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Abstract This paper proposes an aggregated index of acceptability that can 
establish a "ranking" of the possible candidate hub cities in the design of a 
telecommunications network. The main advantages of the aggregated index pro­
posed are the following: (a) it takes into account several wide-ranging design cri­
teria, (b) its formulation is given by a lineal mathematical expression, (c) the 
procedure for calculating the index is very simple, and (d) the candidate hubs can be 
ranked differently depending on the aggregation structure of the criteria involved. 
Taking this considerations, the application of the proposed methodology can sup­
plement the information supplied by more sophisticated multicriteria approaches 
based generally upon 0/1 goal programming. The theory presented is illustrated 
using a case study taken from the literature. 
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1 Introduction 

The problem of designing a telecommunications network over a given geograph­
ically dispersed area is an important practical problem that involves engineering and 
economic aspects (see Kawasumi et al. 2007; Lee et al. 2001; Nazem et al. 1994). 
Most efforts undertaken along these lines resort to binary mathematical program­
ming. In fact, the value of a generic decision variable xk is 1 if the k-th hub point is 
chosen; otherwise the value of xk is 0. Consequently, an objective function 
reflecting the interests of the decision maker is optimised subject to the satisfaction 
of a set of constraints that the network design should meet. Although undoubtedly 
worthwhile, this approach to the problem is not exempt of difficulties. Thus, the 
choice of the objective function to be optimised is generally problematic. Indeed, 
the reliability of designing a telecommunications network is actually a multidi­
mensional problem, involving several, wide-ranging criteria. In this context, it is 
very difficult to arrive at a good design solution just by optimising a single criterion. 
For instance, a candidate hub that minimises the implementation budget may apply 
to a very low populated area, which may not be acceptable. This problem has been 
successfully addressed by reformulating the mathematical programming model 
commented above as a binary goal programming. Lee et al. (1996) pioneered work 
in this direction (see Lee et al. 1994) where a similar methodology is applied to an 
analogous problem consisting of the design of a files system). 

The other problem underlying the binary mathematical programming approach is 
that the system that is going to be designed is usually huge. Therefore, the size of 
the binary mathematical programming problem in real-world situations can lead to a 
sizeable computational burden (see Lee et al. 1994; Nazem et al. 1994, 1996). 
Moreover, the solution of the model provides the "optimum design", but it does not 
state how acceptable each potential hub is, which can be problematic in some cases. 

This paper proposes a straightforward methodology (see Roy and Slowinsk 2013; 
Steuer 1989) that is able to attach an index of acceptability to each candidate hub by 
means of a simple computation. This index will take into account all the points of 
view (i.e., criteria) that the decision maker considers that affects the decision on the 
acceptability of a potential hub point. Therefore, it will sort (strong or weak) the n 
potential hub points so that the overall utility of the telecommunications network is 
maximized. The proposed method does not claim to be an alternative to the 
approaches based upon binary mathematical programming. It is an attempt to 
provide, with a small computational burden, additional information that comple­
ments the output of these approaches. 

2 Analytical procedure 

2.1 Definition of model inputs 

Let us consider i — 1, 2, ..., n potential candidate hubs in the design of a 
telecommunication network. Each candidate hub is evaluated according to j — 1,2, 



..., m criteria/acceptability indicators. In the case of a rural telecommunications 
network, as recommended by the Federation of American Scientists, (see Lee et al. 
1996) the possible acceptability indicators to be applied to each candidate hub are: 
economic activity, population, construction and operation costs, education, trans­
portation, etc. 

The problem posed in this paper will involve defining an index of acceptability 
that aggregates the different acceptability indicators attached to each one of the n 
potential hub locations. Therefore, the n potential hub locations can be ranked 
according to their overall acceptability. If the formulation is to be of pragmatic 
interest, the aggregate index should satisfy some common sense properties, such as: 

(a) Since the number of candidate hubs and acceptability indicators in many real-
world situations is very large, the index calculation procedure should be very 
simple. 

(b) The engineering and economic interpretation of the index should be clear and 
straightforward. 

(c) The index should represent a good balance between very wide-ranging 
indicators. 

The first step is to introduce the following notation. 

