Skip to main content

Advertisement

Log in

Designing optimal combination therapy for personalised glioma treatment

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Background

Like it happens in other tumours, glioma cells co-evolve in a microenvironment consisting of bona fide tumour cells as well as a range of parenchymal cells, which produces numerous signalling molecules. Recently, the results of an in silico experiment suggested that a combination therapy that would target multiple key cytokines at the same time may be more effective for suppressing the growth of a tumour. The in silico experiments also showed that the optimal combination therapy is very much dependent on a patient’s molecular profile.

Method

In this work, we employ evolutionary algorithms for designing optimal combination therapy tailored to the patient’s tumour microenvironment. Experiments were performed using a state-of-the-art glioma microenvironment model, capable of imitating many characteristics of human glioma development, and many virtual patient profiles.

Conclusions

Results show that the therapies designed by the presented memetic algorithm were very effective in impeding tumour growth and were tailored to the patient’s personal tumour microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The PSO version in the jMetal framework http://jmetal.sourceforge.net/ was used.

  2. The basic ABC version available from https://abc.erciyes.edu.tr/software.htm was used.

References

  1. Abdallah MB, Blonski M, Wantz-Mezieres S, Gaudeau Y, Taillandier L, Moureaux JM, Darlix A, de Champfleur NM, Duffau H (2019) Data-driven predictive models of diffuse low-grade gliomas under chemotherapy. IEEE J Biomed Health Inf 23(1):38–46

    Article  Google Scholar 

  2. Agarwal S, Lakoma A, Chen Z, Hicks J, Metelitsa LS, Kim ES, Shohet JM (2015) G-CSF promotes neuroblastoma tumorigenicity and metastasis via STAT3-dependent cancer stem cell activation. Cancer Res 75(12):2566–2579

    Article  Google Scholar 

  3. Bonavia R, Inda MdM, Cavenee WK, Furnari FB (2011) Heterogeneity maintenance in glioblastoma: a social network. Cancer Res 71(12):4055–4060. https://doi.org/10.1158/0008-5472.CAN-11-0153

    Article  Google Scholar 

  4. Calzolari D, Bruschi S, Coquin L, Schofield J, Feala JD, Reed JC, McCulloch AD, Paternostro G (2008) Search algorithms as a framework for the optimization of drug combinations. PLoS Comput Biol 4(12):e1000249

    Article  Google Scholar 

  5. Chheda MG, Wen PY, Hochberg FH, Chi AS, Drappatz J, Eichler AF, Yang D, Beroukhim R, Norden AD, Gerstner ER et al (2015) Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study. J Neurooncol 121(3):627–634

    Article  Google Scholar 

  6. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25(3):477–486

    Article  Google Scholar 

  7. Colman H, Aldape K (2008) Molecular predictors in glioblastoma: toward personalized therapy. Arch Neurol 65(7):877–883

    Article  Google Scholar 

  8. Colombo MC, Giverso C, Faggiano E, Boffano C, Acerbi F, Ciarletta P (2015) Towards the personalized treatment of glioblastoma: integrating patient-specific clinical data in a continuous mechanical model. PLoS ONE 10(7):e0132887

    Article  Google Scholar 

  9. Cruickshanks N, Zhang Y, Yuan F, Pahuski M, Gibert M, Abounader R (2017) Role and therapeutic targeting of the HGF/MET pathway in glioblastoma. Cancers 9(7):87

    Article  Google Scholar 

  10. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  11. Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2(9):458–466

    Article  Google Scholar 

  12. Ge SG, Xia J, Sha W, Zheng CH (2017) Cancer subtype discovery based on integrative model of multigenomic data. IEEE/ACM Trans Comput Biol Bioinf 14(5):1115–1121

    Article  Google Scholar 

  13. Godlewski J, Krichevsky AM, Johnson MD, Chiocca EA, Bronisz A (2014) Belonging to a network–microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro Oncol 17(5):652–662

    Article  Google Scholar 

  14. Greco F, Vicent MJ (2009) Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 61(13):1203–1213

    Article  Google Scholar 

  15. Han J, Alvarez-Breckenridge CA, Wang QE, Yu J (2015) TGF-\(\beta \) signaling and its targeting for glioma treatment. Am J Cancer Res 5(3):945–955

    Google Scholar 

  16. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  17. Li G, Qin Z, Chen Z, Xie L, Wang R, Zhao H (2017) Tumor microenvironment in treatment of glioma. Open Med 12(1):247–251

    Article  Google Scholar 

  18. Moscato P, Cotta C (2019) An accelerated introduction to memetic algorithms. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. Springer, Berlin, pp 275–309

    Chapter  Google Scholar 

  19. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  20. Qi L, Yu H, Zhang Y, Zhao D, Lv P, Zhong Y, Xu Y (2016) IL-10 secreted by M2 macrophage promoted tumorigenesis through interaction with JAK2 in glioma. Oncotarget 7(44):71673–71685

    Article  Google Scholar 

  21. Rape A, Ananthanarayanan B, Kumar S (2014) Engineering strategies to mimic the glioblastoma microenvironment. Adv Drug Deliv Rev 79–80:172–183

    Article  Google Scholar 

  22. Salacz ME, Kast RE, Saki N, Brüning A, Karpel-Massler G, Halatsch ME (2016) Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ regimen. OncoTargets Therapy 9:2535–2545

    Article  Google Scholar 

  23. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  24. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R et al (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9(4):287–300

    Article  Google Scholar 

  25. Tarassishin L, Lim J, Weatherly DB, Angeletti RH, Lee SC (2014) Interleukin-1-induced changes in the glioblastoma secretome suggest its role in tumor progression. J Proteomics 99:152–168

    Article  Google Scholar 

  26. Tong D, Liu Q, Wang La, Xie Q, Pang J, Huang Y, Wang L, Liu G, Zhang D, Lan W et al (2018) The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev 37(2–3):355–368

    Article  Google Scholar 

  27. Truong T, Moscato P, Noman N (2019) A computational approach for designing combination therapy in combating glioblastoma. In: 2019 IEEE congress on evolutionary computation (CEC), pp 127–134. https://doi.org/10.1109/CEC.2019.8790337

  28. Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, Chen J (2015) The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 17(3):239–255

    Article  Google Scholar 

  29. Weller M, Stupp R, Hegi M, Wick W (2012) Individualized targeted therapy for glioblastoma: fact or fiction? Cancer J 18(1):40–44

    Article  Google Scholar 

  30. Wu Y, Lu Y, Chen W, Fu J, Fan R (2012) In silico experimentation of glioma microenvironment development and anti-tumor therapy. PLoS Comput Biol 8(2):e1002355

    Article  MathSciNet  Google Scholar 

  31. Zhu VF, Yang J, LeBrun DG, Li M (2012) Understanding the role of cytokines in glioblastoma multiforme pathogenesis. Cancer Lett 316(2):139–150

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Rong Fan and Dr. Yu Wu for sharing the code of their GBM model. P.M. thanks a generous donation from the Maitland Cancer Appeal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasimul Noman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 624 KB)

Supplementary material 2 (xlsx 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noman, N., Moscato, P. Designing optimal combination therapy for personalised glioma treatment. Memetic Comp. 12, 317–329 (2020). https://doi.org/10.1007/s12293-020-00312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-020-00312-7

Keywords

Navigation