Skip to main content
Log in

A decentralized coordination mechanism for integrated production–transportation–inventory problem in the supply chain using Lagrangian relaxation

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper is concerned with integrated production, inventory and transportation planning problems directly related to the supply chain management. We establish a Lagrangian based coordination mechanism within the context of the decentralized planning approach. In addition, we demonstrate that dual prices obtained by the described approach might provide enough accuracy in case of sudden changes, such as in a customer’s demand, and thus they could assist agents to find new solutions. Computational results show that the proposed mechanism is able to help organizations to facilitate collaboration, improve business agility and meet business goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahuja KR, Magnati TL, Orlin JB (1993) Network flow: theory, algorithms and applications. Prentice Hall, New Jersey

  • Barbarosoglu G, Özgür D (1999) Hierarchical design of an integrated production and 2-enchelon distribution system. Eur J Oper Res 118:464–484

    Article  Google Scholar 

  • Bazaraa MS, Shetty CM (1979) Nonlinear programming—theory and algorithms. Wiley, New York

    Google Scholar 

  • Bertsekas DP (1991) Linear network optimization. MIT Press, Massachusetts

    Google Scholar 

  • Burton RM, Obel B (eds) (1995) Design models for hierarchical organizations: computation, information and decentralization. Kluwer Academic Publishers, Boston

  • Cachon GP, Fischer M (2000) Supply chain inventory management and the value of shared information. Manag Sci 46:1032–1048

    Article  Google Scholar 

  • Chen F, Federgruen A, Zheng YS (2001) Coordination mechanisms for a distribution system with one supplier and multiple retailers. Manag Sci 47:691–708

    Google Scholar 

  • Eksioglu B, Migdalas A, Pardalos PM (2003) Heuristic approaches to production distribution problems in supply chain. In: Pardalos PM, Korotkich V (eds) Optimization and industry: new frontiers. Kluwer, Dordrecht, pp 15–37

    Google Scholar 

  • Erenguc SS, Simpson NC, Vakharia AJ (1999) Integrated production/distribution planning in supply chains. Eur J Oper R 115:219–236

    Article  Google Scholar 

  • Ertogal K, Wu SD (2000) Auction-theoretic coordination of production planning in the supply chain. IIE Trans 32:931–940

    Google Scholar 

  • Fudenberg D, Levine DK (1999) The theory of learning in games. MIT Press, Cambridge

    Google Scholar 

  • Grigoriadis MD (1986) An efficient implementation of the network simplex method. MathProgram Study 26:83–111

    Google Scholar 

  • Guignard M, Kim S (1987) Lagrangean decomposition: a model yielding stronger Lagrangean bounds. Math Program 39:215–228

    Article  Google Scholar 

  • Jennings NR, Sycara K, Woodridge M (1999) A roadmap of agent research and development. Auton Agent Multi Agent Syst 1:7–38

    Article  Google Scholar 

  • Johnson LA, Montgomery DC (1974) Operations research in production planning, scheduling, and inventory control. Wiley, New York

    Google Scholar 

  • Jörnsten K, Migdalas A (1988) Designing a minimum spanning tree network subject to a budget constraint. Optimization 19:475–484

    Article  Google Scholar 

  • Jörnsten K, Näsberg M (1986) A new Lagrangian approach to the generalized assignment problem. Eur J Oper Res 27:313–323

    Article  Google Scholar 

  • Jörnsten K, Nasberg M, Smeds P (1985) Variable splitting—a new Lagrangean relaxation to some mathematical programming models. Report LiTH-MAT-R-85-04, Linkoping Institute of Technology, Sweden

  • Kuhn HW (ed) (1997) Classics in game theory. Princeton University Press, Princeton

  • Larsson T, Migdalas A, Ronnqvist M (1994) A Lagrangean heuristic for the capacitated concave minimum cost network flow problem. Eur J Oper Res 78:116–129

    Article  Google Scholar 

  • Lou P, Zhou ZD, Chen YP, Wu A (2004) Study on the multiagent based agile supply chain management. Int J Adv Manuf Tech 23:197–203

    Article  Google Scholar 

  • Martin CH, Dent DC, Eckhart JC (1993) Integrated production, distribution and inventory planning at Libbey–Owens–Ford. Interfaces 23:68–78

