Skip to main content
Log in

Multi-objective decision making by reference point theory for a wellbeing economy

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Traditionally, perhaps unconsciously, all multi-objective decision methods, reference point theory included, are situated in the production sphere. In production economics, it is quite common that measurement is done in a linear way. The consumption sphere asks for another approach. In the wellbeing economy consumer sovereignty is put central. Indifference Curves visualize the economic Law of Marginal Decreasing Utility on its turn the translation of consumer sovereignty. With reference point theory the danger exists that the Reference Point is situated above the highest possible indifference curve. In addition, a reference point will have a tendency to pull the discrete points of the alternatives into the forbidden zone, the target being to minimize the corresponding distances. The Minkowski Metric shows different forms of reference point theory, which are very unsatisfactory such as the Rectangular Distance Metric and the Euclidean Distance Metric. In this way, one can criticize all other values given to the Minkowsky metric too, with exception of infinity (the Min-Max Metric). Tests show that Min-Max normalized with ratio analysis is the most in concordance with indifference curves analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahituv N, Spector Y (1990). Evaluating information under two criteria: expected payoff and risk, working paper N° 70/90, I.I.B.R., Tel Aviv University, Israel, 5

  • Allen RGD (1951) Statistics for economists, Hutchinson’s University Library, London 65:73–74 and 198

  • Arrow KJ (1974) General economic equilibrium: purpose, analytic techniques, collective choice. American Economic Review, col.1, 256

  • Brauers WK (1968) Input-output analyse en internationale integratie. Preface by W. Leontief, Standaard, Antwerpen/Utrecht

  • Brauers WK (1987) La planification comme instrument de développement pour les nouveaux pays, ACCO, Louvain, pp 9–16

  • Brauers WK (1995a) Prévisions économiques à l´aide de la méthode entrées-sorties, Economica, Paris

  • Brauers WK. (1995b). PRIVATA: a model for privatization with multiple non-transitive objectives, Public Choice 85(3–4):353–370

    Google Scholar 

  • Brauers WK (2002) The multiplicative representation for multiple objectives optimization with an application for arms procurement. naval research logistics, Wiley Periodicals 49:327–340

    Google Scholar 

  • Brauers WK (2004) Optimization methods for a stakeholder society. A revolution in economic thinking by multiobjective optimization, ISBN 1-4020-7681-9. Kluwer, Springer, Boston

    Google Scholar 

  • Brauers WK (2007) Normalization in multiobjective optimization: a general overview. Int J Manage Deci Making 5–6:461–474

    Article  Google Scholar 

  • Halm G, Mises N (1968). Liberman: allocation and motivation in the Socialist Economy. Weltwirschaftliches Archiv 100(1):19–39

    Google Scholar 

  • Hwang C-L, Yoon K (1981) Multiple attribute decision making, methods and applications. Lecture notes in economics and mathematical systems. Springer, Berlin

    Google Scholar 

  • Karlin S, Studden WJ (1966) Tchebycheff systems: with applications in analysis and statistics. Interscience Publishers, New York

    Google Scholar 

  • Keeney RL, Raiffa H (1993) Decisions with multiple objectives. preferences and value tradeoffs. Cambridge University Press, USA, p 32

  • MacCrimmon KR (1968) Decisionmaking among multiple-attribute alternatives: a survey and consolidated approach, Memorandum RM-4823-ARPA, the Rand Corporation, Santa Monica

  • Malthus TR (1803) An essay on the principles of population, reprinted in Everyman’s Library, 692–693, London-New York

  • Meadows DL (1972) The limits to growth, a report for the Club of Rome Project, Universe Books, New York

  • Minkowski H (1896) Geometrie der Zahlen. Teubner, Leipzig

    Google Scholar 

  • Minkowski H (1911) Gesammelte Abhandlungen. Teubner, Leipzig

    Google Scholar 

  • Normann CN (1967) Liberman, Russian Prophet, Am Econ 11(32):22–33

    Google Scholar 

  • Schärlig A (1985) Décider sur plusieurs critères, Presses Polytechniques Romandes, Lausanne

  • Sir Robert May (2000) President of the Royal Society, previously head of the Office of Science and Technology of the British Government, Newsweek, 9 Oct 2000, 76

  • Tamiz M, Jones DF (1996) Goal Programming and Pareto efficiency. J Inf Optim Sci 2:1–17

    Google Scholar 

  • Van Delft A, Nijkamp P (1977) Multi-criteria analysis and regional decision-making. M. Nijhoff, Leiden

  • Vickrey W (1964) Microstatics. Harcourt, Brace and World Inc., New York

    Google Scholar 

  • Voogd H (1983) Multicriteria evaluation for urban and regional planning. Pion ltd., London pp 86–87

    Google Scholar 

  • Wierzbicki AP (1982) A mathematical basis for satisficing decision making. Math Model 3(5):391–405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Karel M. Brauers.

Appendix

Appendix

Table 2 Min-Max with Square Root Ratios: \( {\text{Min}}.\,M_{j} = {\mathop {{\text{Min}}}\limits_{{\left( j \right)}} }{\left\{ {{\mathop {\max }\limits_{{\left( i \right)}} }{\left( {r_{i} - {}_{{\text{N}}}x_{{ij}} } \right)}} \right\}} \) with \( {}_{{\text{N}}}x_{{ij}} = \frac{{x_{{ij}} }} {{{\sqrt {{\sum\nolimits_{j = 1}^m {x^{2}_{{ij}} } }} }}} \)
Table 3 Min-Max with Total Ratios: \( {\text{Min}}.\,M_{j} {\text{ }} = {\text{ }}{\mathop {{\text{Min}}}\limits_{{\left( j \right)}} }{\left\{ {{\mathop {\max }\limits_{{\left( i \right)}} }{\left( {r_{i} - {}_{{\text{N}}}x_{{ij}} } \right)}} \right\}} \) with \( {}_{{\text{N}}}x_{{ij}} = \frac{{x_{{ij}} }} {{{\sqrt {{\sum\nolimits_{j = 1}^m {x_{{ij}} } }} }}} \)
Table 4 A rectangular Metric: \( {\text{Min}}.\,M_{j} = {\sum\nolimits_{i = 1}^{i = n} {{\left( {r_{l} - {_{\text{N}} x_{{ij}}} } \right)}} } \) where j = 1, 2,……,m; m: the number of alternatives
Table 5 Rectangular Metric with weight 2 for leisure: \( {\text{Min}}.\,M_{j} = {\sum\nolimits_{i = 1}^{i = 2} {{\left( {r_{i} - \omega _{i} x_{{ij}} } \right)}} } \) with ω1 = 2 ω 2 = 1
Table 6 Rectangular Metric with weight 2 for salary: \( Min.\,M_{j} = {\sum\nolimits_{i = 1}^{i = 2} {{\left( {r_{i} - \omega _{i} x_{{ij}} } \right)}} } \)with ω1 = 1 ω2 = 2
Table 7 Euclidean Metric \( {\text{Min}}.\,M_{j} = {\left\{ {{\sum\nolimits_{i = 1}^{i = n} {{\left( {r_{i} - {_{{\text{N}}} x_{{ij}}} } \right)}^{2} } }} \right\}}^{{1/2}} \) where j = 1, 2,……,m; m: the number of alternatives

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brauers, W.K.M. Multi-objective decision making by reference point theory for a wellbeing economy. Oper Res Int J 8, 89–104 (2008). https://doi.org/10.1007/s12351-008-0013-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-008-0013-7

Keywords

Navigation