Skip to main content

Advertisement

Log in

A hybrid decomposition procedure for scheduling projects under multiple resource constraints

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper presents a hybrid decomposition procedure for solving the resource-constrained project scheduling problem. The procedure finds an initial schedule for the project, and refines it through a decomposition process. This is performed through a refinement process which consists of (i) analyzing the initial schedule to find appropriate decomposition point(s), (ii) decomposing the associated project into appropriate subprojects, (iii) optimizing the subprojects by an efficient implicit enumeration technique, and subsequently (iv) integrating optimal sub-schedules to create a feasible schedule. This refinement process is aimed at reducing the makespan of the initial schedule. To achieve further reduction, the refined schedule is overrefined by a genetic algorithm. The results of computational experiments performed on 2,040 benchmark instances indicate that in a reasonable time the procedure can obtain solutions whose average percentage deviation from their associated best solutions in the litrature is 0.41.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bedworth DD, Bailey JE (1982) Integrated production control systems-management, analysis, design. Wiley, New York

    Google Scholar 

  • Debels D, Vanhoucke M (2007) A decomposition-based genetic algorithm for the resource-constrained project-scheduling problem. Oper Res 55(3):457

    Article  Google Scholar 

  • Hartmann S, Kolisch R (2000) Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. Eur J Oper Res (127):394–407

  • Kelley J (1963) The critical-path method: resource planning and scheduling. Industrial scheduling. M. J. F. a. T. G. L. Prentice-Hall, New Jersey, pp 347–365

    Google Scholar 

  • Kolisch R (1996a) Efficient priority rules for the resource-constrained project scheduling problem. J Oper Manage 14(3):179–192

    Article  Google Scholar 

  • Kolisch R (1996b) Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur J Oper Res 90:320–333

    Article  Google Scholar 

  • Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur J Oper Res 174(1):23–37

    Article  Google Scholar 

  • Kolisch R, Sprecher A (1996) PSPLIB—a project scheduling library. Eur J Oper Res 96:205–216

    Article  Google Scholar 

  • Korf RE (1985) An optimal admissible tree search. Artif Intell 27:97–100

    Article  Google Scholar 

  • Korf RE (1990) Real-time heuristic search. Artif Intell 42(2):189–211

    Article  Google Scholar 

  • Li K, Willis R (1992) An iterative scheduling technique for resource-constrained project. Scheduling. Eur J Oper Res 56:370–379

    Article  Google Scholar 

  • Möhring RH (1984) Minimizing costs of resource requirements in project networks subject to fix completion time. Oper Res 32:89–120

    Article  Google Scholar 

  • Mori M, Tseng C (1997) A genetic algorithm for multi-mode resource constrained project scheduling problem. Eur J Oper Res 100:134–141

    Article  Google Scholar 

  • Özdamar L, Ulusoy G (1995) A survey on the resource-constrained project scheduling problem. IIE Trans 27:574–586

    Article  Google Scholar 

  • Palpant M, Artigues C et al (2004) LSSPER: solving the resource-constrained project scheduling problem with large neighbourhood search. Ann Oper Res 131(1):237–257

    Article  Google Scholar 

  • Panagiotakopoulos D (1977a) Cost-time model for large CPM project networks. J Constr Div 103(CO2):201–211

    Google Scholar 

  • Panagiotakopoulos D (1977b) A CPM time-cost computational algorithm for arbitrary activity cost functions. INFOR 15(2):183–195

    Google Scholar 

  • Raymond L, Bergeron F (2008) Project management information systems: an empirical study of their impact on project managers and project success. Int J Proj Manage 26(2):213–220

    Article  Google Scholar 

  • Sprecher A (2002) Network decomposition techniques for resource-constrained project scheduling. Oper Res Soc 53:405–414

    Article  Google Scholar 

  • Stinson JP (1978) Multiple resource-constrained scheduling using branch and bound. AIIE Trans 28(1):1–7

    Google Scholar 

  • Tormos P, Lova A (2001) A competitive heuristic solution technique for resource-constrained project scheduling. Ann Oper Res 102(1):65–81

    Article  Google Scholar 

  • Tseng L-Y, Chen S-C (2006) A hybrid metaheuristic for the resource-constrained project scheduling problem. Eur J Oper Res 175(2):707–721

    Article  Google Scholar 

  • Valls V, Quintanilla S et al (2003) Resource-constrained project scheduling: a critical activity reordering heuristic. Eur J Oper Res 149(2):282–301

    Article  Google Scholar 

  • Valls V, Ballestin F et al (2004) A population-based approach to the resource-constrained project scheduling problem. Ann Oper Res 131(1):305–324

    Article  Google Scholar 

  • Valls V, Ballestin F et al (2005) Justification and RCPSP: a technique that pays. Eur J Oper Res 165(2):375–386

    Article  Google Scholar 

  • Valls V, Ballestin F et al (2008) A hybrid genetic algorithm for the resource-constrained project scheduling problem. Eur J Oper Res 185(2):495–508

    Article  Google Scholar 

  • Zamani R (2004a) An effective near-optimal state-space search method: an application to a scheduling problem. Artif Intell Rev 22(1):41–69

    Article  Google Scholar 

  • Zamani R (2004b) An efficient time-windowing procedure for scheduling projects under multiple resource constraints. OR Spectr 26(3):423–440

    Article  Google Scholar 

  • Zamani R, Lau SK (2010) Embedding learning capability in Lagrangean relaxation: an application to the travelling salesman problem. Eur J Oper Res 201:82–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Zamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamani, R. A hybrid decomposition procedure for scheduling projects under multiple resource constraints. Oper Res Int J 11, 93–111 (2011). https://doi.org/10.1007/s12351-009-0073-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-009-0073-3

Keywords

Navigation