Skip to main content

Advertisement

Log in

Coordination for contract farming supply chain with stochastic yield and demand under CVaR criterion

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper analyzes the optimal production and pricing decisions in an agricultural supply chain formed by contract farming scheme consisting of an agribusiness firm and multiple risk-averse farmers. The effects of yield and demand uncertainties and the farmer’s risk aversion on the optimal decisions of the production quantity, wholesale price and retail price are analyzed. Our analyses provide managerial insights on the contract terms of the agricultural supply chain. We show that the production quantity decreases as the farmer is more risk-averse and faces higher yield uncertainty, while the retail price subsequently increases. However, the wholesale price is influenced by the interaction effect of the farmer’s risk aversion and yield uncertainty. The retail price is influenced by the interaction effect of demand uncertainty and price elasticity. In particular, we show that the loss due to the decentralized decisions increases as the farmer is more risk-averse and yield uncertainty is higher. Thus, a RPG (Revenue sharing + Production cost sharing + Guaranteed money) mechanism is developed to facilitate the coordination of the agricultural supply chain under uncertainty environment with risk-averse agents based on contract farming practices. The cost allocation ratio of the RPG mechanism borne by the agribusiness firm increases in the yield and market demand uncertainties and decreases in the farmer’s risk aversion. Specially, if the farmer is extremely risk averse, as well as the yield and demand becomes extremely higher, the RPG mechanism cannot achieve perfect coordination of the agricultural supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bakal IS, Akcali E (2006) Effects of random yield in remanufacturing with price-sensitive supply and demand. Prod Oper Manag 15(3):407–420

    Article  Google Scholar 

  • Cachon GP (2003) Supply chain coordination with contracts. Handb Oper Res Manag Sci 11:229–340

    Google Scholar 

  • Cachon GP, Lariviere MA (2005) Supply chain coordination with revenue-sharing contracts: strengths and limitations. Manag Sci 51(1):30–44

    Article  Google Scholar 

  • Cai X, Chen J, Xiao Y, Xu X (2010) Optimization and coordination of fresh product supply chains with freshness-keeping effort. Prod Oper Manag 19(3):261–278

    Article  Google Scholar 

  • Chen YF, Xu M, Zhang ZG (2009) Technical note—a risk-averse newsvendor model under the CVaR criterion. Oper Res 57(4):1040–1044

    Article  Google Scholar 

  • Gan XH, Sethi SP, Yan H (2005) Channel coordination with a risk-neutral supplier and a downside-risk-averse retailer. Prod Oper Manag 14(1):80–89

    Article  Google Scholar 

  • Guler H, Bilgic T (2009) On coordinating an assembly system under random yield and random demand. Eur J Oper Res 196(1):342–350

    Article  Google Scholar 

  • Gurnani H, Gerchak Y (2007) Coordination in decentralized assembly systems with uncertain component yields. Eur J Oper Res 176(3):1559–1576

    Article  Google Scholar 

  • He Y, Zhang J (2008) Random yield risk sharing in a two-level supply chain. Int J Prod Econ 112(2):769–781

    Article  Google Scholar 

  • He Y, Zhao X (2012) Coordination in multi-echelon supply chain under supply and demand uncertainty. Int J Prod Econ 139(1):106–115

    Article  Google Scholar 

  • Hovelaque V, Duvaleix-Tréguer S, Cordier J (2009) Effects of constrained supply and price contracts on agricultural cooperatives. Eur J Oper Res 199(3):769–780

    Article  Google Scholar 

  • Huh WT, Lall U (2013) Optimal crop choice, irrigation allocation, and the impact of contract farming. Prod Oper Manag 22(5):1126–1143

    Google Scholar 

  • Kazaz B (2004) Production planning under yield and demand uncertainty with yield-dependent cost and price. Manuf Serv Oper Manag 6(3):209–224

    Article  Google Scholar 

  • Kazaz B, Webster S (2011) The impact of yield-dependent trading costs on pricing and production planning under supply uncertainty. Manuf Serv Oper Manag 13(3):404–417