    Article  Google Scholar 

  • Robinson J (1951) An iterative method of solving a game. Ann Math 54:296–301. [Reprinted in Kuhn HW (ed) (1997) Classics in game theory. Princeton University Press, Princeton, pp 27–35]

  • Sadeh NM, Hildum DW, Kjenstad D, Tseng A (2001) MASCOT: an agent-based architecture for dynamic supply chain creation and coordination in the Internet economy. Prod Plan Control 12:212–223

    Article  Google Scholar 

  • Shapiro JF (1979) Mathematical programming—structures and algorithms. Wiley, New York

    Google Scholar 

  • Shor NZ (1985) Minimization methods for non-differential functions. Springer, Berlin

    Google Scholar 

  • Thomas DJ, Griffin PM (1996) Coordinated supply chain management. Eur J Oper Res 94:1–15

    Article  Google Scholar 

  • Thonemann UW (2002) Improving supply-chain performance by sharing advance demand information. Eur J Oper Res 142:81–107

    Article  Google Scholar 

  • Woolbridge M (2002) An introduction to multi-agent systems. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karakitsiou.

Appendix

Appendix

We consider the linear program

$$ \begin{gathered} ({\mathbf{P1}})\quad \min \quad {\mathbf{c}}^T {\mathbf{x}} + {\mathbf{d}}^T {\mathbf{y}} \hfill \\ {\text{s}} . {\text{t}} .\quad {\mathbf{Ax}} + {\mathbf{By}} \ge {\mathbf{b}} \hfill \\ {\mathbf{A}}_ 1{\mathbf{x}} \ge {\mathbf{b}}_ 1\hfill \\ {\mathbf{B}}_ 1{\mathbf{y}} \ge {\mathbf{b}}_ 2\hfill \\ {\mathbf{x}} \in X,\;{\mathbf{y}} \in Y \hfill \\ \end{gathered} $$

and rewrite it in the equivalent form

$$ \begin{gathered} ({\mathbf{P2}})\quad \min \quad {\mathbf{c}}^T {\mathbf{x}} + {\mathbf{d}}^T {\mathbf{y}} \hfill \\ {\text{s}} . {\text{t}} .\quad {\mathbf{Ax}} + {\mathbf{Bz}} \ge {\mathbf{b}} \hfill \\ {\mathbf{A}}_ 1{\mathbf{x}} \ge {\mathbf{b}}_ 1\hfill \\ {\mathbf{B}}_ 1{\mathbf{y}} \ge {\mathbf{b}}_ 2\hfill \\ {\mathbf{x}} \in X,\;{\mathbf{y}} \in Y,\;{\mathbf{z}} \in Y \hfill \\ - {\mathbf{y}} + {\mathbf{z}} = 0. \hfill \\ \end{gathered} $$

We will assume that X and Y are polytopes, i.e., closed and bounded polyhedra. Applying Lagrangian relaxation to the equality constraints, the problem separates into two Lagrangian subproblems:

$$ \begin{gathered} {\text{Val}}_1 ({\mathbf{v}})\quad \min \quad {\mathbf{c}}^T {\mathbf{x}} + {\mathbf{v}}^T {\mathbf{z}} \hfill \\ {\text{s}} . {\text{t}} .\quad {\mathbf{Ax}} + {\mathbf{Bz}} \ge {\mathbf{b}} \hfill \\ {\mathbf{A}}_ 1{\mathbf{x}} \ge {\mathbf{b}}_ 1\hfill \\ {\mathbf{x}} \in X,\;{\mathbf{z}} \in Y \hfill \\ \end{gathered} $$

and

$$ \begin{gathered} {\text{Val}}_2 ({\mathbf{v}})\quad \min \quad ({\mathbf{d}} - {\mathbf{v}})^T {\mathbf{y}} \hfill \\ {\text{s}} . {\text{t}} .\quad {\mathbf{By}} \ge {\mathbf{b}}_ 2\hfill \\ {\mathbf{y}} \in Y. \hfill \\ \end{gathered} $$

