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Abstract
Dynamicmultiobjective optimization problems (DMOPs) require the evolutionary algorithms that can track themovingPareto-
optimal fronts efficiently. This paper presents a dynamic multiobjective evolutionary framework (DMOEF-MS), which adopts
a novel multipopulation structure and Steffensen’s method to solve DMOPs. In DMOEF-MS, only one population deals with
the original DMOP, while the others focus on single-objective problems that are generated by the weighted summation of
the original DMOP. Then, Steffensen’s method is used to control the evolving process in two ways: prediction and diversity-
maintenance. Particularly, the prediction strategy is devised to predict the next promising positions for the individuals that
handle single-objective problems, and the diversity-maintenance strategy is used to increase population diversity before the
environment changes and reinitialize themultiple populations after the environment changes. This paper gives a comprehensive
comparison of DMOEF-MS with some state-of-the-art DMOEAs on 14 DMOPs and the experimental results demonstrate
the effectiveness of the proposed algorithm.

Keywords Dynamic multiobjective optimization · Steffensen’s method · Multipopulation structure · Prediction strategy ·
Diversity-maintenance strategy

Mathematics Subject Classification 68T01 · 68T20

1 Introduction

With multiple conflicting objectives, multiobjective opti-
mization problems (MOPs) [1] have been successfully solved
by various evolutionary algorithms (EAs), such as NSGA-II
[2], SPEA2 [3], MOPSO [4], MOEA/D [5], ACO [6], and so
forth. Since lots of real-world MOPs need to be optimized in
dynamic environments [7–11], how to extend multiobjective
evolutionary algorithms (MOEAs) to solve dynamicmultiob-
jective optimization problems (DMOPs) has attracted more
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and more attention. For static MOEAs, the goal is to find
accurate and well-distributed Pareto-optimal fronts (PFs).
However, with time-varying optimization environments, a
dynamicmultiobjective evolutionary algorithm (DMOEA) is
expected to find the ideal PF at the current environment and
locate the new PF efficiently after the environment changes.
Therefore, a promising DMOEA should take into account
the two following issues:

– Convergence speed. In a dynamic optimization envi-
ronment, the PF may change over time. Therefore, a
DMOEA is required to converge rapidly before the envi-
ronment changes.

– Population diversity. A DMOEA should be capable of
locating the new PF after the environment changes. A
poor population diversity may hinder a DMOEA from
tracking the moving PF, especially after the environment
changes.

Most of the existing DMOEAs are derived fromMOEAs,
which are originally designed to solve MOPs in static
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environments. In recent years, plenty of dynamic handling
strategies have been inserted into the classicMOEAs to solve
DMOPs. According to their inherent behaviors, the existing
techniques can be classified into different categories, such
as diversity introduction/maintenance strategies [12–15],
memory-based strategies [16–20], Multipopulation-based
strategies [21–25], and prediction-based strategies [18,26–
29]. Among all of these techniques, multipopulation-based
and prediction-based strategies have received great concern.
Particularly, multipopulation-based strategies carry out par-
allel exploration in searching space to maintain population
diversity, prediction-based strategies are used to accelerate
the convergence speed by predicting the next most likely
positions of individuals.

In this paper, a multipopulation framework which coop-
erates with Steffensen’s method [30], namely DMOEF-
MS, is introduced to solve DMOPs. In many existing
multipopulation-based methods, the multiple populations
cooperate to explore the searching space and focus on the
same DMOP. In this case, each population evolves with
less diversity-related guiding information obtained from its
optimization problem. This paper proposes a multipopula-
tion framework, in which one population deals with the
original DMOP and the others handle the single-objective
problems that are generated by the weighted summation
method. The single-objective problems, which are differ-
ent from each other, are presented in forms of nonlinear
functions. Therefore, Steffensen’s method, which is a classi-
cal and efficient algorithm for solving nonlinear equations,
is inserted into the proposed multipopulation framework
to improve the performance of DMOEF-MS. The detailed
description of Steffensen’s method is presented in Sect. 2.3.
Steffensen’s method is adopted to control the evolving pro-
cess of DMOEF-MS in two ways: prediction and diversity-
maintenance strategies. Particularly, the prediction strategy is
devised to predict the new location of the individuals that han-
dle single-objective problems, and the diversity-maintenance
strategy is used to increase the population diversity at fixed
intervals of generations and reinitialize the multiple pop-
ulations after the environment changes. DMOEF-MS was
compared with some state-of-the-art DMOEAs on 14 bench-
mark DMOPs, and the experimental results demonstrate the
effectiveness of the proposed algorithm. The main contribu-
tions of this paper are listed as follows.

(1) A multipopulation framework is proposed. This frame-
work contains M + 1 populations, and M is the number
of objectives in a DMOP. Each of the first M populations
handles a single-objective problem, which is obtained
as the weighted sum of the original M objective func-
tions. The last population (the (M + 1)th population)
optimizes the original DMOP. The interaction of popu-
lations is achieved by a common repository population

(REP), which stored the Pareto-optimal solutions found
by all the M + 1 populations

(2) A prediction strategy which is inspired by Steffensen’s
method is introduced to update the individuals in the first
M populations.

(3) A diversity-maintenance strategy is used to increase the
population diversity at fixed intervals of generations
before the environment changes and reinitialize the mul-
tiple populations after the environment changes.

The rest of this paper is organized as follows. Section 2
introduces the background knowledge of DMOPs and the
basic knowledge of Steffensen’s method. In Sect. 3, the
detailed description of the proposed DMOEF-MS is given.
Section 4 presents the comparative experiments and the
obtained results. Section 5 is the concluding remarks.

2 Background knowledge

A MOP can be stated as follows:

min
x

F(x) = [ f1(x), f2(x), . . . , fM (x)] (1)

where x = [x1, x2, . . . , xN ] ∈ � and � is the searching
space, F : � → RM and RM is the objective space. Since
a MOP consists of M conflicting objective functions, one
cannot find a solution that can optimization all the M objec-
tive functions simultaneously. Suppose a, b ∈ RM , a is said
dominate b if and only if ai ≤ bi for all i = 1, 2, . . . , M and
a �= b. x� ∈ � is called a Pareto-optimal solution if there
is no x ∈ � such that F(x) dominate F(x�). For Multi-
objective evolutionary algorithms, the purpose is finding a
Pareto-optimal set (PS), which contains a number of Pareto-
optimal solutions. The set of all the objective vectors of PS
is the Pareto-optimal front (PF).

The continuous DMOPs [27] adopted in this paper are
defined as follows:

min
x

F(x, t) = [ f1(x, t), f2(x, t), . . . , fM (x, t)] (2)

where x = [x1, x2, . . . xN ] is the candidate solution, N is
the dimension of the searching space. M is the number of
objective functions. t is the index of the current environment,
and F(x, t) is the objective vector of x in the t th environment.

For DMOPs, the challenge is designing efficient dynamic
handling strategies, which are used to make a balance
between population diversity and convergence speed thro-
ughout the whole dynamic optimization process. Besides,
DMOEAs should also be able to detect environmental
changes if they are not assumed to be knowable. The fol-
lowing sections present some representative studies of the
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change detection and dynamic handling strategies as well as
the basic knowledge of Steffensen’s method.

2.1 Change detection

There are two widely used methods for change detection.

2.1.1 Reevaluation of dedicated detectors

If the reevaluated objective value is different from the orig-
inal one, then the environment is considered to be changed
[12,31]. As an easy-to-implement method, it is also a robust
detection if enough detectors are adopted. However, this
detection method requires additional function evaluations
and may generate inaccurate detection results for a noisy
optimization function.

2.1.2 Assessment of algorithms’ behaviors

In this method, the environmental change is detected if there
is a discrepancy between an algorithm’s behaviors and the
statistical information obtained from its evolving population
[32]. This method does not require additional function eval-
uations. However, it may need problem-related parameters
and lead to an overreaction when no environmental change
occurs.