Py — performance achieved by the i-th candidate hub (i — l,2,...,n) when it is 
evaluated according to the jth indicator of acceptability (j — 1,2,...,m). 
P* — ideal value of the j-th indicator of acceptability (i.e. the best value possible). 
This value is obtained by optimizing each indicator of acceptability individually 
and is given by maximum performance if the indicator is of the type "more is 
better" (e.g., economic activity) or by minimum performance if the indicator is of 
the type "less is better" (e.g., implementation budget). 
P„j — anti-ideal value achieved by the j-th indicator of acceptability (i.e. the 
worst value possible). This value is obtained by optimizing, in the opposite 
direction as in the previous case, each indicator of acceptability individually and 
is given by minimum performance if the indicator is of the type "more is better" 
or by maximum performance if the indicator is of the type "less is better". 
Py — normalised performance achieved by the i-th candidate hub when it is 
evaluated according to the j-th indicator of acceptability. 
Wj — weight measuring the relative importance attached to the j-th indicator of 
acceptability. By hypothesis it is assumed that w¡ > 0, j — 1, 2, ..., m. 
if" — aggregate value index of acceptability for the generic i-th candidate hub. 

Given that the indicators of acceptability are mostly measured in different units 
(e.g., operating costs in monetary units, health care according to a qualitative index, 
etc.), the first and absolutely necessary step for constructing the aggregated index of 
acceptability is to normalise the different performances achieved by the candidate 
hubs considered. A simple and pragmatic normalisation procedure successfully used 
in other contexts (see Diaz-Balteiro and Romero 2004) for an ecological context) is 
as follows: 



P i ^ S M r 1 ' i= l ,2 , . . ,n , j = l,2,..,m (1) 

With the normalisation given by (1), the normalised performance values Py are 
dimensionless, positive and bounded between 0 (when the candidate hub achieves 
the anti-ideal value) and 1 (when the candidate hub achieves the ideal value), 
respectively. Having this in mind and indicated by P* € Rm the ideal vector (vector 
whose components are the ideal values of m acceptability criteria) and by P* € Rm 

the anti-ideal vector (vector whose components are the anti-ideal values of m 
acceptability criteria), with the normalization made, we can verify that: 

P* = 1 = (1 ,1 , . . . , 1)T and P * = 0 = (0,0, . . . ,0)T 

that is, the ideal vector is equal to 1 and the anti-ideal vector is equal to 0, which is 
very convenient for undertaking any possible aggregation and allows to easily 
evaluate the achievement percentage of each criterion with respect to its ideal value. 

2.2 Vector of the criteria weights 

Among the different possible methodologies, based on pairwise comparison 
matrices, of computing the vector of the criteria weights (see Choo and Wedley 
2004; Gonzalez- Pachón and Romero 2007, 2014; Havanov et al. 2008; Lin 2007), 
we propose to obtain this applying the Dominant Eigen vector Method (EVM) to the 
square matrix A — (ay) of order m, positive (ay > 0), of diagonal elements one 
(a¡j = 1), reciprocal (ay • a¡j = 1) and generally inconsistent (ay ^ a¡k • ajy), which 
is obtained by pair-wise comparison of the m criteria being considered. This 
method, developed by Saaty to calculate local priorities in the Analytic Hierarchy 
Process (AHP) (see Saaty 1980, 1995, 2011, 2012; Vaidya and Kumar 2006), 
evaluates the weight vector by resolving the following system of equations: 

m 

AW = Xmax W, ^ Wj = 1 
j = l 

where Amax is the maximum eigenvalue of matrix A. 
In this paper, the preferred method for weighing the criteria is using the EVM, as 

it allows to easily evaluate the consistency of the value judgments made by the 
decision maker when constructing the pairwise comparison matrix, analysing the 
proximity of the values m (order of the matrix) and Amax (maximum eigenvalue of 
the matrix), verifying that if these values match, the matrix will be consistent. 

In the practical application of this method, due to its operational difficulty, for the 
algebraic calculation of eigenvalues and eigenvectors, the use of Expert-Choice 
software is recommended; this not only helps to obtain an estimation of the weight 
vector with a tolerable level of inconsistency, but also to rapidly and easily do a 
sensitivity analysis that guarantees the stability of the weight obtained against small 
changes in the value judgments issued on building the pairwise comparison matrix 
of the acceptability indicators considered. The development of Expert-Choice has 



been supervised by Saaty and its application covers a wide range of practical 
experiences in diverse fields. 