    Article  Google Scholar 

  • Keren B (2009) The single-period inventory problem: extension to random yield from the perspective of the supply chain. Omega 37(4):801–810

    Article  Google Scholar 

  • Li S, Zhu Z, Huang L (2009) Supply chain coordination and decision making under consignment contract with revenue sharing. Int J Prod Econ 120(1):88–99

    Article  Google Scholar 

  • Li Y, Lin Q, Ye F (2014) Pricing and promised delivery lead time decisions with a risk-averse agent. Int J Prod Res 52(12):3518–3537

    Article  Google Scholar 

  • Li Y, Ye F, Lin Q (2015) Optimal lead time policy for short life cycle products under conditional value-at-risk criterion. Comput Ind Eng 88:354–365

    Article  Google Scholar 

  • Niu B, Jin D, Pu X (2016) Coordination of channel members’ efforts and utilities in contract farming operations. Eur J Oper Res 255(3):869–883

    Article  Google Scholar 

  • Noparumpa T, Kazaz B, Webster S (2015) Wine futures and advance selling under quality uncertainty. Manuf Serv Oper Manag 17(3):411–426

    Article  Google Scholar 

  • Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3):21–42

    Article  Google Scholar 

  • Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J Bank Finance 26(7):1443–1471

    Article  Google Scholar 

  • Singh S (2002) Contracting out solutions: political economy of contract farming in the Indian Punjab. World Dev 30(9):1621–1638

    Article  Google Scholar 

  • Singh S (2005) State, agribusiness firms and farmers in Thailand: a study of contract farming system. In: Deepkia MG, Rajagopalan S (eds) Corporate agribusiness—concepts and cases. The ICFAI University Press, Hyderabad

    Google Scholar 

  • Sriboonchitta S, Wiboonpoongse A (2008) Overview of contract farming in Thailand: lessons learned. http://www.adbi.org/discussion-paper/2008/07/16/2660.contract.farming.thailand/

  • Tang SY, Kouvelis P (2014) Pay-back-revenue-sharing contract in coordinating supply chains with random yield. Prod Oper Manag 23(12):2089–2102

    Article  Google Scholar 

  • Taylor TA (2006) Sale timing in a supply chain: when to sell to the retailer. Manuf Serv Oper Manag 8(1):23–42

    Article  Google Scholar 

  • Tomlin B, Wang Y (2005) On the value of mix flexibility and dual sourcing in unreliable newsvendor networks. Manuf Serv Oper Manag 7(1):37–57

    Article  Google Scholar 

  • Wan J (2008) The quasi-vertical integration, the governance by relations and the performance of contracts. Manag World 12:93–102 (in Chinese)

    Google Scholar 

  • Wang Y, Gerchak Y (1996) Periodic review production models with variable capacity, random yield, and uncertain demand. Manag Sci 42(1):130–137

    Article  Google Scholar 

  • Wang Y, Jiang L, Shen ZJ (2004) Channel performance under consignment contract with revenue sharing. Manag Sci 50(1):34–47

    Article  Google Scholar 

  • Xiao Y, Chen J (2012) Supply chain management of fresh products with producer transportation. Decis Sci 43(5):785–815

    Article  Google Scholar 

  • Xu H (2010) Managing production and procurement through option contracts in supply chains with random yield. Int J Prod Econ 126(2):306–313

    Article  Google Scholar 

  • Yano C, Lee H (1995) Lot sizing with random yields: a review. Oper Res 43(2):311–334

    Article  Google Scholar 

  • Zhang L, Lin S, Huo J (2011) The crucial factors in the operations of agriculture industrialization. Manag World 3:83–91 (in Chinese)

    Google Scholar 

  • Zhao X, Wu FW (2011) Coordination of agri-food chain with revenue-sharing contract under stochastic output and stochastic demand. Asia-Pacfic J Oper Res 28(4):487–510

    Article  Google Scholar 

Download references

Acknowledgements

The study is supported by Natural Science Foundation of China (71172075, 71371006, 71471066, 71601053, 71420107024), Program for New Century Excellent Talents in University (NCET-13-0219), Fundamental Research Funds for the Central Universities, SCUT (2015JCRC06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Lin.