2.2 Dynamic handling strategies

Many efficient dynamic handling strategies have been pro-
posed in recent years. Most existing techniques can be
classified into the following four categories: diversity intro-
duction/maintenance strategies, memory-based strategies,
multipopulation-based strategies, and prediction-based str-
ategies.

2.2.1 Diversity introduction/maintenance strategies

The following techniques are widely used to introduce or
maintain population diversity. Deb et al. [12] proposed a
DNSGA-II, which replaced a portion of the population indi-
viduals with mutated or randomly generated ones. This
technique can be easily implemented, but the introduction
of population diversity may at the cost of the loss of useful
information. To solve this problem, several problem-related
immigration strategies, which include hybrid immigration
[33], memory-based immigration [15], and elitism-based
immigration [13], are presented. Besides, local searching is
also an efficient way to introduce population diversity. Vavak
et al. [34] proposed a variable local search strategy (VLS) to
increase the population diversity. In VLS, the mutation rate
is increased gradually as the algorithm runs. Ruan et al. [14]
devised a diversity maintenance strategy (DMS) to increase

the population diversity by generating new individuals in the
estimated regions, which were determined according to the
previous information of the decision vectors.

2.2.2 Memory-based strategies

For memory-based strategies, the basic principle is reusing
past information to improve the performance of aDMOEA in
the new environment after changes and thus memory-based
strategies are suitable for DMOPs with periodically chang-
ing environments. Branke [16] proposed a memory scheme,
which adopted amemory archive to store the best individuals
in the population. After the environment changes, the indi-
viduals in the memory archive will be reused to initialize the
population.GohandTan [17] devised adynamic competitive-
cooperation co-evolutionary algorithm (dCOEA), in which
the memory archive was modified by replacing the outdated
solutions. Wang and Li [20] proposed two memory schemes
to utilize the individuals stored in the memory archive. In the
first scheme, the stored individuals are randomly selected
as the members of the initial population after the environ-
ment changes. While in the second scheme, the individuals
are modified before used. Recently, memory-based strate-
gies have usually cooperated with other strategies to improve
the performance of DMOEAs. For instance, Peng et al. [19]
presented a novel prediction and memory strategy (PMS).
In PMS, the stored individuals can be used more efficiently
since they are reevaluated before used. Liang et al. [18] pro-
posed a hybrid of memory and prediction strategies (HMPS),
which devised a memory-based technique to predict the new
locations of the individuals.

2.2.3 Multipopulation-based strategies

The basic idea of multipopulation-based strategies is to
conduct simultaneous exploration in searching space by
multiple populations. With the strong parallel processing
ability, multipopulation-based strategies have demonstrated
its effectiveness for DMOPs with multiple peaks. Branke
et al. [35] proposed a multipopulation-based algorithm to
solve DMOPs. This algorithm uses several smaller popula-
tions to track the most promising peaks over time, while a
larger population is continuously searching for new peaks.
Goh and Tan [17] proposed a competitive and coopera-
tive mechanism to interact between multiple subpopulations
for handling DMOPs. Particularly, each subpopulation will
compete to represent a particular subcomponent of the orig-
inal MOP, and the winners will cooperate to generate the
eventual solutions. Shang et al. [21] presented a quan-
tum immune clonal co-evolutionary algorithm (QICCA) to
solveDMOPs. Havingmultiple populations, QICCAuses U-
measure to control the competition between populations and
a new cooperative operation to get better solutions. Liu et al.

123



480 Memetic Computing (2021) 13:477–495

[22] proposed a modified coevolutionary multi-swarm parti-
cle swarm optimizer (CMPSODMO) to solve DMOPs with
rapidly changing environments. In CMPSODMO, the num-
ber of swarms is determined by the number of the objective
functions, and an information-sharing strategy is adopted to
realize the interaction among all swarms. Gong et al. [23]
introduced a framework of dynamic interval multi-objective
cooperative co-evolutionary optimization. In this framework,
the decision variables are divided into two groups according
to the interval similarity, and two populations are generated
to optimize the above-mentioned two variable groups coop-
eratively. In a parallel DMOEA [24], the decision variables
are divided into several groups according to Spearman rank
correlation analysis. Then multiple subpopulations, which
are utilized to optimize the variable groups in parallel, coop-
erate to solve DMOPs with changing variables. Xu et al. [25]
proposed a cooperative co-evolutionary strategy for solving
DMOPs. In this strategy, the decision variables are divided
into two subcomponents according to whether or not they
interrelate with the environment. Then two subpopulations,
which optimize two subcomponents respectively, are adopted
to explore the searching space. It can be seen from the
description mentioned above that how to construct multiple
populations and interact among the populations has a crucial
influence on the performance of the multipopulation-based
strategies.

2.2.4 Prediction-based strategies

The basic idea of the prediction-based strategies is reusing
as much information from the past environment to speed up
the searching process in the new environment. Therefore,
prediction-based strategies always cooperate with memory-
based strategies and are widely adopted to solve DMOPs
with periodic and trending changes. Hatzakis and Wallace
[26] proposed a forward-looking approach to solve DMOPs.
The proposed approach uses an autoregressive (AR) model
to predict the new positions of the individuals according to
a sequence of optimum solutions generated from the previ-
ous environments. Zhou et al. [27] presented a population
prediction strategy (PPS), which divided the Pareto-optimal
Set (PS) into two parts: a center point and a manifold. In
particular, the next center point is predicted by a univariate
AR model according to a series of stored center points, the
next manifold is estimated according to the manifolds gener-
ated in the past two environments. Wu et al. [28] introduced
a directed search strategy (DSS) to accelerate the conver-
gence speed. In DSS, the new individuals are predicted by
using the moving directions generated from the PS in the
previous two generations. Muruganantham et al. [36] pro-
posed a new DMOEA, which used the Kalman filter (KF)
to estimate the next locations of the solutions. Jiang and
Yang [37] presented a steady-state and generational evolu-

tionary algorithm (SGEA),which relocate thePareto-optimal
solutions according to the information collected from the pre-
vious and current environments. Jiang et al. [38] proposed a
Tr-DMOEA, which combined population-based EAs with
transfer learning to solve DMOEAs. Li et al. [39] introduced
a special points-based hybrid prediction strategy (SHPS)
for solving DMOPs. In SHPS, the initial population in a
new environment consists of two parts: the predicted special
points and the individuals predicted by PPS. Rong et al. [40]
adopted multiple prediction models to relocate the Pareto-
optimal solutions once the environment changes. Liang et
al. [18] proposed an MOEA/D-HMPS, which adopted two
prediction strategies to relocate the Pareto-optimal solutions
according to whether the current environmental change is
similar to the historical changes. Rong et al. [29] proposed a
multi-model prediction (MMP) method to tackle continuous
DMOPswithmore than one type of the unknownPS changes.
MMP method utilizes four prediction models to handle dif-
ferent types of PS changes.

2.3 Steffensen’s method

As a classical problem in scientific computation, how to find
the root of a nonlinear equation f (a) = 0 has been widely
concerned over the years. Among the variety of root search-
ing methods, Newton’s method [41] is probably the most
famous one. The iterative process of Newton’s method can
be implemented according to Eq. (3), with a(0) as the initial
estimate of the root. As shown in Eq. (3), a(g) is the current
root, a(g + 1) is the root after one iteration, f

′
(a(g)) is the

derivation value of a(g). However, the fact that it is difficult
to obtain the derivation of a nonlinear function sometimes
limits the application of Newton’s method.

a(g + 1) = a(g) − f (a(g))

f ′
(a(g))

, g = 0, 1, 2, . . . (3)

As a notable improvement of Newton’s method, Stef-
fensen’s method [30] is proposed. It can be seen fromEq. (4),
the derivative f

′
(a(g)) is replaced by f (a(g)+ f (a(g)))− f (a(g))

f (a(g)) .
In other words, Steffensen’s method is derivation free. The
theoretical analysis given by Conte and Boor [42] demon-
strates that both Newton’s method and Steffensen’s method
are quadratic convergence.

a(g + 1) = a(g) − f (a(g))2

f (a(g) + f (a(g))) − f (a(g))
,

g = 0, 1, 2, . . . (4)
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3 Dynamic multipopulation evolutionary
framework with Steffensen’s method
(DMOEF-MS)

This paper proposes a dynamic multipopulation evolution-
ary framework (DMOEF-MS), which integrates Steffensen’s
method into a novel multipopulation framework to solve
DMOPs. In this section, the motivation and framework of the
proposed algorithm are given, followed by a detailed descrip-
tion of the key components in DMOEF-MS.