2.3 Aggregate index of acceptability 

Known the preferential weights Wj > 0, j — 1,2, ..., n and the values Py, i — 1, 2, 
..., n, j — 1,2, ..., m to establish the aggregated index of acceptability 1^ of each of 
the n candidate hubs considered and given that for the inherent conflict of multiple 
criteria the ideal solution is infeasible (it is only a point of reference for the decision 
marker), we are going to accept (see Andre and Romero 2008) the following 
decision rule or behavioural axiom: 

"Candidate hubs that are closer to the ideal are preferred to candidate hubs that 
are further away from the ideal" 

This axiom introduced in the decision theory by Zeleny (1974, 1982) is a 
postulate of behavior firmly rooted in the psychology that allows to hierarchically 
sort the alternatives of choice, taking into account the preferences of the decision 
maker. To make this axiom operational in our contest it is necessary to define in Rm 

a general distance function between the vector of the normalised performance 
achieved by the generic i-th candidate hub Py = (Pn,Pi2, • • -,Pm) and the ideal 
vector 1 = (1,1,.. . ,1) With this purpose in mind (see Erhgott and Tenfelde-
Podehl 2003), the following distance functions are introduced: 

l < p < o o . (2) 

In the definition, based in Minkowski's metric, of the distance function given; we 
have considered that, with the normalization of acceptability indicators of the 
candidate hubs performed, it is possible to simplify their formulation and write it, 
regardless of the absolute value of the addends contained in their expression. 

It is important to emphasize here that: 

1. The distance function (2) is not used in its geometric sense, but as a proxy 
measure for human preferences; in this sense, it is possible to give values to 
metric p in the closed interval [1, oo]. 

2. The metric p is a control parameter that, taking into account the preferences of 
the decision marker, allows to obtain aggregated or balanced solutions with 
respect to the realization of the indicators of acceptability considered, verifying 
that it is advisable to select a small value of p when we obtain a solution that 
minimizes the sum of the deviations and a high value of p when the interest lies 
in obtaining a solution that gives more importance to the individual deviations. 

Specifying the metric p in (2), the value of the aggregated index of acceptability 
for the i-th candidate hub, is given by the expression: 

Lp(l.Pii) ZXa-fcj)' 
j = l 



If = 1 ^ ( 1 ^ ) (3) 

By particularising the distance function (2) for the metrics p — 1 and p — oo the 
following results are obtained: 

m 

DistanceManhattan:=Li(l,Py) = ^ W j ( l - Py) 
j = i 

Distance Tchebycheff := Lm (1, Py) = max W j ( l - P i j ) 
1 < j < m 

<=? min WjPy , 
1 < j < m 

(4) 

With respect to these distance functions, defined by lineal mathematical 
expressions, it is interesting to note that: 

• The first expression adds the normalized and weighted degrees of proximity of 
all the criteria to their ideal value; verifying that, when the metric p increases, 
more importance is given to the bigger deviations; whereas, the second is limited 
to finding the maximum degree of normalized and weighted proximity of all 
criteria to their ideal value. 

• The solution that assigns the lowest numerical value to the distance for p — 1 
(:= compromise solution for p — 1) is a solution of maximum utility, i.e. the 
solution that maximises the normalized and weighted sum of the obtained values 
for the acceptability indicators considered. 

• The solution that assigns the lowest numerical value to the distance for p — oo 
(:= compromise solution for p — oo) is a solution of maximum equality, i.e. the 
solution that maximises the balance between the achievements of the different 
acceptability indicators considered. 

• The compromise solutions for p — 1 and p — oo define a subset called 
compromise set, and the solutions for other values of metric p generally belong 
to this set (see Blasco et al. 1999; Yu 1973 for a justification of this crucial 
property of the compromises sets). 