Appendices

Appendix 1

Proof for Theorem 1

Solve the problem \( \max_{v \in R} CVaR_{\eta } (q,v) \) first. For any given \( q \), it can be simplified in the following three cases.

  1. (1)

    If \( v \le wqA - c(q) \), then \( CVaR_{\eta } (q,v) = v \), hence \( {{\partial CVaR_{\eta } (q,v)} \mathord{\left/ {\vphantom {{\partial CVaR_{\eta } (q,v)} {\partial v}}} \right. \kern-0pt} {\partial v}} = 1 > 0 \).

  2. (2)

    If \( wqA - c(q) < v \le wqB - c(q) \), then

    $$ {\kern 1pt} {\kern 1pt} CVaR_{\eta } (q,v) = v - \frac{1}{\eta }\int_{A}^{{\frac{v + c(q)}{wq}}} {[v - wq\mu + c(q)]} dG(\mu ) $$

    Hence

    $$ \frac{{\partial CVaR_{\eta } (q,v)}}{\partial v} = 1 - \frac{1}{\eta }G\left( {\frac{v + c(q)}{wq}} \right) $$

    Note that

    $$ \frac{{\partial CVaR_{\eta } (q,v)}}{\partial v}\left| {_{v = wAq - c(q)} } \right. = 1 > 0;\;\frac{{\partial CVaR_{\eta } (q,v)}}{\partial v}\left| {_{v = wBq - c(q)} } \right. = 1 - \frac{1}{\eta } < 0 $$

    That is, there is an optimal value \( v^{*} \) to satisfy \( {{\partial CVaR_{\eta } (q,v)} \mathord{\left/ {\vphantom {{\partial CVaR_{\eta } (q,v)} {\partial v}}} \right. \kern-0pt} {\partial v}} = 0 \).

  3. (3)

    If \( v \ge wqB - c(q) \), then \( {\kern 1pt} CVaR_{\eta } (q,v) = v - \frac{1}{\eta }\int_{A}^{B} {[v - w \cdot q\mu + c(q)]dG(\mu )} \), and

    $$ \frac{{\partial CVaR_{\eta } (q,v)}}{\partial v} = 1 - \frac{1}{\eta } < 0 $$

    Hence, the optimal value \( v^{*} \) is

    $$ v^{*} = wqG^{ - 1} (\eta ) - c(q) $$

    Substituting \( v^{*} \) into the farmer’s objective function (4), we have

    $$ {\kern 1pt} {\kern 1pt} CVaR_{\eta } (q,v^{*} ) = v^{*} - \frac{1}{\eta }\int_{A}^{{\frac{{v^{*} + c(q)}}{wq}}} {[v^{*} - wq\mu + c(q)]} dG(\mu ) = \frac{1}{\eta }\int_{A}^{{G^{ - 1} (\eta )}} {wq\mu } dG(\mu ) - c(q) $$

    It can be easily proved that it is the strictly concave function of production quantity \( q \), let \( {{{\kern 1pt} {\kern 1pt} dCVaR_{\eta } (q,v^{*} )} \mathord{\left/ {\vphantom {{{\kern 1pt} {\kern 1pt} dCVaR_{\eta } (q,v^{*} )} {dq}}} \right. \kern-0pt} {dq}} = 0 \), the optimal production quantity is

    $$ q_{DF}^{*} = \frac{{w\kappa_{1} (\eta ) - c_{1} }}{{2c_{2} }} $$

    where \( \kappa_{1} (\eta ) = \frac{1}{\eta }\int_{A}^{{G^{ - 1} (\eta )}} \mu dG(\mu ) \).□

Proof for Theorem 2

From (9) we have, the optimal value for stocking factor \( z_{0} \) should satisfy the following first order partial derivative condition

$$ \frac{{\partial \varPi_{DE} (z,w){\kern 1pt} }}{\partial z}{\kern 1pt} = \frac{{y_{0}^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} (nq\mu )^{{1 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} }}{{z^{{2 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} k}} \cdot \varPhi (z) $$

where \( \varPhi (z) = z - (1 - s)\int_{\alpha }^{\text{z}} { [z + (k - 1 )x]} f(x)dx \).