3.1 Motivations of DMOEF-MS

As described in Sect. 2.2.3, the basic idea ofmultipopulation-
based strategies is that multiple populations cooperate to
explore searching spaces and compete to generate promis-
ing solutions. With the strong parallel processing abil-
ity, multipopulation-based strategies have demonstrated its
effectiveness for DMOPs with multiple peaks. However, in
many existing multipopulation-based algorithms, the mul-
tiple populations focus on the same optimization problem.
In this case, two different populations may generate Pareto-
optimal solutions that focus on the same or close areas in
PFs, which may cause a waste of computations. In the mul-
tipopulation structure of DMOEF-MS, multiple populations
handle different optimization problems, respectively. There-
fore, the adopted multipopulation structure can improve the
ability of DMOEF-MS to maintain population diversity and
obtain well-distributed PFs, since the multiple populations
focus on different areas of PFs by handling different opti-
mization problems.

For DMOEAs with prediction-based strategies, the basic
idea is to reuse as much information from the past envi-
ronment to speed up the searching process in the new
environment. Thus prediction-based strategies always coop-
erate with memory-based strategies and are widely adopted
to solve DMOPs with periodic and trending changes. How-
ever, the selection and utilization of memory information
from past environments have a crucial influence on the
performance of DMOEAs. The improper use of past infor-
mation may directly weaken the performance of a DMOEA
with prediction-based strategies and memory strategies. In
DMOEF-MS, Steffensen’s prediction strategy is used to pre-
dict the next likely positions of the individuals that handle
single-objective problems. The proposed prediction strategy
is implemented according to the populations in the current
environment. On the one hand, Steffensen’s prediction strat-
egy can easily find more accurate solutions with the help of
Steffensen’s method, which is a classical and efficient root-
searching method for solving nonlinear equations. On the
other hand, without reusing the information from the past
environment, DMOEF-MS does not need to consider the
selection and utilization of the past information.

Fig. 1 Theoretical block diagram of DMOEF-MS

Moreover, Steffensen’s diversity-maintenance strategy is
proposed to increase the population diversity during the
whole run in DMOEF-MS. In this strategy, a closeness met-
ric is introduced to measure the closeness between a solution
and the weight vectors, which are evenly distributed in the
objective space. With the guidance of the closeness metric,
Steffensen’s diversity-maintenance strategy try to reduce the
waste of computations while increasing the population diver-
sity in DMOEF-MS.

The detailed description of the framework and key com-
ponents of DMOEF-MS are given in Sect. 3.2.

3.2 Overall framework of DMOEF-MS

The overall framework ofDMOEF-MS is illustrated in Fig. 1,
and the detailed procedure of the proposed algorithm can be
found in Algorithm 1. M is the dimension of the objective
space, t is the index of the current environment, g is the num-
ber of generations. DMOEF-MS starts with initial multiple
populations and a repository population (REP) which stores
the Pareto-optimal solutions found so far. Among the mul-
tiple populations, each of the first M populations handles a
single-objective problem that is generated by the weighted
summation method. The last population (the(M + 1)th pop-
ulation) optimizes the original DMOP. For a DMOP, if the
environmental change is not detected, then the next posi-
tions of the individuals in the first M populations can be
updated by Steffensen’s prediction strategy (line 9). Since
(POPM+1) deals with the original DMOP, which can be
regarded as a static MOP when no environmental change
occurs, thus POPM+1 can be evolved according to any
existing MOEAs. In this paper, the underlying MOEA is
NSGA-II [2] (line 10), which has received significant atten-
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Algorithm 1 Overall framework of DMOEF-MS
Input:
M (dimension of the objective space)
n1 (size of the first M populations)
n2 (size of the last population)
Output:
REP(g)
1: Set t = 0, g = 0, REP(g) = ∅;
2: Randomly initialize the multiple populations P(g) =

{POP1(g), POP2(g), . . . , POPM+1(g)}, where |POPi (g)| =
n1 (i = 1, 2, . . . , M) and |POPM+1(g)| = n2;

3: while stopping criterion is not met do
4: g = g + 1;
5: if the environmental change occurs then
6: Reinitialize themultiple populations according to Steffensen’s

diversity-maintenance strategy and REP(g);
7: t = t + 1;
8: end if
9: Obtain POPi (g)(i = 1, 2, . . . , M) by Steffensen’s prediction

strategy;
10: Obtain POPM+1(g) according to NSGA-II;
11: Obtain REP(g) as the nondominated solutions found by all

populations so far;
12: if mod(g, s) = 0 then
13: Update REP(g) by Steffensen’s diversity-maintenance strat-

egy;
14: end if
15: end while

tion due to its good optimization performance in solving
MOPs since proposed. To increase the population diver-
sity, Steffensen’s diversity-maintenance strategy is adopted
to update REP at fixed intervals of generations, which is
determined by a preset parameter s (line 12). Moreover,
Steffensen’s diversity-maintenance strategy is also used to
reinitialize the multiple populations in DMOEF-MS when
the environment changes (line 6).

3.3 Key components in DMOEF-MS

The following section gives a detailed description of the
key components in DMOEF-MS, including the construction
of single-objective problems, change detection, Steffensen’s
prediction strategy, Steffensen’s diversity-maintenance strat-
egy, and reinitialization strategy.

3.3.1 Construction of single-objective problems

For the i th (i = 1, 2, . . . , M) population, its optimization
function can be obtained according to Eq. (5), where M is
the dimension of the objective space, f j is the j th objec-
tive function of the original DMOP, λ j is the j th element of
λ, λ = [λ1, λ2, . . . , λM ] is a randomly generated vector and
M∑

j=1
λ j = 1. By exchanging values between λi and the largest

member in λ, λi is set to be the largest one in λ for the i th
(i = 1, 2, . . . , M) population POPi , as shown in Eq. (5). In

other words, POPi (i = 1, 2, . . . , M) places emphasis on
the i th objective function. Therefore, for a DMOP with M
objective functions, POP1, POP2, . . . , POPM will focus
ondifferent objective functions during their evolvingprocess.
The first M populations and the last population POPM+1,
which handles the original DMOP, will share the nondom-
inated solutions found in their evolving process in order to
get well-distributed Pareto-optimal solutions.

min
x

Gi (x) =
M∑

j=1

λ j f j (x)

λi = max{λ j | j = 1, 2, . . . , M}
(5)

3.3.2 Change detection

Since there is no noise in the test DMOPs adopted in this
paper, the environmental change is detected by reevaluating
the selected detectors. Specifically, several individuals are
selected as detectors, and the objective values of the detectors
are re-calculated at each generation. Please note that it will
cost additional function evaluations to detect environmental
changes. If the new objective values are different from the
previous ones, then the environmental change can be thought
to be detected.

