Skip to main content

Advertisement

Log in

Pricing, inventory and production policies in a supply chain of pharmacological products with rework process: a game theoretic approach

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

In this paper, an economic production quantity model in a three levels supply chain including multiple non-competing suppliers, single manufacturer and multiple non-competing retailers for multiple products with rework process under integrated and non-integrated structures is developed. In this chain, suppliers ship raw material to the manufacturer and the manufacturer combines the fixed percentage of different kinds of raw material to produce the finished products and then delivers them to the retailers. The Stackelberg game is established among the members of the chain. Optimizing the total profit of the chain under both structures applying the optimal pricing, inventory and production policies is the purpose of the research. Eventually, a numerical example is presented for comparing the total profit of the integrated and non-integrated chains of proposed model and some sensitivity analyses are performed to study the effects of parameter changes on the decision variables and the chain profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abad PL (2003) Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale. Eur J Oper Res 144(3):677–685

    Article  Google Scholar 

  • Ben-Daya M, Asad R, Seliaman M (2013) An integrated production inventory model with raw material replenishment considerations in a three layer supply chain. Int J Prod Econ 143(1):53–61

    Article  Google Scholar 

  • Cárdenas-Barrón LE (2007) Optimizing inventory decisions in a multi-stage multi-customer supply chain: a note. Transp Res Part E 43(5):647–654

    Article  Google Scholar 

  • Cárdenas-Barrón LE (2008) Optimal manufacturing batch size with rework in a single-stage production system: a simple derivation. Comput Ind Eng 55(4):758–765

    Article  Google Scholar 

  • Cárdenas-Barrón LE, Teng JT, Treviño-Garza G, Wee HM, Lou KR (2012a) An improved algorithm and solution on an integrated production-inventory model in a three-layer supply chain. Int J Prod Econ 136(2):384–388

    Article  Google Scholar 

  • Cárdenas-Barrón LE, Treviño-Garza G, Wee HM (2012b) A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Syst Appl 39(3):3888–3895

    Article  Google Scholar 

  • Cárdenas-Barrón LE, Treviño-Garza G, Widyadana GA, Wee HM (2014) A constrained multi-products EPQ inventory model with discrete delivery order and lot size. Appl Math Comput 230(1):359–370

    Google Scholar 

  • Chakraborty T, Giri BC (2014) Lot sizing in a deteriorating production system under inspections, imperfect maintenance and reworks. Oper Res Int J 14:29–50. doi:10.1007/s12351-013-0134-5

    Article  Google Scholar 

  • Cheng TCE (1991) An economic order quantity model with demand-dependent unit production cost and imperfect production processes. IIE Trans 23(1):23–28

    Article  Google Scholar 

  • Chiu YP (2003) Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging. Eng Optim 35(4):427–437

    Article  Google Scholar 

  • Chiu SW, Gong DC, Wee HM (2004) Effects of random defective rate and imperfect rework process on economic production quantity model. Jpn J Ind Appl Math 21(3):375–389

    Article  Google Scholar 

  • Dada M, Srikanth K (1987) Pricing policies for quantity discounts. Manage Sci 33(10):1247–1252

    Article  Google Scholar 

  • Esmaeili M, Aryanezhad MB, Zeephongsekul P (2009) A game theory approach in seller–buyer supply chain. Eur J Oper Res 191(2):442–448

    Article  Google Scholar 

  • He Y (2013) Sequential price and quantity decisions under supply and demand risks. Int J Prod Econ 141(2):541–551

    Article  Google Scholar 

  • Hua G, Wang S, Cheng TCE (2012) Optimal order lot sizing and pricing with free shipping. Eur J Oper Res 218(2):435–441

    Article  Google Scholar 

  • Jamal AMM, Sarker BR, Mondal S (2004) Optimal manufacturing batch size with rework process at a single-stage production system. Comput Ind Eng 47(1):77–89

    Article  Google Scholar 

  • Jonrinaldi A, Zhang DZ (2013) An integrated production and inventory model for a whole manufacturing supply chain involving reverse logistics with finite horizon period. Omega 41(3):598–620

    Article  Google Scholar 

  • Leng M, Parlar M (2010) Game-theoretic analyzes of decentralized assembly supply chains: non-cooperative equilibrium vs. coordination with cost-sharing contracts. Eur J Oper Res 204(1):96–104