Note that \( {{y_{0}^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} (nq\mu )^{{1 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} } \mathord{\left/ {\vphantom {{y_{0}^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} (nq\mu )^{{1 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} } {(z^{{2 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} k)}}} \right. \kern-0pt} {(z^{{2 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} k)}} > 0 \), then the optimal \( z_{0} \) will be determined by \( \varPhi (z) \). Such a \( z_{0} \) always exists in the support interval \( [\alpha {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta ] \) of \( F( \cdot ) \), since ① \( \varPhi (z) \) is continuous, and ② \( \varPhi (\alpha ) = \alpha \ge 0 \) and \( \varPhi (\beta ) = s\beta - (1 - s)(k - 1)\bar{\varepsilon } \). Since

$$ \varPhi '(z) = 1 - (1 - s)[F(z) + kzf(z)] $$
$$ \varPhi ''(z) = - (1 - s)[f(z) + kf(z) + kzf'(z)] $$

Now, if \( h(x) = {{xf(x)} \mathord{\left/ {\vphantom {{xf(x)} {\bar{F}(x)}}} \right. \kern-0pt} {\bar{F}(x)}} \) (where \( \bar{F}(x) = 1 - F(x) \)) increases in \( x \), then the random variable of the market demand, \( \varepsilon \), has the properties of Increasing Generalized Failure Rate (IGFR), then \( \varPhi ''(z) < 0 \), which implies that \( \varPhi (z) \) itself is a concave function. As \( z \) exists in \( [\alpha ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta ] \), it satisfies \( \varPhi (\alpha ) = \alpha \ge 0 \) and \( \varPhi (\beta ) = s\beta - (1 - s)(k - 1)\bar{\varepsilon } \), then we have,

  1. (1)

    As \( \varPhi (\beta ) = s\beta - (1 - s)(k - 1)\bar{\varepsilon } \le 0 \), there is a unique optimal \( z_{0} \in [\alpha ,{\kern 1pt} {\kern 1pt} {\kern 1pt} \beta ] \) satisfies \( \varPhi (z_{0} ) = 0 \).

  2. (2)

    As \( \varPhi (\beta ) = s\beta - (1 - s)(k - 1)\bar{\varepsilon } > 0 \), then there should be \( z \in (\alpha ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta ] \) satisfies \( \varPhi (z) > 0 \). Combining \( y_{0}^{{1/k}} (nq\mu )^{{1 - 1/k}} /(z^{{2 - 1/k}} k) > 0 \), we know \( \varPi_{DE} (z,w){\kern 1pt} \) is an increasing function in \( z \in [\alpha ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta ] \). Obviously, the maximum \( \varPi_{DE} (z,w){\kern 1pt} \) can be obtained as \( z_{0} = \beta \).□

Proof for Theorem 3

From Theorem 2 we have, the optimal stocking factor is not impacted by production quantity \( q \). Taking the second partial derivatives of \( \varPi_{DE} (q,w(q)) \) with respect to \( q \), we have

$$ {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } \mathord{\left/ {\vphantom {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } {dq^{2} }}} \right. \kern-0pt} {dq^{2} }} = - \frac{1}{k}A_{0} E_{\mu } [\mu^{{1 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} ] \cdot n^{{1 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} q^{{ - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k} - 1}} - 4c_{2} \cdot {{n\bar{\mu }} \mathord{\left/ {\vphantom {{n\bar{\mu }} {\kappa_{1} (\eta )}}} \right. \kern-0pt} {\kappa_{1} (\eta )}} < 0 $$