3.3.3 Prediction strategy based on Steffensen’s method

In DMOEF-MS, the first M populations deal with single-
objective problems, which are obtained according to Eq. (5).
Suppose the single-objective problem for POPi (1 ≤ i ≤
M) is Gi (x). Then, Steffensen’s method can be utilized to
update the individuals in POPi . Suppose x(g) is an individ-
ual in POPi at the gth generation, Gi (x(g)) is the objective
value of x(g). As shown in Eq. (6), r is randomly gener-
ated in (0, 1). Therefore, l is smaller than Gi (x(g)). The
goal of the proposed prediction strategy is to decrease the
value of Gi (x(g)), since the original DMOP is a minimiza-
tion problem. In this case, Gi (x(g)) can be decreased by
reducing Gi (x(g)) to l. Suppose x j (g) is the j th dimension
which is chosen to be predicted. Thus, the problem becomes
finding the root of the nonlinear equation Gi (x j ) − l = 0,
with x j (g) as its initial root. Therefore, the next position of
x j (g), namely x j (g + 1), can be estimated by the proposed
prediction strategy, which is based on the above-mentioned
Steffenson’s method. Steffensen’s method can be imple-
mented according to Eq. (7), where x j (g + 1) is the updated
value after using the proposed prediction strategy, N is the
dimension of the searching space. In this case, Steffensen’s
prediction strategy will cost at most 2 × N function evalu-
ations for producing each offspring. The detailed procedure
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of the Steffensen’s prediction strategy is shown in Algorithm
2.

Algorithm 2 Steffensen’s prediction strategy
Input:
N (dimension of the searching space)
x(g)
Output:
x(g + 1)
1: Set j = 1, stop_ f lag = 0;
2: Obtain l by Eq. (6);
3: while stop_ f lag = 0 do
4: Obtain x j (g + 1) by Eq. (7);
5: if Gi (x(g + 1)) ≤ l or j ≥ N then
6: stop_ f lag = 1;
7: else
8: j = j + 1;
9: end if
10: end while

l = r · Gi (x(g)), r ∈ (0, 1) (6)

Hi (x j (g)) = Gi (x j (g)) − l

x j (g + 1) = x j (g)

− Hi (x j (g))2

Hi (x j (g) + Hi (x j (g))) − Hi (x j (g))
, 1 ≤ j ≤ N

(7)

3.3.4 Diversity-maintenance strategy based on Steffensen’s
method

A DMOEA must have a fast convergence speed in order to
find the ideal Pareto-optimal solutions before the environ-
mental change occurs. In this paper, Steffensen’s prediction
strategy is proposed to accelerate the convergence speed.
However, fast convergence speed may also lead to a rapid
loss of population diversity. As shown in Fig. 2, the obtained
Pareto-optimal solutions may concentrate in a small area of
the whole PF, which makes it difficult to track the ideal PF
after the environment changes.

This paper devises a diversity-maintenance strategy,which
is also based on Steffensen’s method, to increase the popula-
tion diversity. In Steffensen’s diversity-maintenance strategy,
the objective space is divided by a set of evenly distributed
weight vectors. Suppose the dimension of the objective space
is 2. As shown in Fig. 3, w1,w2, . . . ,wu are u weight
vectors and the solid points represent the Pareto-optimal
solutions found by algorithms so far. Steffensen’s diversity-
maintenance strategy is designed to maintain population
diversity by obtaining u well-distributed solutions, which are
as close as possible to the u weight vectors respectively.

Fig. 2 Representation of unevenly distributed solutions

Fig. 3 Steffensen’s diversity-maintenance strategy

The most important step in Steffensen’s diversity-main-
tenance strategy is to evaluate the closeness between a
solution and a weight vector. To demonstrate the closeness
metric used in this paper, x and w3 in Fig. 3 are taken as
an example. Specifically, the closeness metric c between x
and w3 can be calculated according to Eq. (8). Let x∗ be
the projection of x on w3. As illustrated in Fig. 3, d1 is the
distance between x and x∗, and d2 is the distance between
x∗ and O. θ > 0 is a preset accuracy parameter and is set
to 0.5 in this paper. Therefore, the smaller the value of c,
the closer x to w3. r is randomly generated in (0, 1), hence
c1 = r · c is smaller than c. In this case, a solution that is
closer to w3 can be obtained by finding the root of the non-
linear equation c − c1 = 0, as shown in Eq. (9). Similarly
to Sect. 3.3.3, the nonlinear equation can be solved accord-
ing to Steffensen’s method. In Eq. (9), x j and x̂ jare the j th
elements of x before and after using Steffensen’s diversity-
maintenance strategy. The detailed procedure of Steffensen’s
diversity-maintenance strategy is given in Algorithm 3.

c = d1 + θ · d2
c1 = r · c, r ∈ (0, 1) (8)

L(x j ) = c − c1

x̂ j = x j − L(x j )2

L(x j + L(x j )) − L(x j )
, 1 ≤ j ≤ N (9)
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Algorithm 3 Steffensen’s diversity-maintenance strategy
Input:
REP
N (dimension of the searching space)
u (number of the weight vectors)
w1,w2, . . . ,wu (the weight vectors)
Output:
REP
1: Set newREP = REP
2: for i = 1 to u do
3: Obtain x, which is the closest to wi from REP;
4: Obtain c and c1 by Eq. (8), respectively;
5: Set j = 1, stop_ f lag = 0;
6: while stop_ f lag = 0 do
7: Obtain a j by Eq. (9);
8: if L(x) ≤ c1 then
9: Replace the j th dimension of x with x̂ j ;
10: end if
11: j = j + 1;
12: if j ≥ N then
13: stop_ f lag = 1;
14: end if
15: end while
16: newREP = {newREP, x};
17: end for
18: Obtain REP as the nondominated solutions in newREP .

Algorithm 4 Reinitialization strategy
Input:
REP
M (dimension of the objective space)
n1 (size of the first M populations)
n2 (size of the last population)
w1,w2, . . . ,wu (the weight vectors)
Output:
POP1, POP2, . . . , POPM , POPM+1

1: Reevaluate the members of REP in the new environment;
2: POP ← the nondominated solutions in REP;
3: for i = 1 to M + 1 do
4: POPi = POP;
5: if i ≤ M then
6: n = n1;
7: else
8: n = n2;
9: end if
10: while

∣
∣POPi

∣
∣ < n do

11: Select a weight vector w from w1,w2, . . . ,wu randomly;
12: Obtain the individual a, which is the closest tow from POP;
13: Update a according to Steffensen’s diversity-maintenance

strategy (Algorithm 3 lines 4–15);
14: POPi ← {POPi , a}
15: end while
16: if

∣
∣POPi

∣
∣ > n then

17: Reduce
∣
∣POPi

∣
∣ to n by removing members from POPi

randomly;
18: end if
19: end for

3.3.5 Reinitialization strategy

In this paper, the multiple populations will be reinitialized
by reusing the nondominated solutions in REP obtained in
the last environment when the environmental change occurs.
Steffensen’s diversity-maintenance strategy is adopted in the
reinitialization process to increase the population diversity
after the environment changes. The detailed procedure is
shown in Algorithm 4.

4 Experimental study

4.1 Test problems and parameter settings

According to whether the PFs or PSs change with the envi-
ronment, DMOPs fall into four types.

– Type1: PS changes while PF remains fixed.
– Type2: PS changes while PF changes.
– Type3: PS remains fixed while PF changes.
– Type4: PS remains fixed while PF remains fixed.

In this paper, the proposed DMOEF-MS is tested on 14
DMOPs, whose detailed information is given in Table 1.
The FDA test problems are frequently adopted in the perfor-
mance assessment of DMOEAs and the dMOP test problems
are an extension of the FDA problems. The above two test
suits consist of 8 problems, which pertain to different types
of DMOPs and have linear linkages between the decision
variables. For FDA3 and FDA5 in the FDA test suite, the
density distribution of the Pareto-optimal solutions along PF
is time-varying, whichmakes it difficult for DMOEAs to find
the Pareto-optimal solutions that can maintain a good dis-
tribution over time. For dMOP3 in the dMOP test suite, the
variables that control the spread of the PF are time-changing,
whichmakes it difficult for DMOEAs tomaintain population
diversity, especially when the environment changes. The F
test suite is composed of ten problems and four of them (F1–
F4) are chosen from the FDA and dMOP test suites. This
paper utilizes the other test instances (F5–F10), which have
nonlinear linkages between the decision variables. Unlike the
test problems which have smoothly changing environments,
the environmental changes are sharp and irregular for F9 and
F10.

