Skip to main content

Advertisement

Log in

Distributed event-triggered hybrid wired-wireless networked control with \({H_2}/{H_\infty }\) filtering

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Aiming at the fact that distributed multi-channel hybrid network-induced delays and noise interference may deteriorate the control performance of hybrid networked control systems, distributed event-triggered hybrid wired-wireless networked control with \({H_2}/{H_\infty }\) filtering is proposed. A distributed event-triggered mechanism is firstly employed to reduce communication burden, and two Markov chains are used to respectively describe different characters of network-induced delays of hybrid wired-wireless networks. Then, a \({H_2}/{H_\infty }\) filter is employed to improve the input signal precision of the controller, where a general closed-feedback filtering and control system model with distributed event-triggered parameters and network-induced delays of hybrid wired-wireless networks is proposed. Furthermore, the designed filter and controller enable the closed-feedback filtering and control system to be stochastic stability and to achieve a prescribed \({H_2}/{H_\infty }\) performance, and the relationships between the stability criteria and the maximum network-induced delays, distributed event-triggered parameters, the filter and controller parameters and the system performance parameter are established. Finally, simulation results confirm the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Åström K, Kumar P (2014) Control: a perspective. Automatica 50(1):3–43

    Article  MathSciNet  Google Scholar 

  2. Deaecto GS, Souza M, Geromel JC (2015) Discrete-time switch linear systems state feedback design with application to networked control. IEEE Trans Autom Control 60(3):877–881

    Article  Google Scholar 

  3. Du DJ, Qi B, Fei MR, Peng C (2015) Multiple event-triggered \({H_2}/{H_\infty }\) filtering for hybrid wired-wireless networked systems with random network-induced delays. Inf Sci 325:393–408

    Article  MathSciNet  Google Scholar 

  4. Du DJ, Qi B, Fei MR, Wang ZX (2016) Quantized control of distributed event-triggered networked control systems with hybrid wired-wireless networks communication constraints. Inf Sci. doi:10.1016/j.ins.2016.03.033

  5. Ge XH, Han QL (2015) Distributed event-triggered \({H_\infty }\) filtering over sensor networks with communication delays. Inf Sci 291:128–142

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo M, Jiang S, Guan Q, Mao H (2013) Provisioning of QoS adaptability in wired-wireless integrated networks. J Commun Netw 15(1):61–70

    Article  Google Scholar 

  7. Hu SL, Yue D, Liu JL (2012) \({H_\infty }\) filtering for networked systems with partly known distributed transmission delays. Inf Sci 194:270–282

    Article  MATH  Google Scholar 

  8. Julián P (2010) Guest editorial special section on industrial communication systems. IEEE Trans Ind Inf 6(3):365–368

    Article  Google Scholar 

  9. Khondaker MS, Roberto RC (2012) Active scheme to measure throughput of wireless access link in hybrid wired-wireless network. IEEE Wirel Commun Lett 1(6):645–648

    Article  Google Scholar 

  10. Li H, Shi Y (2012) Robust \({H_\infty }\) filtering for nonlinear stochastic systems with uncertainties and Markov delays. Automatica 48(1):159–166

    Article  MathSciNet  MATH  Google Scholar 

  11. Li L, Xia YQ (2013) Unscented Kalman filter over unreliable communication networks with Markovian packet droupouts. IEEE Trans Autom Control 58(12):3224–3230

    Article  Google Scholar 

  12. Li X, Cao J, Du DJ (2015) Probabilistic optimal power flow for power systems considering wind uncertainty and load correlation. Neurocomputing 148:240–247

    Article  Google Scholar 

  13. Mahmoud MS, Memon AM (2015) Aperiodic triggering mechanisms for networked control systems. Inf Sci 296:282–306

    Article  MathSciNet  Google Scholar 

  14. Mirabella O, Brischetto M (2011) A hybrid wired/wireless networking infrastruture for greenhouse management. IEEE Trans Instrum and Measure 60(2):398–407

  15. Pavankumar T, Nikhil C (2014) Decentralized event-triggering for control of nonlinear systems. IEEE Trans Autom Control 59(12):3312–3324

  16. Peng C, Fei MR (2013) Networked \({H_\infty }\) filtering for discrete linear systems with a periodic event-triggering communication scheme. IET Signal Process 7(8):754–765

    Article  Google Scholar 

  17. Peng C, Fei MR, Tian EG, Guan YP (2014) On hold or drop out-of-order packets in networked control systems. Inf Sci 248:436–446