Therefore, \( \varPi_{DE} (q,w(q)) \) is a strictly concave function of \( q \). Let \( {{d\varPi_{DE} (q)} \mathord{\left/ {\vphantom {{d\varPi_{DE} (q)} {dq}}} \right. \kern-0pt} {dq}} = 0 \), we can get the optimal production quantity \( q_{DF}^{*} \)

$$ {{d\varPi_{DE} (q,w(q)){\kern 1pt} } \mathord{\left/ {\vphantom {{d\varPi_{DE} (q,w(q)){\kern 1pt} } {dq}}} \right. \kern-0pt} {dq}} = A_{0} E_{\mu } [\mu^{{1 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} ] \cdot n^{{1 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} q^{{ - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} - (c_{1} + 4c_{2} q) \cdot n{{\bar{\mu }} \mathord{\left/ {\vphantom {{\bar{\mu }} {\kappa_{1} (\eta )}}} \right. \kern-0pt} {\kappa_{1} (\eta )}} = 0 $$

From (6), we get the optimal purchasing price \( w_{DE}^{*} = {{(c_{1} + 2c_{2} q_{DF}^{*} )} \mathord{\left/ {\vphantom {{(c_{1} + 2c_{2} q_{DF}^{*} )} {\kappa_{1} (\eta )}}} \right. \kern-0pt} {\kappa_{1} (\eta )}} \).□

Proof for Theorem 4

Similar to the proof of Theorem 2.□

Proof for Theorems 5 and 6

Similar to the proof of Theorem 3.□

Proof for Lemma 1

From Theorem 3, taking the first order partial derivatives of \( q_{DF}^{*} \) with respect to \( \eta \), we have

$$ \frac{{\partial q_{DF}^{*} }}{\partial \eta } = \kappa_{1} (\eta )^{ - 1} \frac{{q_{DF}^{*} (c_{1} + 4c_{2} q_{DF}^{*} )k}}{{c_{1} + 4(k + 1)c_{2} q_{DF}^{*} }} \cdot \frac{{\partial \kappa_{1} (\eta )}}{\partial \eta } $$

In addition, we know that

$$ \frac{{\partial \kappa_{1} (\eta )}}{\partial \eta } = \frac{1}{{\eta^{2} }}\int_{A}^{{G^{ - 1} (\mu )}} {G(\mu )d\mu } > 0 $$

Therefore, \( {{\partial q_{DF}^{*} } \mathord{\left/ {\vphantom {{\partial q_{DF}^{*} } {\partial \eta }}} \right. \kern-0pt} {\partial \eta }} > 0 \).

Taking the first order partial derivatives of \( w_{DE}^{*} \) with respect to \( \eta \), we have

$$ \kappa_{1} (\eta )^{2} \frac{{\partial w_{DE}^{*} }}{\partial \eta } = 2c_{2} \kappa_{1} (\eta ))\frac{{\partial q_{DF}^{*} }}{\partial \eta } - \frac{{\partial \kappa_{1} (\eta )}}{\partial \eta }(c_{1} + 2c_{2} q_{DF}^{*} ) $$

Hence,

$$ \frac{{\partial w_{DE}^{*} }}{\partial \eta } = - \frac{{(c_{1} + 2c_{2} q_{DF}^{*} )(c_{1} + 4c_{2} q_{DF}^{*} ) + 2kc_{1} c_{2} q_{DF}^{*} }}{{[c_{1} + 4(k + 1)c_{2} q_{DF}^{*} ] \cdot \kappa_{1} (\eta )^{2} }} \cdot \frac{{\partial \kappa_{1} (\eta )}}{\partial \eta } < 0 $$

where \( \frac{{\partial \kappa_{1} (\eta )}}{\partial \eta } = \frac{1}{{\eta^{2} }}\int_{A}^{{G^{ - 1} (\mu )}} {G(\mu )d\mu } > 0 \).Since \( p_{DE}^{*} (w) = {{[y_{0} z_{0} } \mathord{\left/ {\vphantom {{[y_{0} z_{0} } {(nq\mu )}}} \right. \kern-0pt} {(nq\mu )}}]^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} \), we can easily obtain \( {{dp_{DE}^{*} } \mathord{\left/ {\vphantom {{dp_{DE}^{*} } {d\eta }}} \right. \kern-0pt} {d\eta }} < 0 \).□