As described in Sect. 3.2, the underlying MOEA adopted
in the proposed DMOEF-MS is NSGA-II. To evaluate the
effectiveness of the proposed strategies, DMOEF-MS is
compared with two dynamic NSGA-II algorithms, namely
DNSGA-II-A and DNSGA-II-B [12]. Furthermore, for com-
prehensive assessment, the proposed DMOEF-MS is also
compared with four state-of-the-art DMOEAs: MOEA/D
with ahybrid ofmemory andprediction strategies (MOEA/D-
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Table 1 Detailed information of test problems

Test problem Number of objec-
tives

Type of the DMOP References

FDA1 2 Type1 [43]

FDA2 2 Type3 [43]

FDA3 2 Type2 [43]

FDA4 3 Type1 [43]

FDA5 3 Type2 [43]

dMOP1 2 Type3 [17]

dMOP2 2 Type2 [17]

dMOP3 2 Type1 [17]

F5 2 Type2 [27]

F6 2 Type2 [27]

F7 2 Type2 [27]

F8 3 Type1 [27]

F9 2 Type2 [27]

F10 2 Type2 [27]

HMPS) [18], quantum immune clonal coevolutionary algo-
rithm based on competition and cooperation among multiple
populations (QICCA) [21], steady-state and generational
evolutionary algorithm (SGEA) [37], and Kalman Filter pre-
diction implemented in MOEA/D-DE (MOEA/D-KF) [36].

The parameter settings used in the test problems and the
comparative algorithms are as follows. For all test problems,
the index of environments t is calculated as Eq. (10). Where
g is the number of generations, nt and τt are the severity
and frequency of the environmental changes, respectively.
In this paper, nt is set to 10, and τt is set to 300. The
maximal number of function evaluations is set to 30,000
before the environmental change occurs and the environ-
ment will change 40 times in each run. To get statistical
results, each algorithm will run 20 times for each test prob-
lem independently. For all algorithms, the population size is
set to 100 for 2-objective problems and 105 for 3-objective
problems. Specifically, the population sizes of the multiple
populations in DMOEF-MS are shown in Table 2. Following
MOEA/D-KF and MOEA/D-HMPS, 10 individuals, which
are randomly generated in searching space is reevaluated to
detect the environmental changes in DMOEF-MS. The con-
struction method of the weight vectors used in DMOEF-MS
can refer to Das and Dennis [44], which provided an efficient

way to produce a set of points that are evenly distributed
in a multidimensional space. In the proposed algorithm, the
empirical setting of the number of weight vectors is shown in
Table 2. Moreover, the parameter s in Algorithm 1 is set to 5,
which means Steffensen’s diversity-maintenance strategy is
implemented at intervals of 5 generations. In DNSGA-II-A
and DNSGA-II-B, the re-initialization parameter ζ is set to
20, and the hypermutation rate is 0.5.

t = 1

nt
� g
τt

� (10)

4.2 Performancemetrics

In this paper, the following metrics are adopted to assess
the performance of algorithms in terms of convergence and
diversity.

4.2.1 Modified inverted generational distance

Modified inverted generational distance (MIGD) [27] is
derived from the inverted generational distance (IGD)
[45,46], which can be calculated according to Eq. (11) and is
widely used to evaluate the performance of MOEAs in static
environments. In Eq. (11), F(xi , t) is the objective value
of xi in the t th environment, ‖F(xi , t) − F(xi , t)‖ is the
Euclidean distance between F(xi , t) and F(xi , t). P∗

t is a
set of points which are evenly distributed along the ideal PF
in the t th environment, and |P∗

t | is the number of the mem-
bers in P∗

t . Pt is the Pareto-optimal solutions obtained by the
algorithm that needs to be assessed. IGD assesses the per-
formance of an algorithm in terms of diversity and accuracy.
If IGD = 0 then each solution in P∗

t will be found in Pt . In
this case, the obtained Pareto-optimal solutions are just on
the ideal PF and do not miss any part of the whole PF. As
shown in Eq. (12), |T | is the number of the environmental
changes in a single run.

IGD(P∗
t , Pt ) =

∑
xi∈P∗

t
d(xi , Pt )

|P∗
t |

d(xi , Pt ) = min
x j∈Pt

{‖F(xi , t) − F(x j , t)‖} (11)

Table 2 Parameter settings in
DMOEF-MS

Population size Number of weight vectors

2-Objective problems The first 2 populations 30 21

The last population 40 28

3-Objective problems The first 3 populations 25 21

The last population 30 28
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Fig. 4 Computation of HV in 2-dimensional objective space

MIGD(P∗
t , Pt ) = 1

|T |
∑

1≤t≤|T |
IGD(P∗

t , Pt ) (12)

4.2.2 Modified hypervolume

Modified hypervolume (MHV ) [18] is an extension of HV
[47] and can be calculated as shown in Eq. (13). HV com-
putes the area of the hypervolumewhich is constructed by the
obtained Pt and a reference point z∗. For minimization prob-
lems, z∗ = [z1+0.1, z2+0.1, . . . , zM+0.1], zi (1 ≤ i ≤ M)

is the maximum objective value for the i th objective function
in the t th environment, M is the dimension in the objective
space. Suppose M = 2, the computation of HV is shown in
Fig. 4.

MHV = 1

|T |
∑

1≤t≤|T |
HV (Pt , z∗) (13)

4.3 Investigation of parameter s in DMOEF-MS

In DMOEF-MS, s controls the frequency of using Stef-
fensen’s diversity-maintenance strategy. If s is too large,
Steffensen’s diversity-maintenance strategy will function
inadequately. However, if s is too small, too much function
evaluations will be spent on maintaining population diver-
sity. To demonstrate the influence of s on the performance of
DMOEF-MS, FDA1 and dMOP2 are taken as examples. In
this section, s is set to 1, 3, 5, 7, and 9, respectively.

Figure 5 shows the mean MIGD and MHV obtained
by DMOEF-MS with s changing from 1 to 9 for FDA1
and dMOP2 over 20 independent runs. It can be seen from
Fig. 5, as s decreases, MIGD and MHV tend to become
better at first, and then become worse severely. If s is too
small, DMOEF-MS will spend too much function evalua-
tions on Steffensen’s diversity-maintenance strategy and the
other strategies proposed in DMOEF-MS will function inad-
equately, since themaximum number of function evaluations
has been given for each environment in this paper. If s is too
large, DMOEF-MS will have a poor performance in main-
taining population diversity. As Fig. 5 shows, DMOEF-MS
with s = 5 performs best in terms of bothMIGD andMHV

for FDA1. For dMOP2, DMOEF-MSwith s = 5 also has the
best performance in terms of MHV . Therefore, s is set to 5
in this paper.

4.4 Performance comparison with DNSGA-II-A and
DNSGA-II-B

Tables 3 and 4 present the statistical results of MIGD and
MHV values obtained by DMOEF-MS, DNSGA-II-A and
DNSGA-II-B for all test problems. The boldface numbers in
Tables 3 and 4 represent the best results obtained by all 3
algorithms.

