Skip to main content
Log in

An adaptive multiobjective evolutionary algorithm based on grid subspaces

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

The successful application of multi-objective evolutionary algorithms (MOEAs) in many kinds of multiobjective problems have attracted considerable attention in recent years. In this paper, an adaptive multi-objective evolutionary algorithm is proposed by incorporating the concepts of the grid system (denoted as AGMOEA). Based on grid, the objective space is divided into subspaces. Based on the quality and dominance relationship between subspaces, the evolutionary opportunities are dynamically allocated to different subspaces with an adaptive selection strategy. To improve the evolutionary efficiency, the evolutionary scheme and an external archive mechanism considering representative individuals are proposed. The experimental results on 21 benchmark problems demonstrate that the proposed algorithm is competitive or superior to the rival algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13

Similar content being viewed by others

References

  1. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. International Conference on Parallel Problem Solving from Nature. Springer, , Berlin. https://doi.org/10.1007/3-540-45356-3_83

    Book  Google Scholar 

  2. Zhang Q-F, Li H (2007) MOEA/D: a multiobjective evolutionary al gorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  3. Sathya Sofia A, Ganeshkumar P (2017) Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II. J Netw Syst Manage. https://doi.org/10.1007/s10922-017-9425-0

    Article  Google Scholar 

  4. Tang L-X, Zhao Y, Liu J-Y (2014) An improved differential evolution algorithm for practical dynam-ic scheduling in steelmaking-continuous casting production. IEEE Transactions on Evolutionary Computation 18(2):209-225. https://doi.org/10.1109/TEVC.2013.2250977

  5. Wang C-X, Zhang W-Q, Xiao L, Gen, Mitsuo (2017) Hybrid multiobjective evolutionary algorithm with differential evolution for process planning and scheduling problem. International Conference on Management Science and Engineering Management. Springer, Cambridge. Doi https://doi.org/10.1007/978-3-319-59280-0_17

  6. Hojjati A, Monadi M, Faridhosseini A, Mohammadi M (2018) Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. J Hydrol Hydromech 66(3):323–329. https://doi.org/10.2478/johh-2018-0006

    Article  Google Scholar 

  7. Tang L-X, Meng Y (2021) Data analytics and optimization for smart industry. Frontier Eng Manag 8(2):157–171. https://doi.org/10.1007/s42524-020-0126-0

  8. Li J, Chen G, Li M, Chen H (2020) An enhanced-indicator based many-objective evolutionary algorithm with adaptive reference point. Swarm Evol Comput 55:100669. https://doi.org/10.1016/j.swevo.2020.100669

    Article  Google Scholar 

  9. Tang L-X, Wang X-P, Dong Z-M (2019) Adaptive multiobjective differential evolution with reference axis vicinity mechanism. IEEE Trans Cybern 49(9):3571–3585. https://doi.org/10.1109/TCYB.2018.2849343

    Article  Google Scholar 

  10. Wang X-P, Dong Z-M, Tang L-X (2020) Multiobjective differential evolution with personal archive and biased self-adaptive mutation selection. IEEE Trans Syst Man Cybern Syst 50(12):5338–5350. https://doi.org/10.1109/TSMC.2018.2875043

    Article  Google Scholar 

  11. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271. https://doi.org/10.1109/4235.797969

    Article  Google Scholar 

  12. Zitzler E, Laumanns M, Thiele L (2004) SPEA2: improving the performance of the strength pareto evolutionary algorithm. Parallel Prob Solv Nat PPSN VIII 3242(4):742–751. https://doi.org/10.1007/978-3-540-30217-9_75

    Article  Google Scholar 

  13. Corne DW, Knowles JD, Oates MJ (2000) The pareto envelope-based selection algorithm for multiobjective optimization. International Conference on Parallel Problem Solving from Nature, pp 839–848. Doi https://doi.org/10.1007/3-540-45356-3_82

  14. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: Region-based Selection in Evolutionary Multiobjective Optimization. Proceedings of the genetic and evolutionary computation conference, GECCO, pp 283–290. Doi https://doi.org/10.5555/2955239.2955289

  15. Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archived evolution strategy. Evol Comput 8(2):149–172. https://doi.org/10.1162/106365600568167

    Article  Google Scholar 

  16. Hernández-Díaz AG, Santana-Quintero LV, Coello Coello CA, Molina J (2007) Pareto-adaptive epsilon-dominance. Evol Comput 15(4):493. https://doi.org/10.1162/evco.2007.15.4.493

    Article  Google Scholar 

  17. Qin Y, Ji J, Song Y, et al. (2011) A fast and elitist grid selection evolutionary algorithm for Multi-objective Optimization: GSEA. Seventh International Conference on Natural Computation. IEEE. Doi https://doi.org/10.1109/ICNC.2011.6022313

  18. Rachmawati L, Srinivasain D (2007) Dynamic resizing for grid-based archiving in evolutionary multi objective optimization. IEEE Congress on Evolutionary Computation. IEEE. Doi https://doi.org/10.1109/CEC.2007.4424989

  19. Yuan Q-Z, Zheng J-H, Li M-Q, Zou J (2011) A multi-objective evolutionary based on Hybrid Adaptive Grid Algorithm. Seventh International Conference on Natural Computation. IEEE. Doi https://doi.org/10.1109/ICNC.2011.6022260