    Article  Google Scholar 

  • Lim S (2013) A joint optimal pricing and order quantity model under parameter uncertainty and its practical implementation. Omega 41(6):998–1007

    Article  Google Scholar 

  • Migdalas A (2002) Applications of game theory in finance and managerial accounting. Oper Res Int J 2(2):209–241

    Article  Google Scholar 

  • Mutlu F, Cetinkaya S (2013) Pricing decisions in a carrier-retailer channel under price-sensitive demand and contract-carriage with common-carriage option. Transp Res E Logist Transp Rev 51(1):28–40

    Article  Google Scholar 

  • Pal B, Sana SS, Chaudhuri K (2012a) A three layer multi-item production–inventory model for multiple suppliers and retailers. Econ Model 29(6):2704–2710

    Article  Google Scholar 

  • Pal B, Sana SS, Chaudhuri K (2012b) Three-layer supply chain: a production-inventory model for reworkable items. Appl Math Comput 219(2):530–543

    Google Scholar 

  • Pal B, Sana SS, Chaudhuri K (2013) Maximizing profits for an EPQ model with unreliable machine and rework of random defective items. Int J Syst Sci 44(3):582–594

    Article  Google Scholar 

  • Parthasarathi G, Sarmah SP, Jenamani M (2011) Supply chain coordination under retail competition using stock dependent price-setting newsvendor framework. Oper Res Int J 11:259–279. doi:10.1007/s12351-010-0077-z

    Article  Google Scholar 

  • Rosenblatt MJ, Lee HL (1986) Economic production cycles with imperfect production processes. IIE Trans 18(1):48–55

    Article  Google Scholar 

  • Rosenthal EC (2008) A game-theoretic approach to transfer pricing in a vertically integrated supply chain. Int J Prod Econ 115(2):542–552

    Article  Google Scholar 

  • Sana SS (2011) A production-inventory model of imperfect quality products in a three-layer supply chain. Decis Support Syst 50(2):539–547

    Article  Google Scholar 

  • Seyed-Esfahani MM, Biazaran M, Gharakhani M (2011) A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-retailer supply chains. Eur J Oper Res 211(2):263–273

    Article  Google Scholar 

  • Soon W (2011) A review of multi-product pricing models. Appl Math Comput 217(21):8149–8165

    Google Scholar 

  • Taleizadeh AA, Noori-daryan M (2014) Pricing, manufacturing and inventory policies for raw material in a three-level supply chain. Int J Syst Sci (in press)

  • Taleizadeh AA, Najafi AA, Niaki STA (2010a) Economic production quantity model with scraped items and limited production capacity. Int J Sci Technol 17(1):58–69

    Google Scholar 

  • Taleizadeh AA, Niaki STA, Najafi AA (2010b) Multiproduct single-machine production system with stochastic scrapped production rate, partial backordering and service level constraint. J Comput Appl Math 233(8):1834–1849

    Article  Google Scholar 

  • Taleizadeh AA, Wee HM, Sadjadi SJ (2010c) Multi-product production quantity model with repair failure and partial back-ordering. Comput Ind Eng 59(1):45–54

    Article  Google Scholar 

  • Taleizadeh AA, Widyadana GA, Wee HM, Biabani J (2011a) Multi products single machine economic production quantity model with multiple batch size. Int J Ind Eng Comput 2(2):213–224

    Google Scholar 

  • Taleizadeh AA, Sadjadi SJ, Niaki STA (2011b) Multi-product single-machine EPQ model with immediate rework process and back-ordering. Eur J Indus Eng 5(4):388–411

    Article  Google Scholar 

  • Taleizadeh AA, Cárdenas-Barrón LE, Biabani J, Nikousokhan R (2012) Multi products single machine EPQ model with immediate rework process. Int J Ind Eng Comput 3(2):93–102

    Google Scholar 

  • Thangam A, Uthayakumar R (2010) Optimal pricing and lot-sizing policy for a two-warehouse supply chain system with perishable items under partial trade credit financing. Oper Res Int J 10:133–161. doi:10.1007/s12351-009-0066-2

    Article  Google Scholar 

  • Transchel S, Minner S (2009) The impact of dynamic pricing on the economic order decision. Eur J Oper Res 198(3):773–789

    Article  Google Scholar 

  • Xiao T, Jin J, Chen G, Shi J, Xie M (2010) Ordering, wholesale pricing and lead-time decisions in a three-stage supply chain under demand uncertainty. Comput Ind Eng 59(4):840–852

    Article  Google Scholar 

  • Zhang CT, Liu LP (2013) Research on coordination mechanism in three-level green supply chain under non-cooperative game. Appl Math Model 37(5):3369–3379

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the three anonymous reviewers for their helpful suggestions which have strongly enhanced this paper. The first author would like to thank the financial support of the University of Tehran for this research under Grant Number 30015-1-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata Allah Taleizadeh.