Taking this into account, in order to calculate in a computationally simple way 
the aggregate acceptability index if given, generally (i.e. for all values to the metric 
p belonging to the open interval (1, oo)) by nonlinear expression (3); we propose to 
calculate it (see Andre and Romero 2008; Romero 2004; Steuer 1989), evaluating 
the following lineal convex combination: 

(l-A.)Lp(l,Pij -fcLp(l,Pij X e [0,1] (5) 

Specifying in this expression the value of X and considering (4) the aggregated 
acceptability index for the i-th candidate hub, results in the following: 



t-= ( 1 --X) min(WjPij) 
l < j < m 

+ x 
m 

5>(i-
J=l 

" 
-h) (6) 

It is important to note that: 

The aggregate indexes of acceptability given by the formula (6) for values X — 1 
and X — 0 are the same as those given by the formula (2) for the metrics p — 1 
and p — oo, respectively. 
In the expression (6), analogously to p in (3), X is a control parameter that is not 
only used to obtain different rankings of the candidate hubs, but more 
importantly it reflects different structures of preference of the decision maker 
with respect to the selection of candidate hubs. 

2.4 Hierarchical sorting of candidates 

The application of the Zeleny axiom to the set of the aggregated index of 
acceptability {if , i = 1,2,.. .,n} obtained applying (6) to each n candidate hubs 
considered, analogously to the TOPSIS method (see Behzadlan et al. 2012), we will 
be able to hierarchically sort them for selection purposes (see Lei et al. 2012; 
Romero and Rehman 2003). In this way, taking into account that with the 
normalisation system used the biggest value of Py , Vi,j is equal to 1, the first 
candidate hub of the hierarchy (i.e., the most acceptable candidate hub in the metric 
p specified) will be the one with the lowest value in the calculated aggregated index 
of acceptability (i.e. the candidate hub that minimises the distance between the 
vectors Py and 1). 

Below, we will analyse the different structures of preference to select the best 
candidate hub corresponding to the values X — 1 and X — 0. 

The "most acceptable candidate hub" for X — 1 is the candidate hub with the 
best aggregated achievement, that is, the candidate hub that maximises the weighted 
sum of the normalised acceptability indicators. This additive solution is the "best" 
in aggregate terms, but may be unacceptable in practical terms. In fact, a big 
aggregated average may be compatible with a very poor performance of one of the 
indicators (e.g. economic activity), which can make the candidate in question 
ineligible in economic and/or engineering terms. 

The "most acceptable candidate hub" for X — 0 is the candidate hub for which 
the deviation of the indicator most displaced with respect to the ideal value (i.e., 1) 
is minimized. Therefore, the candidate hub maximising the balance between the 
achievements of the different acceptability indicators considered, is the "best". 

In many situations, neither of the two previous candidate hubs will be 
acceptable because the "most acceptable" candidate hub in one case (X — 1) 
may be one for which the performance of one of the indicators is very poor, and the 
"most acceptable" candidate hub for the other case (X — 0) will be very balanced 
but may have a poor aggregate performance. 



One procedure for overcoming the above difficulties is to interpret the control 
parameter X as a device for making a trade-off between "maximum aggregate 
acceptability" (efficiency) and "most balanced acceptability" (equity). Thus, 
compromises or intermediate solutions, with sensible properties in terms of good 
aggregate performance and good balanced performance can be obtained assigning 
values to the parameter X belonging to the open interval (0,1); which will be 
specified performing a sensitivity analysis with the Expert-Choice program, 
choosing one of the five possibilities of sensitivity analysis: Evaluation sensitivity, 
Dynamic sensitivity, Gradient sensitivity, Two dimensions graph and Sensitivity of 
weighted differences, that this program offers. 

Hereunder a simple but illustrative example referring to the design of a 
telecommunications network (i.e., the selection of candidate hubs) will be used to 
assess the operational, as well as the pragmatic value of the proposed methodology. 

3 An illustrative example 

A case study, reported by Lee et al. (1996), will be used to demonstrate the 
operation as well as the suitability of the proposed index. The purpose of this 
example is to design a telecommunications network in the state of Nebraska, where 
24 candidate hubs (cities) are considered. Six acceptability indicators are involved 
in the design problem. The indicators are as follows: Economic activity, population, 
budget, health care, education and transportation. Lee et al. (1996) arrived at an 
optimum telecommunications design by formulating and solving a 0/1 goal 
programming model. We are going to apply the methodology proposed in this paper 
to rank the 24 candidate hubs according to the value achieved by the aggregated 
index of acceptability given for the expression (6). 

Table 1 (see Lee et al. 1996, p. 41) shows the values of acceptability indicators 
achieved by each of the 24 candidate hubs when they are evaluated according to 
each of the six acceptability indicators considered. 