It can be seen from Tables 3 and 4 that the proposed
algorithm has achieved the best performance for most of
the test problems in terms of MIGD and MHV . Since
the underlying MOEA in DMOEF-MS is NSGA-II, the fact
that DMOEF-MS performs better than DNSGA-II-A and
DNSGA-II-B may indicate the effectiveness of the pro-
posed strategies in DMOEF-MS. In DNSGA-II-A, 20%
of the population are reinitialized randomly in the search-
ing space when the environmental change occurs. How-
ever, in DNSGA-II-B, 20% of the population are mutated
to adapt to a new environment. Therefore, DNSGA-II-A
may perform better for problems with large environmental
change. As shown in Tables 3 and 4, DNSGA-II-A per-
forms better than DNSGA-II-B for F9 and F10, in which
the environment changes sharply and irregularly. For FDA3,
DMOEF-MS is ranked in second and third place in terms
of MIGD and MHV , respectively. For FDA5, DMOEF-
MS is ranked in third place in terms of MIGD. For
FDA3 and FDA5, the density distribution of the Pareto-
optimal solutions along PF changes over time. However,
in Steffensen’s diversity-maintenance strategy adopted in
DMOEF-MS, a set of evenly distributed weight vectors is
used to obtain the Pareto-optimal solutions. As a result,
Steffensen’s diversity-maintenance strategy may weaken the
performance of DMOEF-MS, as shown in Fig. 6b. For F8,
DMOEF-MS performs worse than DNSGA-II-B in terms of
MIGD. However, the MHV value obtained by DMOEF-
MS is the best among the 3 algorithms.

To better compare the performance of the 3 (k) algo-
rithms on all the 14 (N ) test problems, the Friedman test and
the pairwise post hoc Bonferroni–Dunn test [48] are con-
ducted on the statistical results. Table 5 gives the average
ranks achieved by the 3 algorithms on all test problems in
terms of MIGD and MHV . The boldface numbers give
the best rank values obtained by DNSGA-II-A, DNSGA-
II-B, and DMOEF-MS. As shown in Table 5, for MIGD
and MHV , the Friedman statistic (FF ) values are greater
than the critical value of the F-distribution with (k − 1) and
(k−1)×(N−1) degrees of freedom at 90% confidence level
(F0.1(2, 26) = 2.52). In this case, the Friedman test reports
significant differences among the comparative algorithms for
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Fig. 5 MIGD and MHV
obtained by DMOEF-MS with
different s

Table 3 Statistical values of
MIGD obtained by
DMOEF-MS, DNSGA-II-A and
DNSGA-II-B

Problem DNSGA-II-A DNSGA-II-B DMOEF-MS

FDA1 2.66E−02±4.75E−03 2.69E−02±1.26E−03 9.78E−03±4.43E−04

FDA2 8.92E−02±9.72E−02 8.94E−02±6.06E−03 1.12E−02±3.70E−03

FDA3 1.94E−02±5.22E−02 1.15E−01±8.40E−02 2.00E−02±1.94E−03

FDA4 8.51E−02±1.66E−02 8.43E−02±2.04E−03 6.25E−02±1.62E−03

FDA5 1.31E−01±4.31E−02 1.33E−01±3.18e-02 1.45E−01±5.85E−02

dMOP1 6.80E−02±3.99E−02 3.34E−02±1.31E−02 8.94E−03±6.99E−04

dMOP2 5.62E−01±9.49E−02 6.95E−02±8.67E−02 6.27E−03±4.93E−04

dMOP3 4.38E−01±6.83E−02 3.63E−01±6.20E−02 5.75E−02±4.73E−03

F5 9.63E−01±3.48E−01 5.77E−01±1.09E−01 4.66E−02±4.07E−03

F6 6.05E−01±9.39E−02 5.72E−01±3.29E−02 9.55E−02±2.54E−03

F7 5.90E−01±7.71E−02 4.23E−01±2.71E−01 4.76E−02±7.14E−03

F8 2.09E−01±2.25E−02 1.92E−01±1.37E−01 1.97E−01±2.43E−02

F9 1.35E+00±5.81E−01 2.10E+00±5.06E−01 4.65E−01±9.29E−03

F10 1.32E−01±4.37E−01 1.49E−01±2.53E−01 5.80E−02±3.50E−03

both MIGD and MHV . After that, the pairwise post hoc
Bonferroni-Dunn test is conducted for pairwise comparison
between DMOEF-MS and the other comparative algorithms.
The critical difference (CD) according to the Bonferroni-
Dunn test at 90% confidence level is 0.74. As shown in Table
5, the differences between the average ranks of DMOEF-MS
and the other comparative algorithms are greater than 0.74,

which means DMOEF-MS performs better than DNSGA-
II-A and DNSGA-II-B at 90% confidence level in terms of
both MIGD and MHV . In other words, as shown in Fig. 6,
DMOEF-MS generates solutions more efficiently and stably
than the other two algorithms for most test problems.

123



488 Memetic Computing (2021) 13:477–495

Table 4 Statistical values of
MHV obtained by
DMOEF-MS, DNSGA-II-A and
DNSGA-II-B

Problem DNSGA-II-A DNSGA-II-B DMOEF-MS

FDA1 7.96E-01±4.62E-02 7.79E-01±5.00E-02 8.32E-01±4.50E-04

FDA2 1.09E+00±5.57E-01 1.08E+00±1.61E-01 1.12E+00±1.56E-03

FDA3 1.23E+00±9.21E-02 1.02E+00±5.77E-02 9.05E-01±1.31E-01

FDA4 6.55E-01±9.30E-03 6.70E-01±9.58E-03 7.30E-01±8.53E-03

FDA5 1.22E+00±1.27E-01 1.38E+00±2.43E-01 2.85E+00±1.23E-03

dMOP1 6.30E-01±3.61E-02 6.67E-01±3.55E-02 6.69E-01±3.69E-02

dMOP2 5.11E-01±4.52E-02 4.69E-01±3.79E-01 6.36E-01±7.06E-03

dMOP3 7.81E-01±1.84E-01 8.12E-01±5.14E-02 8.47E-01±6.49E-03

F5 5.17E-01±2.76E-02 4.96E-01±7.13E-02 7.52E-01±1.83E-02

F6 6.32E-01±1.93E-02 6.64E-01±3.19E-02 6.97E-01±4.46E-02

F7 4.17E-01±3.89E-02 5.45E-01±9.16E-02 7.05E-01±5.32E-02

F8 4.43E-01±9.04E-03 4.73E-01±5.19E-02 5.78E-01±4.70E-03

F9 5.68E-01±9.23E-02 5.20E-01±3.79E-02 6.84E-01±3.31E-02

F10 3.78E-01±3.18E-02 3.12E-01±1.97E-02 6.91E-01±2.61E-02

4.5 Effects of the key operators in DMOEF-MS

The key operators adopted in DMOEF-MS are Steffensen’s
prediction strategy, Steffensen’s diversity-maintenance strat-
egy, and the reinitialization strategy. Since the multiple
populations in DMOEF-MS are reinitialized based on Stef-
fensen’s diversity-maintenance strategy, the contributions
of Steffensen’s prediction and diversity-maintenance strate-
gies are studied in this section. In this section, two variants
of DMOEF-MS are adopted to demonstrate the effective-
ness of the two strategies mentioned above. One variant is
DMOEF-MS without Steffensen’s prediction strategy and
the other one is DMOEF-MS without Steffensen’s diversity-
maintenance strategy. In DMOEF-MS without Steffensen’s
diversity-maintenance strategy, the multiple populations are
reinitialized randomly in searching space when the environ-
ment changes. Twoproblems, namely FDA1and dMOP2, are
tested in this section. Figure 7 demonstrates the meanMIGD
values obtained by 3 algorithms over 20 independent runs.
It can be seen from Fig. 7 that the performance of DMOEF-
MS without Steffensen’s prediction strategy is significantly
worse than that of DMOEF-MS for FDA1 and dMOP2. This
may indicate that the proposed prediction strategy does help
the algorithm find more promising solutions throughout the
whole run. The performance of DMOEF-MS without Stef-
fensen’s diversity-maintenance strategy is also worse than
that of DMOEF-MS for FDA1 and dMOP2. Therefore, Stef-
fensen’s diversity-maintenance strategy also can improve the
performance of DMOEF-MS in terms of IGD. As shown in
Fig. 7, Steffensen’s prediction strategy may play a greater
role in improving the performance of DMOEF-MS.