The Lagrangian dual problem is then \( {\max _{\mathbf{v}} \min _{({\mathbf{x}},{\mathbf{z}},{\mathbf{y}})} L({\mathbf{x}},{\mathbf{z}},{\mathbf{y}},{\mathbf{v}})}, \) where \( {L({\mathbf{x}},{\mathbf{z}},{\mathbf{y}},{\mathbf{v}}) = {\text{val}}_1 ({\mathbf{v}}) + {\mathbf{val}}_2 ({\mathbf{v}})}. \) Suppose we solve it using the simple sub-gradient algorithm, that is, by creating a sequence \( {\{ {\mathbf{v}}(k)\} ,} \) where \( {{\mathbf{v}}(k + 1) = {\mathbf{v}}(k) + \alpha (k){\mathbf{g}}(k)}, \) \( {k \ge 1 ,\,{\mathbf{g}}(k) = {\mathbf{z}}(k) + {\mathbf{y}}(k)} \) with (x(k), z(k)) and y(k) being the subproblem solutions, and α(k) ≥ 0 satisfying α(k) → 0 and \( \sum\nolimits_{k = 1}^\infty {\alpha (k) = \infty } . \) Then \( {\{ {\mathbf{v}}(k)\} \to {\mathbf{v}}^* }, \) where v * is an optimal dual solution.

Next we introduce the weights

$$ {\beta (N;k) = \frac{{\alpha (k)}}{{\sum\nolimits_{i = 1}^N {\alpha (i)} }}} $$

and define the weighted sequence, \( {\{ {\mathbf{x}} (N ) ,{\mathbf{z}} (N ) ,{\mathbf{y}} (N )\} ,} \) where

$$ {{\mathbf{x}}(N) = \sum\limits_{k = 1}^N {\beta (N;k){\mathbf{x}}(k)} ,} $$
$$ {{\mathbf{z}}(N) = \sum\limits_{k = 1}^N {\beta (N;k){\mathbf{z}}(k),} } $$
$$ {{\mathbf{y}}(N) = \sum\limits_{k = 1}^N {\beta (N;k){\mathbf{y}}(k).} } $$

Clearly, by the convexity of X and Y and since, \( {\sum\nolimits_{k = 1}^N {\beta (N;k)} = 1},\,\beta (N;k) \ge 0{\;\{ {\mathbf{x}}({N})\} \in {X}},\,\{ {\mathbf{z}} ({N})\} \in Y \) and \( \left\{ {{\mathbf{y}} ({N})} \right\} \in Y. \) Hence, {x(N) z(N) y(N)} has an accumulation point \( ({\hat{\mathbf{x}}},{\hat{\mathbf{z}}},{\hat{\mathbf{y}}}) \) X × Y × Y. Moreover, let g(N) be the subgradient at \( {\{ {\mathbf{x}} ({N}),{\mathbf{z}} (N),{\mathbf{y}} ({N})\} }, \) then \( {{\mathbf{g}} (N )= \sum\limits_{k = 1}^N {\beta (N;k)} ({\mathbf{z}}(k) - {\mathbf{y}}(k))} \) by the definition of \( {\{ {\mathbf{x}} ({N}),{\mathbf{z}} ({N}),{\mathbf{y}} ({N})\} .} \) Then, since, \( {{\mathbf{v}}(k + 1) = {\mathbf{v}}(k) + \alpha (k){\mathbf{g}}(k),\,\;k \ge 1}, \) we have \( {\sum\nolimits_{k = 1}^N {\beta (N;k)} {\kern 1pt} {\mathbf{g}}(k) = \frac{{{\mathbf{v}}(k + 1) - {\mathbf{v}}(1)}}{{\sum\nolimits_{i = 1}^N {\alpha (i)} }}} \) which approaches 0 since \( \left\{ {{\mathbf{v}}(k)} \right\} \to {\mathbf{v}}^* \) as \( k \to \infty \) and \( {\sum\nolimits_{i = 1}^N {\alpha (i)} \to \infty } \) as N → ∞. Thus, \( {\{ {\mathbf{g}}(N)\} \to 0} \) and consequently the accumulation point of the sequence \( {\{ {\mathbf{x}}(N),{\mathbf{z}}(N),{\mathbf{y}}(N)\} } \) solves P2 implying that \( ({\hat{\mathbf{x}}},{\hat{\mathbf{y}}}) \) solves P1. This proves Proposition 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakitsiou, A., Migdalas, A. A decentralized coordination mechanism for integrated production–transportation–inventory problem in the supply chain using Lagrangian relaxation. Oper Res Int J 8, 257–278 (2008). https://doi.org/10.1007/s12351-008-0016-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-008-0016-4

Keywords

Navigation