  20. Mei Z , Cai X , Fan Z (2016) A grid-based decomposition for evolutionary multiobjective optimization. Bio-Inspired Computing—Theories and Applications. Springer Singapore. Doihttps://doi.org/10.1007/978-981-10-3614-9_38

  21. Cai X, Mei Z, Fan Z, Zhang Q (2017) A constrained decomposition approach with grids for evolutionary multiobjective optimization. IEEE Trans Evol Comput 99:1–1. https://doi.org/10.1109/TEVC.2017.2744674

    Article  Google Scholar 

  22. Cheng J-X, Yen GG, Zhang G-X (2016) A grid-based adaptive multi-objective differential evolution algorithm. Inf Sci. https://doi.org/10.1016/j.ins.2016.07.009

    Article  Google Scholar 

  23. Hui F, Zhan X-H et al (2017) Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty. PLoS ONE 12(9):0185454. https://doi.org/10.1371/journal.pone.0185454

    Article  Google Scholar 

  24. Leng R, Ouyang A, Liu Y et al (2019) A Multi-Objective Particle Swarm Optimization Based on Grid Distance. Int J Patt Recogn Artif Intell 34(3):20590089. https://doi.org/10.1142/S0218001420590089

    Article  Google Scholar 

  25. Wang W-L, Li W-K, Wang Z et al (2019) Opposition-based multi-objective whale optimization algorithm with global grid ranking. Neurocomputing 341(14):41–59. https://doi.org/10.1016/j.neucom.2019.02.054

    Article  Google Scholar 

  26. Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 17(5):721–736. https://doi.org/10.1109/TEVC.2012.2227145

    Article  Google Scholar 

  27. Yue X, Guo Z, Yin Y et al (2016) Many-objective E-dominance dynamical evolutionary algorithm based on adaptive grid. Soft Comput 22:137–146. https://doi.org/10.1007/s00500-016-2314-8

    Article  Google Scholar 

  28. Zou J, Fu L-W, Zheng Y-G et al (2018) A many-objective evolutionary algorithm based on rotated grid. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2018.02.031

    Article  Google Scholar 

  29. Cai X-Y, Sun H-R, Zhang Q-F, Huang Y-H (2019) A grid weighted sum pareto local search for combinatorial multi and many-objective optimization. IEEE Trans Cybern 49:1–13. https://doi.org/10.1109/TCYB.2018.2849403

    Article  Google Scholar 

  30. Cai X, Xiao Y, Li M et al (2020) A grid-based inverted generational distance for multi/many-objective optimization. IEEE Trans Evol Comput 99:1–1. https://doi.org/10.1109/TEVC.2020.2991040

    Article  Google Scholar 

  31. Zhu Q-L, Lin Q-Z, Du Z-H et al (2016) A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm. Inf Sci. https://doi.org/10.1016/j.ins.2016.01.046

    Article  Google Scholar 

  32. Tang L-X, Wang X-P (2013) A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems. IEEE Trans Evol Comput 17(1):20–45. https://doi.org/10.1109/TEVC.2012.2185702

    Article  Google Scholar 

  33. Agrawal RB, Deb K, Agrawal RB (1994) Simulated binary crossover for continuous search space. Complex Syst 9(3):115–148. Doi 10.1.1.26.8485

    MathSciNet  MATH  Google Scholar 

  34. Deb K, Anand A, Joshi D (2014) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Comput 10(4):371–395. https://doi.org/10.1162/106365602760972767

    Article  Google Scholar 

  35. Tsutsui S, Yamamura M, Higuchi T (1999) Multi-parent recombination with simplex crossover in real coded genetic algorithms. Proceedings of the Genetic and Evolutionary Computation Conference, 1, Orlando, FL, USA, 657–664. Doi https://doi.org/10.5555/2933923

  36. Eshelman LJ, Schaffer JD (1992) Real-coded genetic algorithms and interval-schemata FOGA 2:187–202. https://doi.org/10.1016/B978-0-08-094832-4.50018-0

    Article  Google Scholar 

  37. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195. https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

  38. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. Congress on Evolutionary Computation. IEEE. Doi https://doi.org/10.1109/CEC.2002.1007032

  39. Huband S, Barone L, While L, Hingston P (2005) A Scalable Multi-objective Test Problem Toolkit. Lect Notes Comput Sci 3410:280–295. https://doi.org/10.1007/978-3-540-31880-4_20

    Article  MATH  Google Scholar 

  40. Wang J-H, Zhang W-W, Zhang J (2015) Cooperative differential evolution with multiple populations for multiobjective optimization. IEEE Trans Cybern 46:2848–2861. https://doi.org/10.1109/TCYB.2015.2490669

    Article  Google Scholar 

  41. Li K, Fialho A, Kwong S, Zhang QF (2014) Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 18(1):114–130. https://doi.org/10.1109/TEVC.2013.2239648

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2018YFB1700404), the Fund for the National Natural Science Foundation of China (62073067), the Major Program of National Natural Science Foundation of China (71790614), the Major International Joint Research Project of the National Natural Science Foundation of China (71520107004), and the 111 Project (B16009), and the Fundamental Research Funds for the Central Uni-versities (N2128001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianpeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, X. An adaptive multiobjective evolutionary algorithm based on grid subspaces. Memetic Comp. 13, 249–269 (2021). https://doi.org/10.1007/s12293-021-00336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-021-00336-7

Keywords

Navigation