4.6 Influence of the severity and frequency of
environmental changes

To investigate the performance of DMOEF-MS on DMOPs
with different change severity and frequency, FDA1 and
dMOP2 are tested in this section. To study the influence of
nt (severity of the environmental change), τt (frequency of
the environmental change) is fixed to 30 and nt is set to 5, 10,
and 20, respectively. In this section, the number of environ-
mental changes in a single run is set to 120. The mean values
and the standard deviations of MIGD of 20 independent
runs on FDA1 and dMOP2 are demonstrated in Fig. 8. It can
be observed from Fig. 8, the performance of DMOEF-MS
becomes better as nt increases. Similarly, to investigate the
influence of τt , nt is fixed to 10 and τt is set to 10, 20 and 30,
respectively. The mean values and the standard deviations of
MIGD of 20 independent runs on FDA1 and dMOP2 are
demonstrated in Fig. 9. As Fig. 9 shows, the performance of
DMOEF-MS also becomes better as τt increases.

4.7 Performance comparison with other DMOEAs

Tables 6 and 7 present the statistical results of MIGD
and MHV obtained by MOEA/D-HMPS, QICCA, SGEA,
MOEA/D-KF, and the proposed DMOEF-MS. According
to Tables 6 and 7, DMOEF-MS achieves the best MIGD
values in 7 out of 14 problems and the best MHV values
in 8 out of 14 problems. The statistical results may indi-
cate the effectiveness of the proposed strategies adopted
in DMOEF-MS. On the one hand, Steffensen’s prediction
strategy improves the ability to find promising solutions.
As described in Sect. 3.2, most individuals in DMOEF-MS
deal with single-objective problems, which can be optimized
by solving nonlinear functions. Therefore, Steffensen’s pre-
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Fig. 6 Average IGD values
obtained by DNSGA-II-B and
DMOEF-MS over the number
of environmental changes for 20
runs

diction strategy can obtain the next positions of individuals
efficiently with the help of Steffensen’s method. On the other
hand, the adopted multipopulation structure and Steffensen’s
diversity maintenance strategy are effective for maintaining
population diversity. Moreover, the reinitialization strategy
improves the ability to adapt to the new environments in
DMOEF-MS.

Table 8 shows the average ranks of MOEA/D-HMPS,
QICCA, SGEA, MOEA/D-KF, and DMOEF-MS by the
Friedman test. The boldface numbers are the best results
achieved by all 5 algorithms. It can be see from Table 8

that the statistic value FF is greater than F0.1(5 − 1, (5 −
1) × (14 − 1)). Therefore, there are significant differences
among the 5 algorithms at 90% confidence level. As shown in
Table 8, the proposed DMOEF-MS achieves the best and the
second-best average ranks in terms of MIGD and MHV ,
respectively.

Although Steffensen’s prediction strategy adopted in
DMOEF-MS can help the algorithm find accurate and effi-
cient solutions, the experimental results in Tables 6 and 7
show that DMOEF-MS does not achieve the best perfor-
mance for some test problems. For FDA3 and FDA5, the
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Table 5 Average ranks of
algorithms by Friedman test for
MIGD and MHV

Algorithm Average Rank Average Rank Difference
w.r.t. DMOEF-MS

MIGD

DNSGA-II-A 2.43 1.14

DNSGA-II-B 2.29 1.00

DMOEF-MS 1.29 —

Statistic Value FF 8.91

MHV

DNSGA-II-A 2.5 1.36

DNSGA-II-B 2.36 1.22

DMOEF-MS 1.14 —

Statistic Value FF 16.52

Fig. 7 Average IGD values of
DMOEF-MS and two variants

Fig. 8 MIGD on FDA1 and
dMOP2 with different τt

density distribution of the Pareto-optimal solutions changes
over time. In other words, the ideal Pareto-optimal solu-
tions are not evenly distributed along the PFs in some
stages of the whole run. Thus the proposed Steffensen’s
diversity-maintenance strategy, which obtains the Pareto-
optimal solutions under the guidance of a set of evenly
distributed weight vectors, may weaken the performance
of DMOEF-MS sometimes. For dMOP3, population diver-

sity is particularly important since the variables that control
the spread of PFs are time-changing. In MOEA/D-KF and
MOEA/D-HMPS, the underlyingMOEAisMOEA/D,which
can help to increase population diversity in the algorithms.
In QICCA, the coevolutionary competitive and cooperative
operators, which can obtain uniform and diverse solutions,
help QICCAfind good approximations of the ideal solutions.
Therefore, DMOEF-MS performs relatively worse than
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Fig. 9 MIGD on FDA1 and
dMOP2 with different nt

Table 6 Mean and Standard
Deviation values of MIGD
obtained by DMOEF-MS and
other DMOEAs

Problem MOEA/D-HMPS QICCA SGEA MOEA/D-KF DMOEF-MS

FDA1 1.27E−02 4.69E−02 4.45E−02 1.16E−02 9.78E−03

(1.31E−04) (2.35E−03) (6.94E−03) (9.70E−04) (1.50E−04)

FDA2 7.82E−03 3.07E−02 2.29E−01 1.27E−02 1.12E−02

(3.44E−04) (4.38E−03) (2.81E−02) (4.65E−03) (3.70E−03)

FDA3 1.90E−02 4.33E−02 3.86E−02 2.25E−02 2.00E−02

(2.86E−03) (2.86E−03) (4.45E−03) (1.64E−03) (1.94E−03)

FDA4 8.84E−02 1.27E−01 9.53E−02 9.14E−02 6.25E−02

(3.75E−03) (9.76E−03) (2.97E−03) (5.51E−03) (1.62E−03)

FDA5 1.59E−01 1.81E−01 1.15E−01 1.65E−01 1.45E−01

(3.40E−02) (1.19E−02) (3.59E−02) (4.89E−02) (5.85E−02)

dMOP1 6.90E−03 1.07E−02 9.11E−03 9.19E−03 8.94E−03

(9.23E−04) (7.51E−03) (2.51E−03) (5.06E−04) (6.99E−04)

dMOP2 7.12E−03 2.63E−02 1.32E−02 9.13E−03 6.27E−03

(3.92E−04) (5.93E−03) (4.72E−03) (3.86E−04) (4.93E−04)

dMOP3 4.81E−02 5.46E−02 7.85E−02 3.09E−02 5.75E−02

(2.57E−04) (6.16E−03) (2.51E−03) (1.96E−03) (4.73E−03)

F5 6.49E−02 7.06E−01 5.27E−01 6.56E−02 4.66E−02

(3.51E−03) (4.83E−02) (4.58E−02) (5.94E−03) (4.07E−03)

F6 9.85E−02 5.19E−01 4.28E−01 1.80E−01 9.55E−02

(9.17E−03) (2.85E−02) (3.75E−02) (3.77E−02) (2.54E−03)

F7 5.25E−02 7.34E−02 6.57E−01 6.22E−02 4.76E−02

(3.80E−03) (5.67E−03) (7.79E−03) (5.40E−03) (7.14E−03)

F8 2.84E−01 3.75E−01 3.67E−01 2.93E−01 1.97E−01

(1.01E−02) (3.79E−02) (9.34E−03) (1.29E−02) (2.43E−02)

F9 3.43E−02 3.92E−01 2.31E−01 3.55E−01 4.65E−01

(5.68E−03) (4.69E−02) (3.37E−02) (1.62E−02) (9.29E−03)

F10 7.06E−02 3.18E−01 2.77E−01 3.71E−02 5.80E−02

(7.94E−03) (1.12E−02) (5.28E−03) (5.28E−03) (3.50E−03)