Proof or Lemma 2

  1. It can be easily seen from Theorem 2.

  2. It can be easily seen from Theorem 3 that \( q_{DF}^{*} \) is not related to \( c_{0} \). In addition, from (15), we have \( {{\partial q_{DF}^{*} } \mathord{\left/ {\vphantom {{\partial q_{DF}^{*} } {\partial c_{1} = }}} \right. \kern-0pt} {\partial c_{1} = }}{{\bar{\mu }} \mathord{\left/ {\vphantom {{\bar{\mu }} {[\kappa_{1} (\eta ) \cdot ({{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } \mathord{\left/ {\vphantom {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } {d^{2} }}} \right. \kern-0pt} {d^{2} }}q)]}}} \right. \kern-0pt} {[\kappa_{1} (\eta ) \cdot ({{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } \mathord{\left/ {\vphantom {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } {d^{2} }}} \right. \kern-0pt} {d^{2} }}q)]}} \), since \( {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } \mathord{\left/ {\vphantom {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } {dq^{2} }}} \right. \kern-0pt} {dq^{2} }} < 0 \), then \( {{\partial q_{DF}^{*} } \mathord{\left/ {\vphantom {{\partial q_{DF}^{*} } {dc_{1} < 0}}} \right. \kern-0pt} {dc_{1} < 0}} \). Similarly, we can get that \( {{\partial q_{DF}^{*} } \mathord{\left/ {\vphantom {{\partial q_{DF}^{*} } {\partial c_{2} = }}} \right. \kern-0pt} {\partial c_{2} = }}{{4\bar{\mu }q_{DF}^{*} } \mathord{\left/ {\vphantom {{4\bar{\mu }q_{DF}^{*} } {[\kappa_{1} (\mu ) \cdot {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } \mathord{\left/ {\vphantom {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } {dq^{2} }}} \right. \kern-0pt} {dq^{2} }}]}}} \right. \kern-0pt} {[\kappa_{1} (\mu ) \cdot {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } \mathord{\left/ {\vphantom {{d^{2} \varPi_{DE} (q,w(q)){\kern 1pt} } {dq^{2} }}} \right. \kern-0pt} {dq^{2} }}]}} < 0 \).

  3. Since \( p_{DE}^{*} (w) = {{[y_{0} z_{0} } \mathord{\left/ {\vphantom {{[y_{0} z_{0} } {(q\mu )}}} \right. \kern-0pt} {(q\mu )}}]^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} \), from (1) and (2), we can get (3).

  4. It can be easily seen from Theorem 3 that \( w_{DE}^{*} \) is not related to \( c_{0} \). From Theorem 3, we can obtain \( \kappa_{1} (\eta )\frac{{\partial w_{DE}^{*} }}{{\partial c_{1} }} = 1 + 2c_{2} \frac{{\partial q_{DF}^{*} }}{{\partial c_{1} }} = 1 - \frac{{2kc_{2} }}{{(c_{1} + 4c_{2} q_{DF}^{*} ) \cdot q_{DF}^{* - 1} + 4kc_{2} }} > 0 \). Similarly, we have \( \kappa (\mu ,\eta )\frac{{\partial w_{DE}^{*} }}{{\partial c_{2} }} = 2q_{DF}^{*} + 2c_{2} \frac{{\partial q_{DF}^{*} }}{{\partial c_{2} }} = 2q_{DF}^{*} \left\{ {1 - \frac{{4kc_{2} }}{{(c_{1} + 4c_{2} q_{DF}^{*} ) \cdot q_{DF}^{* - 1} + 4kc_{2} }}} \right\} > 0 \). Hence, \( \frac{{\partial w_{DE}^{*} }}{{\partial c_{1} }} > 0 \) and \( \frac{{\partial w_{DE}^{*} }}{{\partial c_{2} }} > 0 \).□