Appendix: Proofing the concavity of TP(q k , S r i )

Appendix: Proofing the concavity of TP(q k S r i )

TP(q k S r i ) is concave when \( {\text{X}} . {\text{H}} . {\text{X}}^{T} < 0, \) where \( X = \left[ {\begin{array}{*{20}c} {q_{k} } & {S_{i}^{r} } \\ \end{array} } \right],\quad X^{T} = \left[ {\begin{array}{*{20}c} {q_{k} } \\ {S_{i}^{r} } \\ \end{array} } \right],\quad H = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial q_{k}^{2} }}} & {\frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial q_{k} \partial S_{i}^{r} }}} \\ {\frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial S_{i}^{r} \partial q_{k} }}} & {\frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial S_{i}^{r2} }}} \\ \end{array} } \right] \) and

$$ \begin{aligned} TP(q_{k} ,S_{i}^{r} ) = & \sum\limits_{k = 1}^{n} {\left( {S_{k}^{s} - C_{k}^{s} } \right)(a - bS_{i}^{r} ) - \left( {\frac{{h_{k}^{s} q_{k} }}{2} + \frac{{(a - bS_{i}^{r} )A_{k}^{s} }}{{q_{k} }}} \right)} \\ & + \sum\limits_{i = 1}^{m} {\left[ {\left( {\left( {S_{i}^{r} - C(P_{i} ) - \sum\limits_{k = 1}^{n} {S_{k}^{s} } } \right)(a - bS_{i}^{r} )} \right) - \left( {\frac{{h_{i}^{m} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }}{2}\left[ {1 - \frac{{(1 + \alpha_{i} + \alpha_{i}^{2} )(a - bS_{i}^{r} )}}{{P_{i} }}} \right] + \frac{{(a - bS_{i}^{r} )A_{i}^{m} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }}} \right)} \right]} \\ & + \sum\limits_{j = 1}^{b} {\sum\limits_{i = 1}^{m} {\left( {S_{i}^{r} - S_{i}^{r} } \right)(a - bS_{i}^{r} ) - \left( {\frac{{h_{ji}^{r} \rho_{ji} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }}{2}\left[ {1 - \frac{1}{{\rho_{ji} }}} \right] + \frac{{(a - bS_{i}^{r} )A_{ji}^{r} }}{{\rho_{ji} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }}} \right)} } \\ \end{aligned} $$

Then, we have:

$$ \left[ {\begin{array}{*{20}c} {q_{k} } & {S_{i}^{r} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial q_{k}^{2} }}} & {\frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial q_{k} \partial S_{i}^{r} }}} \\ {\frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial S_{i}^{r} \partial q_{k} }}} & {\frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial S_{i}^{r2} }}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {q_{k} } \\ {S_{i}^{r} } \\ \end{array} } \right] < 0 $$
(43)

where,

$$ \frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial q_{k}^{2} }} = - \sum\limits_{i = 1}^{m} {\left[ {\frac{{2(a - bS_{i}^{r} )A_{k}^{s} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{3} } }} + \frac{{2(a - bS_{i}^{r} )A_{i}^{m} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{3} } }} + \sum\limits_{j = 1}^{b} {\frac{{2(a - bS_{i}^{r} )A_{ji}^{r} }}{{\rho_{ji} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{3} } }}} } \right]} < 0 $$
(44)
$$ \frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial q_{k} \partial S_{i}^{r} }} = - \frac{{bA_{k}^{s} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }} - \frac{{bh_{i}^{m} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} } }}{{2P_{i} }}(1 + \alpha_{i} + \alpha_{i}^{2} ) - \frac{{bA_{i}^{m} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }} - \sum\limits_{j = 1}^{b} {\frac{{bA_{ji}^{r} }}{{\rho_{ji} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }}} = g < 0 $$
(45)
$$ \frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial S_{i}^{r} \partial q_{k} }} = - \frac{{bA_{k}^{s} }}{{\sum\limits_{k = 1}^{n} {\lambda_{ik} } q_{k}^{2} }} - \frac{{bh_{i}^{m} \sum\limits_{k = 1}^{n} {\lambda_{ik} } }}{{2P_{i} }}(1 + \alpha_{i} + \alpha_{i}^{2} ) - \frac{{bA_{i}^{m} }}{{\sum\limits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }} - \sum\limits_{j = 1}^{b} {\frac{{bA_{ji}^{r} }}{{\rho_{ji} \sum\limits_{k = 1}^{n} {\lambda_{ik} } q_{k}^{2} }}} = g < 0 $$
(46)
$$ \frac{{\partial^{2} TP(q_{k} ,S_{i}^{r} )}}{{\partial S_{i}^{r2} }} = - 2b < 0 $$
(47)

