi AH et al (2015) Chaotic cuckoo search. Soft Comput 5:1–14

    Google Scholar 

  22. Wang GG, Guo LH, Gandomi AH et al (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  23. Mathews GB (1988) On the partition of numbers. Introduction to analysis of the infinite. Springer, New York

    Google Scholar 

  24. Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187:1076–1085

    MathSciNet  MATH  Google Scholar 

  25. Coelho LDS, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34(3):1905–1913

    Article  Google Scholar 

  26. Rudolph G (1997) Local convergence rates of simple evolutionary algorithms with Cauchy mutations. IEEE Trans Evol Comput 1(4):249–258

    Article  MathSciNet  Google Scholar 

  27. Hinterding R (1995) Gaussian mutation and self-adaption for numeric genetic algorithms. In: Evolutionary computation, IEEE international conference on

  28. He YC, Wang XZ, Kou YZ (2007) A binary differential evolution algorithm with hybrid encoding. J Comput Res Dev 44(9):1476–1484

    Article  Google Scholar 

  29. He YC, Song JM, Zhang JM, Gou HY (2015) Research on genetic algorithms for solving static and dynamic knapsack problems. Appl Res Comput 32(4):1011–1015

    Google Scholar 

  30. Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, Amsterdam

    MATH  Google Scholar 

  31. He YC, Zhang XL, Li WB et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117

  32. Patvardhan C, Bansal S, Srivastav A (2015) Quantum-inspired evolutionary algorithm for difficult knapsack problems. Memetic Comput 7(2):135–155

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 61272297, and 61402207) and Hebei GEO Universtiy Youth Foundation (No. QN201601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Yang, J., Wu, C. et al. Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation. Memetic Comp. 10, 135–150 (2018). https://doi.org/10.1007/s12293-016-0211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-016-0211-4

Keywords

Navigation