Proof for Lemma 3

We use Reduction to Absurdity to prove Lemma 3. Assume \( q_{DF}^{*} \ge q_{SC}^{*} \) first. Since \( c_{1} > 0,c_{2} > 0 \) and \( k > 1 \), then \( q_{DF}^{*} [c_{1} + 4c_{2} q_{DF}^{*} ]^{k} > q_{SC}^{*} [c_{1} + 2c_{2} q_{SC}^{*} ]^{k} \), which is not consistent with the satisfaction condition \( nq_{DF}^{*} [c_{1} + 4c_{2} q_{DF}^{*} ]^{k} < A_{0}^{k} E_{\mu } [\mu^{{1 - {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0pt} k}}} ]^{k} \)\( = nq_{SC}^{*} [c_{1} + 2c_{2} q_{SC}^{*} ]^{k} \) for Theorems 2 and 3. Hence, we know that \( q_{DF}^{*} < q_{SC}^{*} \).

Moreover, from Lemma 1 we know, \( q_{DF}^{*} \) is decreasing in \( \eta \). Hence, \( q_{DF}^{*} \) is smaller for the more risk-averse farmer, thus the difference of the optimal production quantity under centralized and decentralized decision models, \( (q_{SC}^{*} - q_{DF}^{*} ) \), is larger.

Since the optimal retail price is negative correlation with the optimal production quantity, hence, \( \left( {p_{SC}^{*} - p_{DE}^{*} } \right) \) decreases with decreasing \( \eta \).□

Appendix 2

According to the general definition of CVaR, by taking the market demand uncertainty into consideration, the farmer’s decision making function can be expressed by

$$ \begin{aligned} CVaR_{\eta } (\hbox{min} (z,x) + s(z - x)^{ + } ) & = v_{\varepsilon } - \frac{1}{\eta }E[v_{\varepsilon } - \hbox{min} (z,x) - s(z - x)^{ + } ]^{ + } \\ {\kern 1pt} & = v_{\varepsilon } - \frac{1}{\eta }\int_{\alpha }^{z} {\left( {v_{\varepsilon } - sz - (1 - s)x} \right)^{ + } dF(x)} - \frac{1}{\eta }\int_{z}^{\beta } {(v_{\varepsilon } - z)^{ + } dF(x)} \\ \end{aligned} $$

where \( [Z]^{ + } = \hbox{max} [Z,0] \).

For any given \( z \), it can be simplified in the following three cases for solving \( {\kern 1pt} \mathop {\hbox{max} }\limits_{{v_{\varepsilon } \in R}} {\text{C}}VaR_{\eta } (z,v_{\varepsilon } ) \).

  1. (1)

    If \( v_{\varepsilon } \le sz + (1 - s)\alpha \), \( CVaR_{\eta } (z,v_{\varepsilon } ) = v_{\varepsilon } \), then \( {{\partial CVaR_{\eta } (z,v_{\varepsilon } )} \mathord{\left/ {\vphantom {{\partial CVaR_{\eta } (z,v_{\varepsilon } )} {\partial v_{\varepsilon } }}} \right. \kern-0pt} {\partial v_{\varepsilon } }} = 1 > 0 \).

  2. (2)

    If \( sz + (1 - s)\alpha < v_{\varepsilon } \le z \), \( {\kern 1pt} CVaR_{\eta } (z,v_{\varepsilon } ) = v_{\varepsilon } - \frac{1}{\eta }\int_{\alpha }^{{\frac{{v_{\varepsilon } - sz}}{1 - s}}} {\left( {v_{\varepsilon } - sz - (1 - s)x} \right)dF(x)} \), then

    $$ \frac{{\partial CVaR_{\eta } (z,v_{\varepsilon } )}}{{\partial v_{\varepsilon } }} = 1 - \frac{1}{\eta }F\left( {\frac{{v_{\varepsilon } - sz}}{1 - s}} \right) $$

    Notice that

    $$ \frac{{\partial CVaR_{\eta } (z,v_{\varepsilon } )}}{{\partial v_{\varepsilon } }}\left| {_{{v_{\varepsilon } = sz + (1 - s)\alpha }} = 1 > 0} \right.,\quad \frac{{\partial CVaR_{\eta } (z,v_{\varepsilon } )}}{{\partial v_{\varepsilon } }}\left| {_{{v_{\varepsilon } = z}} = } \right.1 - \frac{1}{\eta }F(z) $$

