Skip to main content

Advertisement

Log in

Macroscopic traffic flow model calibration using different optimization algorithms

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This study tests and compares different optimization algorithms employed for the calibration of a macroscopic traffic flow model. In particular, the deterministic Nelder–Mead algorithm, a stochastic genetic algorithm and the stochastic cross-entropy method are utilized to estimate the parameter values of the METANET model for a particular freeway site, using real traffic data. The resulting models are validated using various traffic data sets and the optimization algorithms are evaluated and compared with respect to the accuracy of the produced validated models as well as the convergence speed and the required computation time. The validation results showed that all utilized optimization algorithms were able to converge to robust model parameter sets, albeit achieving different performances considering the convergence speed and the required computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Box MJ (1965) A new method of constrained optimization and a comparison with other methods. Comput J 8:42–52

    Article  Google Scholar 

  • Cremer M, May AD (1986) An extended traffic flow model for inner urban freeways. In: Proceedings of the 5th IFAC/IFIP/IFORS international conference on control in transportation systems, pp 383–388

  • Cremer M, Papageorgiou M (1981) Parameter identification for a traffic flow model. Automatica 17(6):837–843

    Article  Google Scholar 

  • De Boer P-T, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the cross-entropy method. Ann Oper Res 134:19–67

    Article  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Professional, Reading

    Google Scholar 

  • Grewal MS, Payne HJ (1976) Identification of parameters in a freeway traffic model. IEEE Trans Syst Man Cybern 6(3):176–185

    Article  Google Scholar 

  • Helbing D (1996) Derivation and empirical validation of a refined traffic flow model. Phys. A 233(1):253–282

    Article  Google Scholar 

  • Holland J (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  • Hoogendoorn SP, Bovy PH (2001) State-of-the-art of vehicular traffic flow modelling. Proc Inst Mech Eng I J Syst Control Eng 215(4):283–303

    Google Scholar 

  • Kontorinaki M, Spiliopoulou A, Papamichail I, Papageorgiou M, Tyrinopoulos Y, Chrysoulakis J (2014) Overview of nonlinear programming methods suitable for calibration of traffic flow models. Oper Res Int J. doi:10.1007/s12351-014-0146-9

    Google Scholar 

  • Kotsialos A, Papageorgiou M (2000) The importance of traffic flow modelling for motorway traffic control. Netw Spat Econ 1:179–203

    Article  Google Scholar 

  • Kotsialos A, Papageorgiou M, Diakaki C, Pavlis Y, Middelham F (2002) Traffic flow modeling of large-scale motorway networks using the macroscopic modeling tool METANET. IEEE Trans Intell Trans Syst 3:282–292

    Article  Google Scholar 

  • Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  Google Scholar 

  • Messmer A, Papageorgiou M (1990) METANET: a macroscopic simulation program for motorway networks. Traffic Eng Control 31(8–9):466–470

    Google Scholar 

  • Michalopoulos PG, Yi P, Lyrintzis AS (1993) Continuum modelling of traffic dynamics for congested freeways. Transp Res Part B 27(4):315–332

    Article  Google Scholar 

  • Monamy T, Haj-Salem H, Lebacque J-P (2012) A macroscopic node model related to capacity drop. In: Proceedings of EWGT2012—15th meeting of the EURO working group on transportation, vol 54, pp 1388–1396

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  • Ngoduy D, Maher MJ (2012) Calibration of second order traffic models using continuous cross entropy method. Transp Res Part C 24:102–121

    Article  Google Scholar 

  • Ngoduy D, Hoogendoorn SP, van Zuylen HJ (2004) Comparison of numerical schemes for macroscopic traffic flow models. Transp Res Rec 1876:52–61

    Article  Google Scholar 

  • Papageorgiou M, Blosseville JM, Hadj-Salem H (1989) Macroscopic modelling of traffic flow on the Boulevard Périphérique in Paris. Transp Res Part B 23(1):29–47

    Article  Google Scholar 

  • Papageorgiou M, Blosseville J-M, Hadj-Salem H (1990) Modelling and real-time control of traffic flow on the southern part of Boulevard Périphérique in Paris—Part I: modelling. Transp Res Part A 24(5):345–359

    Article  Google Scholar 

  • Papageorgiou M, Papamichail I, Messmer A, Wang Y (2010) Traffic simulation with METANET. In: Barceló J (ed) Fundamentals of traffic simulation. Springer, New York, pp 399–430

    Chapter  Google Scholar 

  • Poole AJ, Kotsialos A (2012) METANET Model validation using a genetic algorithm. Control Trans Syst 13(1):7–12

    Google Scholar 

  • Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning. Springer, New York

    Book  Google Scholar 

  • Sanwal KK, Petty K, Walrand J, Fawaz Y (1996) An extended macroscopic model for traffic flow. Transp Res Part B 30(1):1–9

    Article  Google Scholar 

  • Spiliopoulou A, Kontorinaki M, Papageorgiou M, Kopelias P (2014) Macroscopic traffic flow model validation at congested freeway off-ramp areas. Transp Res Part C 41:18–29

    Article  Google Scholar 

  • Treiber M, Kesting A (2013) Traffic flow dynamics. Springer, Berlin. doi:10.1007/978-3-642-32460-4

    Book  Google Scholar 

Download references

Acknowledgments

This research was co-financed by the European Union (European Social Fund—ESF) and by national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funded Project: ARCHIMEDES III, Investing in Society’s Knowledge through the European Social Fund. The authors would like to thank ATTIKES DIADROMES S.A. for providing the utilised traffic data from Attiki Odos freeway in Athens, Greece and also Prof. Mike Maher and Dr. Dong Ngoduy for providing the source code for the kernel-based cross-entropy method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Spiliopoulou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiliopoulou, A., Papamichail, I., Papageorgiou, M. et al. Macroscopic traffic flow model calibration using different optimization algorithms. Oper Res Int J 17, 145–164 (2017). https://doi.org/10.1007/s12351-015-0219-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-015-0219-4

Keywords

Navigation