Therefore, we have:

$$ \left[ {\begin{array}{*{20}c} {q_{k} } & {S_{i}^{r} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} { - \sum\limits_{i = 1}^{m} {\left[ {\frac{{2(a - bS_{i}^{r} )A_{k}^{s} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{3} } }} + \frac{{2(a - bS_{i}^{r} )A_{i}^{m} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{3} } }} + \sum\limits_{j = 1}^{b} {\frac{{2(a - bS_{i}^{r} )A_{ji}^{r} }}{{\rho_{ji} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{3} } }}} } \right]} } \hfill & g \hfill \\ g \hfill & { - 2b} \hfill \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {q_{k} } \\ {S_{i}^{r} } \\ \end{array} } \right] $$
$$ = \left[ {\begin{array}{*{20}c} { - \sum\limits_{i = 1}^{m} {\left[ {\frac{{2(a - bS_{i}^{r} )A_{k}^{s} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }} + \frac{{2(a - bS_{i}^{r} )A_{i}^{m} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }} + \sum\limits_{j = 1}^{b} {\frac{{2(a - bS_{i}^{r} )A_{ji}^{r} }}{{\rho_{ji} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }}} } \right]} } & \begin{aligned} - \frac{{bA_{k}^{s} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }} - \frac{{bh_{i}^{m} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }}{{2P_{i} }}(1 + \alpha_{i} + \alpha_{i}^{2} ) \hfill \\ - \frac{{bA_{i}^{m} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }} - \frac{{b\sum\nolimits_{j = 1}^{b} {A_{ji}^{r} } }}{{\sum\nolimits_{j = 1}^{b} {\rho_{ji} } \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }} \hfill \\ \end{aligned} \\ \begin{aligned} - \frac{{bS_{i}^{r} A_{k}^{s} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }} - \frac{{bh_{i}^{m} S_{i}^{r} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} } }}{{2P_{i} }}(1 + \alpha_{i} + \alpha_{i}^{2} ) \hfill \\ - \frac{{bS_{i}^{r} A_{i}^{m} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }} - \frac{{bS_{i}^{r} \sum\nolimits_{j = 1}^{b} {A_{ji}^{r} } }}{{\sum\nolimits_{j = 1}^{b} {\rho_{ji} } \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k}^{2} } }} \hfill \\ \end{aligned} & { - 2bS_{i}^{r} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {q_{k}^{{}} } \\ {S_{i}^{r} } \\ \end{array} } \right] $$
$$ = - \frac{{2aA_{k}^{s} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }} - \frac{{2aA_{i}^{m} }}{{\sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }} - \frac{{2a\sum\nolimits_{j = 1}^{b} {A_{ji}^{r} } }}{{\sum\nolimits_{k = 1}^{n} {\rho_{ji} } \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }} - \frac{{2bS_{i}^{r} h_{i}^{m} \sum\nolimits_{k = 1}^{n} {\lambda_{ik} q_{k} } }}{{2P_{i} }}(1 + \alpha_{i} + \alpha_{i}^{2} ) - 2bS_{i}^{r} < 0 $$
(48)

Furthermore, the concavityFurthermore, the concavity is obvious.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taleizadeh, A.A., Noori-daryan, M. Pricing, inventory and production policies in a supply chain of pharmacological products with rework process: a game theoretic approach. Oper Res Int J 16, 89–115 (2016). https://doi.org/10.1007/s12351-015-0188-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-015-0188-7

Keywords

Navigation