    Hence, as \( 1 - \frac{1}{\eta }F(z) > 0 \Rightarrow F(z) < \eta \), \( {{\partial CVaR_{\eta } (z,v_{\varepsilon } )} \mathord{\left/ {\vphantom {{\partial CVaR_{\eta } (z,v_{\varepsilon } )} {\partial v_{\varepsilon } }}} \right. \kern-0pt} {\partial v_{\varepsilon } }}\left| {_{{v_{\varepsilon } = z}} } \right. > 0 \), we have \( v_{\varepsilon }^{*} = z \). Otherwise, as \( 1 - \frac{1}{\eta }F(z) \le 0 \Rightarrow F(z) \ge \eta \), we have \( v_{\varepsilon }^{*} = sz + (1 - s)F^{ - 1} (\eta ) \).

  3. (3)

    If \( v_{\varepsilon } > z \), \( CVaR_{\eta } (z,v_{\varepsilon } ) = v_{\varepsilon } - \frac{1}{\eta }\int_{\alpha }^{z} {\left( {v_{\varepsilon } - sz - (1 - s)x} \right)dF(x)} - \frac{1}{\eta }\int_{z}^{\beta } {(v_{\varepsilon } - z)dF(x)} \), then

    $$ \frac{{\partial CVaR_{\eta } (z,v_{\varepsilon } )}}{{\partial v_{\varepsilon } }} = 1 - \frac{1}{\eta } < 0 $$

Hence,

  1. If \( \eta \le F(z) \), the optimal value of \( v_{\varepsilon }^{*} \) satisfies \( v_{\varepsilon }^{*} = sz + (1 - s)F^{ - 1} (\eta ) \), then

    $$ {\kern 1pt} CVaR_{\eta } (z,v_{\varepsilon } ) = F^{ - 1} (\eta ) - \frac{1}{\eta }\int_{\alpha }^{{F^{ - 1} (\eta )}} {\left( {F^{ - 1} (\eta ) - sz - (1 - s)x} \right)dF(x)} = sz + (1 - s)\frac{1}{\eta }\int_{\alpha }^{{F^{ - 1} (\eta )}} {xdF(x)} $$

    Then we have

    $$ {\kern 1pt} \frac{{dCVaR_{\eta } (z,v_{\varepsilon } )}}{dz} = s \ge 0 $$

    \( CVaR_{\eta } (z,v_{\varepsilon } ) \) is an increasing function of \( z \), there is no extreme point.

  2. If \( F(z) < \eta \), the optimal value of \( v_{\varepsilon }^{*} \) satisfies \( v_{\varepsilon }^{*} = z \), then

    $$ {\kern 1pt} CVaR_{\eta } (z,v_{\varepsilon } ) = z - (1 - s)\frac{1}{\eta }\int_{\alpha }^{z} {\left( {z - x} \right)dF(x)} . $$

Appendix 3

According to the general definition of CVaR, by taking the yield uncertainty into consideration, the farmer’s decision making function can be expressed by

$$ CVaR_{\eta } (\mu^{k} ,v_{\mu } ) = {\kern 1pt} v_{\mu } - \frac{1}{\eta }E(v_{\mu } - \mu^{k} )^{ + } {\kern 1pt} {\kern 1pt} {\kern 1pt} = v_{\mu } - \frac{1}{\eta }\int_{A}^{B} {(v_{\mu } - \mu^{k} )^{ + } dG(\mu )} $$

where \( k > 0 \) is an any real number.

Similar to the solve process for Appendix B, we have

$$ CVaR_{\eta } (\mu^{k} ,v_{\mu } ) = \frac{1}{\eta }\int_{A}^{{G^{ - 1} (\eta )}} {\mu^{k} } dG(\mu ). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Lin, Q. & Li, Y. Coordination for contract farming supply chain with stochastic yield and demand under CVaR criterion. Oper Res Int J 20, 369–397 (2020). https://doi.org/10.1007/s12351-017-0328-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-017-0328-3

Keywords

Navigation