Table 2 shows the normalised values of the acceptability indicators. These values 
are obtained by applying the normalisation procedure defined by (1) to the values of 
Table 1. Remember that in this context zero denotes the anti-ideal value, while one 
denotes the ideal value. 

On the other hand, the relative importance attached to each indicator of 
acceptability by the decision maker was elicited by Lee et al. (1996) applying 
Dominant Eigenvector Method (EVM) to the square matrix A: (ay) of order six, 
obtained by pairwise comparison of the six acceptability indicators considered (see 
Lee et al. 1996, p. 41), given for: 



Table 1 Values of acceptability indicators achieved by each candidate hub. (see Lee et al. 1996, p. 41) 

Candidate hub 

1. Alliance 

2. Blair 

3. Beatrice 

4. Chadron 

5. Columbus 

6. Falls City 

7. Fremont 

8. Gering/ 
Scottsbluff 

9. Grand 
Island 

10. Hastings 

11. Holdredge 

12. Kearney 

13. Lexington 

14. Lincoln 

15. McCook 

16. Nebraska 
City 

17. Norfolk 

18. North 
Platte 

19. Ogallala 

20. Omaha 

21. Sydney 

22. South 
Sioux City 

23. Wayne 

24. York 

Number of 
employees 
Increase (unit: 
10,000) 

0.27 

0.32 

0.55 

0.18 

1.01 

0.19 

1.04 

1.07 

1.94 

1.06 

0.30 

1.17 

0.53 

8.18 

0.34 

0.36 

1.24 

0.74 

0.25 

21.32 

0.22 

0.69 

0.19 

0.46 

Counties 
population 
Increase 
(unit: 10,000) 

1.42 

1.55 

3.58 

0.94 

2.96 

1.10 

3.58 

3.84 

4.99 

3.11 

1.01 

3.79 

2.23 

20.30 

1.30 

1.50 

3.23 

3.47 

0.92 

41.03 

1.01 

1.72 

0.98 

1.50 

Budget 
Decrease 
(unit: 
$10,000) 

25 

20 

20 

40 

15 

10 

8 

20 

8 

10 

10 

5 

20 

7.5 

45 

18 

20 

10 

10 

2 

50 

7.5 

22 

10 

Health 
care 
Increase 
index 

1 

1 

5 

1 

1 

1 

4 

5 

5 

5 

1 

5 

5 

10 

1 

1 

5 

4 

1 

10 

1 

1 

1 

2 

Education 
Increase 
index 

4 

4 

2.5 

6 

4 

2 

4 

4 

4 

5 

2 

7 

2 

10 

4 

2 

4 

4 

2 

9 

4 

4 

6 

4 

Transportation 
Increase index 

3 

3 

3 

3 

4 

3 

4 

3 

4 

4 

4 

6 

6 

9 

3 

4 

3.5 

6 

6 

10 

6 

5 

3 

5 



Table 2 Normalised values of indicators of acceptability achieved by each candidate hub 