MOEA/D-KF, MOEA/D-HMPS and QICCA for dMOP3
in terms of MIGD. F9 and F10 are relatively difficult
to optimize among the test problems. In MOEA/D-HMPS,
two different response strategies are adopted according to
whether the current environmental change is similar to the

historical changes. Therefore, for F9 and F10, MOEA/D-
HMPS outperform DMOEF-MS, in which the predication
process is only based on the information in the current pop-
ulation.
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Table 7 Mean and Standard
Deviation values of MHV
obtained by DMOEF-MS and
Other DMOEAs

Problem MOEA/D-HMPS QICCA SGEA MOEA/D-KF DMOEF-MS

FDA1 8.26E−01 8.10E−01 8.06E−01 8.11E−01 8.32E−01

(2.63E−03) (6.54E−04) (6.89E−04) (7.48E−04) (4.50E−04)

FDA2 6.91E−01 6.08E−01 6.15E−01 6.22E−01 1.12E+00

(8.25E−04) (5.38E−03) (9.96E−03) (7.82E−04) (1.06E−03)

FDA3 1.42E+00 1.19E+00 1.23E+00 1.38E+00 9.05E−01

(8.44E−03) (3.99E−02) (2.59E−02) (8.00E−03) (1.31E−02)

FDA4 7.09E−01 6.95E−01 6.14E−01 6.92E−01 7.30E−01

(8.69E−03) (5.79E−02) (5.49E−02) (1.45E−03) (8.53E−03)

FDA5 4.40E+00 3.51E+00 4.35E+00 4.62E+00 2.85E+00

(7.60E−03) (2.39E−02) (1.83E−03) (2.40E−03) (1.23E−03)

dMOP1 6.63E−01 6.27E−01 6.44E−01 6.49E−01 6.69E−01

(4.91E−02) (4.89E−02) (3.37E−02) (9.01E−03) (3.69E−02)

dMOP2 6.42E−01 6.11E−01 6.26E−01 6.29E−01 6.36E−01

(4.03E−04) (9.65E−03) (1.32E−03) (9.42E−04) (7.06E−03)

dMOP3 8.57E−01 7.23E−01 7.59E−01 8.35E−01 8.47E−01

(8.21E−03) (1.54E−02) (4.30E−03) (6.69E−03) (6.49E−03)

F5 7.32E−01 6.47E−01 7.09E−01 7.11E−01 7.52E−01

(2.96E−03) (7.44E−03) (1.89E−03) (6.86E−03) (1.83E−02)

F6 6.80E−01 3.68E−01 4.18E−01 6.25E−01 6.97E−01

(9.29E−03) (7.75E−02) (4.86E−02) (4.35E−02) (4.46E−02)

F7 6.81E−01 3.06E−01 5.08E−01 6.10E−01 7.05E−01

(7.94E−03) (6.44E−02) (3.78E−02) (8.11E−03) (5.32E−02)

f8 5.59E−01 4.50E−01 4.39E−01 5.50E−01 5.78E−01

(6.22E−03) (5.87E−02) (2.07E−02) (3.01E−03) (4.70E−03)

f9 7.23E−01 3.94E−01 4.59E−01 6.42E−01 6.84E−01

(2.27E−03) (4.35E−02) (3.11E−02) (9.23E−03) (3.31E−02)

f10 6.28E−01 3.81E−01 3.11E−01 7.14E−01 6.91E−01

(4.08E−02) (5.94E−02) (2.62E−02) (6.02E−02) (2.61E−02)

Table 8 Average ranks of
algorithms by Friedman Test for
MIGD and MHV

MIGD MHV

Algorithm Average Rank Algorithm Average Rank

MOEA/D-HMPS 1.93 MOEA/D-HMPS 1.71

QICCA 4.79 QICCA 4.50

SGEA 3.57 SGEA 4.14

MOEA/D-KF 2.86 MOEA/D-KF 2.71

DMOEF-MS 1.86 DMOEF-MS 1.86

Statistic Value FF 14.63 Statistic Value FF 14.97

4.8 Running time

This section demonstrates the running times of the algo-
rithms on three two-objective problems (FDA2, FDA4, and
dMOP2) and two three-objective problems (F5 and F8). This
experiment is carried out on a personal computer (Intel(R)
Core(TM) i7-8700K CPU @ 3.70 GHz, 32.0 G RAM) and
each algorithm runs 20 times independently. Table 9 gives
the running times of the algorithms.

It can be observed from Table 9, MOEA/D-KF is the most
time-consuming, since the prediction model adopted in it
is more complex than the others. MOEA/D-HMPS, SGEA,
and DMOEF-MS take relatively less time to predict the next
locations of the candidate solutions. As shown in Table 9,
the time taken by MOEA/D-HMPS and DMOEF-MS are
relatively close. Specifically, SGEA takes more time than
MOEA/D-HMPS andDMOEF-MS because the generational
environmental selection method spends some time on pre-
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Table 9 Running Time of
Algorithms

Test Problem MOEA/D-HMPS QICCA SGEA MOEA/D-KF DMOEF-MS

FDA2 109(s) 1143(s) 546(s) 10252(s) 105(s)

FDA4 114(s) 1207(s) 509(s) 11793(s) 149(s)

dMOP2 106(s) 1124(s) 556(s) 10762(s) 110(s)

F5 179(s) 1403(s) 598(s) 12932(s) 195(s)

F8 223(s) 1570(s) 582(s) 13874(s) 237(s)

serving good solutions for the next generation. QICCA takes
more time than DMOEF-MS because the quantum updat-
ing operator and the competitive-cooperative operator takes
more time to improve the performance of the obtained solu-
tions.

5 Concluding remarks

This paper proposes a dynamic multiobjective evolutionary
framework (DMOEF-MS), which adopts a novel multipopu-
lation structure and Steffensen’s method to handle DMOPs.
Among the multiple populations in DMOEF-MS, one popu-
lation evolves by the classic NSGA-II while the others evolve
according to the proposed prediction strategy which is based
on Steffenson’s method. Moreover, Steffenson’s diversity-
maintenance strategy is introduced to increase population
diversity at fixed intervals of generations before the environ-
ment changes and reinitialize the multiple populations after
the environment changes.

DMOEF-MS has been compared with some state-of-
the-art DMOEAs on several widely used DMOPs. The
experimental results demonstrate that DMOEF-MS can track
the moving Pareto-optimal solutions efficiently on most
of the test problems. Specifically, the multiple populations
handle different optimization problems and cooperate to
get well-distributed Pareto-optimal solutions. Steffensen’s
prediction strategy accelerates the convergence speed by
predicting the next positions of individuals efficiently.Mean-
while, Steffensen’s diversity-maintenance strategy increases
the population diversity by using a set of evenly-distributed
weight vectors.

However, it can be observed from Table 9, DMOEF-MS
takes more time than some of the comparative algorithms.
The main reason for this is that the prediction strategy
adopted in DMOEF-MS needs to consider all dimensions
of an individual sometimes, as shown in Algorithm 2. Thus
DMOEF-MS takes a relatively long time to predict the
next positions of individuals. To improve the efficiency of
DMOEF-MS, the possible directions of this paper are listed
below.

1. A potential weakness of this paper is the lack of corre-
lation analysis of decision variables, which can be used
to divide the decision variables into several groups. As
discussed in Sect. 3.3.3, the proposed prediction strategy
will cost at most 2 × N function evaluations for pro-
ducing each offspring. The combination of Steffensen’s
prediction strategy and the correlation analysis of deci-
sion variables might be a possible way to improve the
time efficiency of DMOEF-MS.

2. The main framework of DMOEF-MS is to optimize
multiple problems, including the constructed single-
objective problems and the original DMOP, by multiple
populations. In this case, the construction method of
single-objective problems plays an important role in the
performance of DMOEF-MS. Therefore, the analysis of
different methods of constructing single-objective prob-
lems is also one future work of this paper.

3. The maintenance of population diversity plays a crucial
role in DMOEAs. Therefore, investigating other efficient
methods to update the repository population, such as
DAA [49], is also a possible work of this paper.
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