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Abstract 

The recent study by [Mehdiloozad, Mirdehghan, Sahoo, & Roshdi (2015) On the 

identification of the global reference set in data envelopment analysis. EJOR, 245, 779–

788] proposes a linear programming (LP) model for the problem of finding the global 

reference set (GRS) of the evaluated decision making unit (DMU). This technical note 

revisits the problem and reformulates it as a mixed 0-1 LP model. By applying the LP 

relaxation method, it then transforms the formulated model into an equivalent LP 

model. Finally, it shows that the resulting LP model is equivalent to the LP model of 

Mehdiloozad et al. (2015). 

Keywords: Data envelopment analysis; Linear programming; Mixed 0-1 linear 

programming; Global reference set. 

 

 

Consider a set of n observed DMUs; each uses m inputs to produce s outputs. Let J  be 

the index set of all the observed DMUs and let d
+R  be the non-negative Euclidean d-orthant. 

We denote, respectively, the input and output vectors of DMUj ( j J∈ ) by 

1( ,..., )Tj j mjx x= ∈x  m
+R  and 1( ,..., )T s

j j sjy y += ∈y R , and the input and output matrices by 

[ ]1 ... n=X x x  and [ ]1 ... n=Y y y . 
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Let o J∈  be the index of the DMU under evaluation. Then, the RAM (range-adjusted 

measure) model of Cooper et al. (1999) is in the following form: 
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where the vectors ( )1 ,...,
T

mR R− − −=R  and ( )1 ,...,
T

sR R+ + +=R  are defined by 
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The set of all optimal solutions of model (1) can be formulated as the set of all feasible 

solutions of the following system of equations: 
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where EX  and EY  are the input and output matrices of RAM-efficient DMUs, respectively. 

We define oΩ  as the set of all intensity vectors that are associated with the optimal 

solutions of model (1). In terms of the feasible solutions of (3), oΩ  can be then expressed as 

 ( ){ }:  , ,  is feasible to system (3) for some slack vectors  and o
− + − +Ω = λ λ s s s s . (4) 

According to Mehdiloozad et al. (2015), the global reference set (GRS) of DMUo, 
G
oR , 

can be found based on the following relation: 
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 { }maxDMU  0G
o j jR λ= > , (5) 

where maxλ  is a maximal element of oΩ —an element with the maximum number of positive 

components. And, max
λ  can be identified by using the following LP model: 
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Precisely, if ( )* * * * * *, , , , ,γ ν− +α β s s  is an optimal solution to model (6), then 

 ( )max * *
*

1

1 ν
= +

+
λ α β . (7) 

We are now going to show that model (6) can be derived from a 0-1 LP model through 

the LP relaxation method. In this regard, first, we develop the following mixed 0-1 LP model:1 
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To clarify the idea behind developing model (8), note that (a) 0jα >  ( 0γ > ) implies 

0jλ >  ( 0δ > ), and (b) the vector α  and the variable γ  are both binary. Hence, as formally 

demonstrated below, model (8) identifies maxλ  by maximizing T γ+1 α . 
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Lemma 1 For any o∈Ωλ , there exists a feasible solution ( ), , , , ,δ γ− +′ ′′ ′ ′ ′λ s s α  to model (8) 

such that ( )T n +′ =1 α λ , where ( )n + ⋅  denotes the number of positive components of a vector. 

Proof Let o∈Ωλ . By the definition of oΩ  in (4), there exists −s  and +s  such that ( ), ,− +
λ s s  is 

a feasible solution to system (3). Then, the solution ( ), , , , ,δ γ− +′ ′′ ′ ′ ′λ s s α  defined by  

 
1        0,

: ,  : ,  : ,  :=1,  :=  :=1
0        0,

j

j

j

λ
δ α γ

λ
− − + +

 ′ >′ ′′ ′ ′ ′= = = 
′ =

λ λ s s s s , (9) 

is feasible to model (8) and ( )T n +′ =1 α λ .       � 

 

Based on Lemma 1, the following theorem shows that max
λ  can be found by virtue of an 

optimal solution of model (8). 

 

Theorem 1 Let ( )* * * * * *, , , , ,δ γ− +
λ s s α  be an optimal solution to model (8). Then, 

*
max

*δ
= λλ . 

Proof From the feasibility of system (3), it can be easily asserted that * 0δ > . Moreover, since 

model (8) is a maximization LP problem, * 1γ =  and * 1jα =  for any j  that * 1jλ = . This 

indicates that ( )* *T n +=1 α λ . Dividing both sides of the first set of constraints of model (10) 

also results that 
*

* oδ
∈Ωλ

, implying ( )* maxT n +≤1 α λ . Now, the equality holds immediately by 

Lemma 1.           � 

 

Theorem 1 follows that the GRS can be found with the help of model (8). However, as is 

known, this method is not computationally efficient when the size of the model is large. in the 

following, we deal effectively with this issue by demonstrating that the LP relaxation of model 

(8) provides an equivalent LP model, which is computationally more efficient and, hence, 

practically more applicable than model (8). 
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By relaxing the binary constraints in model (8), we transform it into the following LP 

model: 
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Theorem 2 Model (10) is equivalent to model (8). 

Proof Since model (10) is an LP relaxation of the original mixed 0-1 LP problem, the optimal 

objective value of model (10) is an upper bound for that of model (8). To prove the reverse, let 

( )* * * * * *, , , , ,δ γ− +
λ s s α  be an optimal solution to model (10). Then, it will suffice to show that 

* 1γ =  and * 1jα =  for any j  that * 0jα > . 

Since system (3) is feasible, it can be easily verified—by the way of contradiction—that 

* 0δ >  and, consequently, * 0γ > . We claim that * 1γ = . To prove our claim, assume by 

contradiction that * 1γ < . By dividing both sides of the constraints of model (10) at optimality 

by *γ , we have 
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Based on (11), the vector ( ), , , , ,δ α γ− +′ ′′ ′ ′ ′λ s s , defined by 
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* * * * * *
* *

: ,  : ,  : ,  := ,  :=min 1, ,  :=1j
j

αδγ γ γ δ α γ
γ γ

− − + +   ′ ′′ ′ ′ ′= = =  
  

λ λ s s s s , (12) 

is then a feasible solution to model (10). Since the objective function value for this solution is 

greater than * *T γ+1 α , the optimality of ( )* * * * * *, , , , ,δ γ− +
λ s s α  is contracted and our claim is 

hence proved. 

In a similar way, it can be proved that * 1jα =  for any j  that * 0jα > and so the proof is 

complete.           � 

 

As per Theorems 1 and 2, maxλ  can be identified by solving the relaxed LP model (10). 

Hence, our discussion is ended by defining := −β λ α  and :ν δ γ= − , which imply the 

equivalence of model (10) and model (6). 

Notes 

1 In order to find all possible (weakly efficient) reference units, a different mixed 0-1 LP model 

can be found in Roshdi, Van de Woestyne, and Davtalab-Olyaie (2014), which is not 

transformed into an equivalent LP model. 
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