Candidate hub 

1. Alliance 

2. Blair 

3. Beatrice 

4. Chadron 

5. Columbus 

6. Falls City 

7. Fremont 

8. Gering/ 
Scottsbluff 

9. Grand 
Island 

10. Hastings 

11. Holdredge 

12. Kearney 

13. Lexington 

14. Lincoln 

15. McCook 

16. Nebraska 
City 

17. Norfolk 

18. North 
Platte 

19. Ogallala 

20. Omaha 

21. Sydney 

22. South 
Sioux City 

23. Wayne 

24. York 

Number of 
employees 

0.0042 

0.0066 

0.0175 

0 

0.0393 

0.0005 

0.0407 

0.0421 

0.0833 

0.0416 

0.0057 

0.0468 

0.0166 

0.3784 

0.0076 

0.0085 

0.0501 

0.0265 

0.0033 

1 

0.0019 

0.0241 

0.0005 

0.0132 

Counties 
population 

0.0120 

0.0157 

0.0663 

0.0005 

0.0508 

0.0045 

0.0663 

0.0728 

0.1015 

0.0546 

0.0022 

0.0715 

0.0327 

0.4832 

0.0095 

0.0144 

0.0576 

0.0636 

0 

1 

0.0022 

0.0199 

0.0015 

0.0144 

Budget 

0.5208 

0.6250 

0.6250 

0.2083 

0.7290 

0.8333 

0.8750 

0.6250 

0.8750 

0.8333 

0.8333 

0.9375 

0.6250 

0.8854 

0.1042 

0.6667 

0.6250 

0.8333 

0.8333 

1 

0 

0.8854 

0.5833 

0.8333 

Health care 
index 

0 

0 

0.4444 

0 

0 

0 

0.3333 

0.4444 

0.4444 

0.4444 

0 

0.4444 

0.4444 

1 

0 

0 

0.4444 

0.3333 

0 

1 

0 

0 

0 

0.1111 

Education 
index 

0.2500 

0.2500 

0.0625 

0.5000 

0.2500 

0 

0.2500 

0.2500 

0.2500 

0.3750 

0 

0.6250 

0 

1 

0.2500 

0 

0.2500 

0.2500 

0 

0.8750 

0.2500 

0.2500 

0.5000 

0.2500 

Transportation 
index 

0 

0 

0 

0 

0.1428 

0 

0.1428 

0 

0.1428 

0.1428 

0.1428 

0.4286 

0.4286 

0.8571 

0 

0.1428 

0.0714 

0.4285 

0.4285 

1 

0.4285 

0.2857 

0 

0.2857 

/ I 

V 

2 3 5 
1 1 3 

1 3 
1 

6 
5 
4 
3 
1 

7 \ 
5 
6 
5 
2 

1 / 

Accordingly, the weights obtained were as follows: 
W! = 0.396, w2 = 0.215, w3 = 0.202, w4 = 0.103, w5 = 0.050, w6 = 0.034. 



• 
• • • 

[ ] 

r 
' . *•> J . •*, J . "> °> 

11,13,15 ,16 , 
19 ,21 ,22 ,23 

(b) 

• 

(c) 

(a) 

Fig. 1 Rankings of hub cities candidates, a Maximum aggregate achievement (A = 1). b. Maximum 
balanced achievement (A = 0). c Maximum balanced achievement (A = 0), taking into account number 
of zeros 



Different rankings of selection can be obtained by applying the aggregated index 
of acceptability given by expression (6) to the above data. Figure 1 shows the two 
extreme "rankings" obtained; that is, the ranking with the "best aggregate 
achievement" (i.e., X — 1) and the ranking with the "most balanced achievement" 
(i.e., X = 0). 

It should be noted that the candidate hubs for which at least one indicator of 
acceptability achieves the anti-ideal value appear at the bottom of the "most 
balanced ranking". It is obvious that for these hubs, the value of the respective 
aggregate index of acceptability is zero. A sensible step, however, would be to 
discriminate the level of acceptability according to the number of zeros for each 
candidate hub (i.e., the number of acceptability indicators achieving the anti-ideal 
value). Hence, the indifference set {1,2,3,4,5,6,8,11,13,15,16,19,21,22,23} is 
partitioned into the following three subsets: {3,5,8,13,22} with one zero, 
{1,2,11,15,16,21,23} with two zeros and, finally, {4,6,19} with three zeros. That 
is, for X — 0 ("best balance"), the poorest candidate hubs are the geographical 
locations 4, 6 and 19, since three acceptability indicators achieve the anti-ideal 
values for these hubs. This last "weak ordering" appears in the Fig. 1(c). It is 
interesting to note that the only two candidate hubs (cities) not selected in the 
exercise described in Lee et al. (1996) are precisely 4 (Chadron) and 6 (Falls City), 
that is, two of the worst candidate hubs obtained in our exercise from the balanced 
point of view. 

4 Concluding remarks 

The design of a telecommunications network over a given geographically dispersed 
area, taking into account several criteria/indicators, is now an important decision­
making problem. So far, this type of problem has been addressed using different 
methodologies not exempt of difficulties. These include the computational burden, 
as well as the additive character of the process of aggregating the different criteria 
involved. The aggregate index of acceptability that is proposed in this paper, based 
on the use of the X parameter, can circumvent some of these difficulties and can be 
used to hierarchically sort any number of possible candidate hubs. In fact, the 
computation of the index is very simple and the "additive" case is just one of the 
different options for aggregating the considered criteria. Consequently, the 
generation of a "ranking" of candidate hubs, according to an aggregate index of 
acceptability, is a very useful piece of information in many real-world situations. 
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