    Article  MathSciNet  MATH  Google Scholar 

  18. Saha SK, Kar R, Mandal D, Ghoshal SP (2013) Design and simulation of FIR band pass and band stop filters using gravitational search algorithm. Memet Comput 5(4):311–321

    Article  Google Scholar 

  19. Shi DW, Chen TW, Shi L (2014) An event-triggered approach to state estimation with multiple point- and set-valued measurements. Automatica 50(6):1641–1648

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi Y, Yu B (2009) Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Trans Autom Control 54(7):1668–1674

    Article  MathSciNet  Google Scholar 

  21. Sikdar B (2013) A study of the environmental impact of wired and wireless local area network access. IEEE Trans Consum Electron 59(1):85–92

    Article  Google Scholar 

  22. Song Y, Dong H, Yang TC, Fei MR (2014) Almost sure stability of discrete-time Markov jump linear systems. IET Control Theory Appl 8(11):901–906

    Article  MathSciNet  Google Scholar 

  23. Song Y, Wei GL, Yang GS (2014) Distributed \({H_\infty }\) filtering for a class of sensor networks with uncertain rates of packet losses. Signal Process 104:143–151

    Article  Google Scholar 

  24. Song EB, Xu J, Zhu YM (2014) Optimal distributed Kalman filtering fusion with singular covariances of filtering errors and measurement. IEEE Trans Autom Control 59(5):1271–1282

    Article  MathSciNet  Google Scholar 

  25. Song Y, Yang J, Yang TC, Fei MR (2015) Almost sure stability of switching Markov jump linear systems. IEEE Trans Autom Control. doi:10.1109/TAC.2015.2505405

  26. Sun S, Ma J (2014) Linear estimation for networked control systems with random transmission delays and packet dropouts. Inf Sci 269:349–365

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang RN, Shi P, Liu GL, Gao HJ (2011) Network-based feedback control for systems with mixed delays based on quantization and dropout compensation. Automatica 47(12):2805–2809

    Article  MathSciNet  MATH  Google Scholar 

  28. Yue D, Tian EG, Han QL (2013) A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans Autom Control 58(2):475–481

    Article  MathSciNet  Google Scholar 

  29. Zhang WA, Yu L, Song HB (2009) \({H_\infty }\) filtering of networked discrete-time systems with random packet losses. Inf Sci 179:3944–3955

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of China (Nos. 61473182, 61533010, 61633016). The Key Project of Science and Technology Commission of Shanghai Municipality (Nos. 14JC1402200, 15JC1401900, 15220710400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Qi.

Appendix

Appendix

1.1 Proof of Theorem 1

Proof

Construct a Lyapunov function as

$$\begin{aligned} V(\tilde{\xi } (k),k) = {\tilde{\xi } ^T}(k)P(\iota ,r)\tilde{\xi } (k) \end{aligned}$$

where \(k \in \left[ {S_k^i + d_{S_k^i}^j + {\tau _{S_k^i + d_{S_k^i}^j}},} \right. \left. {S_{k + 1}^i + d_{S_{k + 1}^i}^j + {\tau _{S_{k + 1}^i + d_{S_{k + 1}^i}^j}}} \right) , i,j \in \upsilon , \tilde{\xi } (k) = dia{g_N}\left\{ {\xi (k)} \right\} \).

1. Supposed that \(\omega (k) = 0\), it follows that

where \({\Theta _{1r}} = \left[ {\begin{array}{cc} {{\chi _{11}} - P(\iota ,r)}&{}{{\chi _{12}}}\\ * &{}{{\chi _{22}}} \end{array}} \right] , \).

Moreover, for \(k \in \varOmega \), the proposed distributed event-triggered mechanism (5) ensures that

$$\begin{aligned} \begin{array}{l} {e^T}(k)e(k) \le {y^T}({S_k})\wp y({S_k})\\ = {\left[ {y(k - d(k)) - e(k)} \right] ^T}\wp \left[ {y(k - d(k)) - e(k)} \right] \\ = {{\tilde{\xi } }^T}(k){\varOmega _1}\tilde{\xi } (k) - {{\tilde{\xi } }^T}(k){\varOmega _2}e(k) - {e^T}(k)\varOmega _2^T\tilde{\xi } (k)\\ \quad + {e^T}(k)\wp e(k) \end{array} \end{aligned}$$

Therefore,

where \({\Theta _{2r}} = \left[ {\begin{array}{c@{\quad }c@{\quad }c} {{\chi _{11}} - P(\iota ,r) + {\varOmega _1}}&{}{{\chi _{12}}}&{}{ - {\varOmega _2}}\\ * &{}{{\chi _{22}}}&{}0\\ * &{} * &{}{\wp - I} \end{array}} \right] \).

