Skip to main content
Log in

Bias correction for estimation of performance measures of a Markovian queue

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

There are several situations in our daily lives in which queues are present, such as cafeterias, supermarkets, banks, gas stations, and so forth. The performance of such queues can be described by several measures. In this article, the focus is on estimates of traffic intensity (\(\rho\)), also called the utilization factor of the service station, the expected number of customers in the system (L), and the average queue size (\({L_{q}}\) ) for infinite single-serve queues with Poisson arrivals and exponential (Markovian) service times. The computational experiments show that the maximum likelihood estimators (MLEs) of the performance measures are biased for small and moderate samples (\(n < 50\)). Thus, a version corrected by the nonparametric bootstrap method is analyzed, demonstrating that researchers could achieve with an extra computational effort bias-corrected estimates for samples of size \(n=10\) with average errors equivalent to the estimates from the MLE for samples of size \(n=200\). This reduction can be very important in practical applications because of the cost and time reduction that it may bring to the process of estimating the performance measures of a queueing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida MAC, Cruz FRB (2017) A note on Bayesian estimation of traffic intensity in single-server Markovian queues. Commun Stat Simul Comput. doi:10.1080/03610918.2017.1353614

    Article  Google Scholar 

  • Armero C, Bayarri MJ (1994a) Bayesian prediction in \(M/M/1\) queues. Queueing Syst 15(1–4):401–417

    Article  Google Scholar 

  • Armero C, Bayarri MJ (1994b) Prior assessments for prediction in queues. J R Stat Soc Series D 43(1):139–153

    Google Scholar 

  • Armero C, Bayarri MJ (1996) Bayesian questions and answers in queues. Bayesian Stat 5:3–23

    Google Scholar 

  • Armero C, Bayarri MJ (1997) A Bayesian analysis of a queueing system with unlimited service. J Stat Plan Inference 58(2):241–261

    Article  Google Scholar 

  • Armero C, Bayarri MJ (1999) Multivariate analysis, design of experiments and survey sampling. In: Ghosh S (ed) Dealing with uncertainties in queues and networks of queues: a Bayesian approach. Springer Science+Business Media. Marcel Dekker, New York, NY, pp 579–608

    Google Scholar 

  • Armero C, Bayarri MJ (2015) Queues. In: Wright JD (ed) International encyclopedia of the social & behavioral sciences. Elsevier, Oxford, pp 784–789

    Chapter  Google Scholar 

  • Armero C, Conesa D (1998) Inference and prediction in bulk arrival queues and queues with service in stages. Appl Stoch Models Data Anal 14(1):35–46

    Article  Google Scholar 

  • Armero C, Conesa D (2000) Prediction in Markovian bulk arrival queues. Queueing Syst 34(1–4):327–350

    Article  Google Scholar 

  • Armero C, Conesa D (2004) Statistical performance of a multiclass bulk production queueing system. Eur J Oper Res 158(3):649–661

    Article  Google Scholar 

  • Armero C, Conesa D (2006) Bayesian hierarchical models in manufacturing bulk service queues. J Stat Plan Inference 136(2):335–354

    Article  Google Scholar 

  • Choudhury A, Borthakur AC (2008) Bayesian inference and prediction in the single server Markovian queue. Metrika 67(3):371–383

    Article  Google Scholar 

  • Chowdhury S, Mukherjee SP (2013) Estimation of traffic intensity based on queue length in a single \(M/M/1\) queue. Commun Stat Theory Methods 42(13):2376–2390

    Article  Google Scholar 

  • Clarke AB (1957) Maximum likelihood estimates in a simple queue. Ann Math Stat 28(4):1036–1040

    Article  Google Scholar 

  • Cruz FRB, Colosimo EA, Smith JM (2004) Sample size corrections for the maximum partial likelihood estimator. Commun Stat Simul Comput 33(1):35–47

    Article  Google Scholar 

  • Cruz FRB, Quinino RC, Ho LL (2016) Bayesian estimation of traffic intensity based on queue length in a multi-server \(M/M/s\) queue. Commun Stat Simul Comput. doi:10.1080/03610918.2016.1236953

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall, London

    Book  Google Scholar 

  • Gontijo GM, Atuncar GS, Cruz FRB, Kerbache L (2011) Performance evaluation and dimensioning of \(GIX/M/c/N\) systems through kernel estimation. Math Probl Eng 2011:348262. doi:10.1155/2011/348262

    Article  Google Scholar 

  • Gross D, Shortle JF, Thompson JM, Harris CM (2009) Fundamentals of queueing theory, 4th edn. Wiley-Interscience, New York

    Google Scholar 

  • Ke JC, Chu YK (2009) Comparison on five estimation approaches of intensity for a queueing system with short run. Comput Stat 24(4):567–582

    Article  Google Scholar 

  • Kendall DG (1953) Stochastic processes occurring in the theory of queues and their analysis by the method of embedded Markov chains. Ann Math Stat 24:338–354

    Article  Google Scholar 

  • Little JDC (1961) A proof for the queuing formula: \(L = \lambda W\). Oper Res 9(3):383–387

    Article  Google Scholar 

  • Mcgrath MF, Gross D, Singpurwalla ND (1987) A subjective Bayesian approach to the theory of queues I—modeling. Queueing Syst 1(4):317–333

    Article  Google Scholar 

  • McGrath MF, Singpurwalla ND (1987) A subjective Bayesian approach to the theory of queues II—inference and information in \(M/M/1\) queues. Queueing Syst 1(4):335–353

    Article  Google Scholar 

  • Muddapur MV (1972) Bayesian estimates of parameters in some queueing models. Ann Inst Stat Math 24(1):327–331

    Article  Google Scholar 

  • Mukhopadhyay N (2000) Probability and statistical inference. Marcel Dekker, New York

    Google Scholar 

  • Quinino RC, Cruz FRB (2017) Bayesian sample sizes in an \(M/M/1\) queueing system. Int J Adv Manuf Technol 88(1):995–1002

    Article  Google Scholar 

  • R Core Team: R (2017) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Schruben L, Kulkarni R (1982) Some consequences of estimating parameters for the \(M/M/1\) queue. Oper Res Lett 1(2):75–78

    Article  Google Scholar 

  • Sohn SY (1996) Empirical Bayesian analysis for traffic intensity: \(M/M/1\) queues with covariates. Queueing Syst 22(3):383–401

    Article  Google Scholar 

  • Sohn SY (1996) Influence of a prior distribution on traffic intensity estimation with covariates. J Stat Comput Simul 55(3):169–180

    Article  Google Scholar 

  • Wagner HM (1975) Principles of Operations Research: with applications to managerial decisions, 2nd edn. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico of the Ministry for Science and Technology) under grants 304671/2014-2 and 300825/2016-1, and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) under grant CEX-PPM-00564-17, and by UFOP and UFPA. Special thanks to Carolina and Gabriel for their helpful advice with the algebra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. B. Cruz.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M.A.C., Cruz, F.R.B., Oliveira, F.L.P. et al. Bias correction for estimation of performance measures of a Markovian queue. Oper Res Int J 20, 943–958 (2020). https://doi.org/10.1007/s12351-017-0351-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-017-0351-4

Keywords

Navigation