If \({\Theta _{2r}} < 0\), then

where \(\beta = \inf \left\{ {{\lambda _{\min }}( - {\Theta _{2r}})} \right\} .\)

Since \(EV(\tilde{\xi } (k + 1),k + 1) - V(\tilde{\xi } (k),k) \le - \beta x{(k)^T}x(k)\), we let the inequality overlay both sides from 0 to \(\ell (\ell \rightarrow \infty )\), we have

$$\begin{aligned}&\mathop {\lim }\limits _{\ell \rightarrow \infty } EV(\tilde{\xi } (\ell + 1),\ell + 1) - V({\varphi _0},{s_0}) \le \\&\quad - \beta \mathop {\lim }\limits _{\ell \rightarrow \infty } \sum \limits _{k = 0}^\ell {x{{(k)}^T}x(k)} \\&\Rightarrow \beta \mathop {\lim }\limits _{\ell \rightarrow \infty } \sum \limits _{k = 0}^\ell {x{{(k)}^T}x(k)} \le V({\varphi _0},{s_0}) \\&\quad - \mathop {\lim }\limits _{\ell \rightarrow \infty } EV(\xi (\ell + 1),\ell + 1)\\&{ \le V({\varphi _0},{s_0})}\\&\Rightarrow \mathop {\lim }\limits _{\ell \rightarrow \infty } \sum \limits _{k = 0}^\ell {x{{(k)}^T}x(k)} \\&\quad \le \dfrac{1}{\beta }V({\varphi _0},{s_0}) < \infty \end{aligned}$$

where \({\varphi _0}\) and \({s_0}\) are the initial conditions.

Therefore, the closed-feedback filtering and control system is stochastically stable.

2. Supposed that \(\omega (k) \ne 0\), when the initial condition is zero, We have

where \({\Theta _{3r}} = \left[ {\begin{array}{cccc} {{\chi _{11}} - P(\iota ,r) + {\varOmega _1}}&{}{{\chi _{12}}}&{}{{\chi _{13}} + {\varOmega _3}}&{}{ - {\varOmega _2}}\\ * &{}{{\chi _{22}}}&{}{{\chi _{23}}}&{}0\\ * &{} * &{}{{\chi _{33}} + {{\tilde{D}}^T}\varOmega \tilde{D}}&{}{ - {{\tilde{D}}^T}\wp }\\ * &{} * &{} * &{}{\wp - I} \end{array}} \right] \).

Define \(J = E(V(\tilde{\xi } (k),k) - E(\sum \limits _{h = 0}^{k - 1} {{\omega ^T}(h)\omega (h)} )\). When the initial condition is zero, the value of E(V(0), 0) is also zero. Then, we have

where \({\Theta _{4r}} = \left[ {\begin{array}{cccc} {{\chi _{11}} - P(\iota ,r) + {\varOmega _1}}&{}{{\chi _{12}}}&{}{{\chi _{13}} + {\varOmega _3}}&{}{ - {\varOmega _2}}\\ * &{}{{\chi _{22}}}&{}{{\chi _{23}}}&{}0\\ * &{} * &{}{{\chi _{33}} + {{\tilde{D}}^T}\varOmega \tilde{D} - I}&{}{ - {{\tilde{D}}^T}\wp }\\ * &{} * &{} * &{}{\wp - I} \end{array}} \right] \).

If \({\Theta _{4r}} < 0\), we have \(J < 0\), i.e.,

$$\begin{aligned} E({\tilde{\xi } ^T}(k)P(\iota ,r)\tilde{\xi } (k)) < E(\sum \limits _{h = 0}^{k - 1} {{\omega ^T}(h)\omega (h)} ). \end{aligned}$$

Using Schur complement Lemma, (21) can be re-written as

Then, we have

Therefore, the system is stochastically stable with an \({H_2}/{H_\infty }\) noise attenuation level \(\gamma \). This completes the proof. \(\square \)

1.2 Proof of Theorem 2

Proof

From Theorem 1, (20) can be re-written as

Using Lemma 1, the above inequality can be written as

(25)

where \(\mathrm{T} = \left[ {\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} I&I&\ldots&I \end{array}} \right] \).

Substituting \(, \) and into (25), we can get the inequality (23). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, DJ., Qi, B., Wang, ZX. et al. Distributed event-triggered hybrid wired-wireless networked control with \({H_2}/{H_\infty }\) filtering. Memetic Comp. 9, 55–68 (2017). https://doi.org/10.1007/s12293-016-0217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-016-0217-y

Keywords

Navigation