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Abstract

The Weight-constrained Minimum Spanning Tree problem (WMST) is a combinatorial

optimization problem for which simple but effective Lagrangian based algorithms have been

used to compute lower and upper bounds. In this work we present several Lagrangian based

algorithms for the WMST and propose two new algorithms, one incorporates cover inequal-

ities. A uniform framework for deriving approximate solutions to the WMST is presented.

We undertake an extensive computational experience comparing these Lagrangian based al-

gorithms and show that these algorithms are fast and present small integrality gap values.

The two proposed algorithms obtain good upper bounds and one of the proposed algorithms

obtains the best lower bounds to the WMST.

Keywords: Weighted Minimum spanning tree, Minimum spanning tree, Lagrangian based

algorithms.

1 Introduction

Consider an undirected complete graph G = (V,E), with node set V = {0, 1, . . . , n− 1} and

edge set E = {{i, j}, i, j ∈ V, i 6= j}. Associated with each edge e = {i, j} ∈ E consider positive

integer costs ce and weights we. The Weight-constrained Minimum Spanning Tree problem

(WMST) is to find a spanning tree T = (V,ET ) in G, ET ⊂ E, of minimum cost C(T ) =
∑

e∈ET ce

and with total weight W (T ) =
∑

e∈ET we not exceeding a given limit W . An additional constraint

to the Minimum Spanning Tree problem (MST) such as the weight constraint (the total tree

weight W (T ) can not exceed a given limit W ) turns this constrained MST into a NP-hard

problem. The WMST is a NP-hard combinatorial optimization problem [1, 33].

The WMST appears in several real applications where the weight restrictions are mainly con-

cerned with a limited budget on installation/upgrading costs. In this case, weights we represent
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the installation/upgrading cost of the link e = {i, j} ∈ E and ce represent the link nominal

cost/length. A classical application arises in the areas of communication networks and network

design, in which information is broadcasted over a minimum spanning tree, and is related with

the upgrade and/or design of the physical systems when there is a pre-specified budget restric-

tion [16].

The WMST has received several different designations. It was first mentioned in Aggarwal,

Aneja and Nair [1] as the MST problem subject to a side constraint, where MST stands for Minimal

Spanning Tree. Besides the common designation as a WMST, the most common designation is

as a knapsack-constrained MST. However there are some authors that refer to it as a resource-

constrained MST.

Exact and approximation algorithms have already been proposed to the problem. Exact

algorithms that use a Lagrangian relaxation to approximate a solution combined with a Branch

and Bound strategy were proposed by Aggarwal, Aneja and Nair [1] and by Shogan [26]. Jörnsten

and Migdalas [18] propose a Lagrangian Decomposition scheme in which, through duplication of

variables, two subproblems, a MST and a Knapsack problem, have to be solved. Approximation

schemes were proposed, by Ravi and Goemans [24] a polynomial-time approximation scheme,

by Xue [31] a primal-dual algorithm, by Hong, Chung and Park [17] a bicriteria scheme and by

Hassin and Levin [14] an improvement of the algorithm proposed by Ravi and Goemans [24].

A compilation of some results and existing algorithms to solve the problem can be found in

Henn [16].

Requejo et al. [25] describe and compare, from the computational point of view, several

Integer Linear Programming formulations for the WMST. Recently Agra et al. [2, 3] present

valid inequalities for the WMST, the family of implicit cover inequalities is introduced and a

lifting algorithm is discussed.

A common related approach is to include the weight of the tree as a second objective instead

of a hard constraint. The resulting problem is the bicriteria/biobjective spanning tree problem

(see [6, 11, 17, 23, 28, 29] among many others). In Aggarwal, Aneja and Nair [1] certain properties

of an optimal solution are established considering a bicriteria spanning tree.

In this work we describe and compare, from the computational point of view, several La-

grangian based algorithms for the WMST. Similar Lagrangian based algorithms have been re-

ferred in several works of constrained shortest path problems [12, 19, 30] or of general combina-

torial optimization problems [7, 21]. To the best of our knowledge, a computational study on

the Lagrangian based algorithms for the WMST has never been published. Xue [31] describes a

primal-dual algorithm to find approximate solutions for the WMST but no computational results

are reported.

We present the following Lagrangian based algorithm approaches for deriving approximate

solutions for the WMST: (i) algorithms based on approaches for the constrained shortest path

problems and for general combinatorial optimization problems; (ii) the classical subgradient

setting; and (iii) algorithms that use information about the shape of the dual Lagrangian function,

two of these algorithms are new and one incorporates cover inequalities which is a novelty.

All the Lagrangian based algorithms considered solve only a MST as subproblem. This

contrasts with other Lagrangian decomposition approaches (e.g. [18]) where both a MST and a

Knapsack subproblems are solved.
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We derive a uniform framework that standardises the several versions of the algorithms and

further we undertake an extensive computational experience comparing the performance of the

algorithms. This experience shows that the two proposed algorithms obtain good lower and upper

bounds. Moreover, the new algorithm that uses cover inequalities obtains the best lower bounds.

We describe a general formulation for the problem in Section 2, discuss some properties of

the problem in Section 3 and present the Lagrangian relaxation for the WMST in Section 4.

In Section 5 we present a general framework, that uses different settings including the classical

subgradient method to obtain approximate trees and propose two new settings. Computational

results to assess the quality of the discussed procedures will be shown in Section 6. Finally, in

Section 7 we present the conclusions.

2 A formulation for the WMST

To obtain formulations for the WMST one can adapt a MST formulation. For the MST

several formulations are well known (see Magnanti and Wolsey [20]) and in Requejo et al. [25]

natural and extended formulations for the WMST are discussed. For instance the two classical

formulations for the MST, namely the formulation using cut-set inequalities and the formulation

using circuit elimination inequalities, and the well-known compact extended multicommodity

flow formulation using additional flow variables for the MST are easily adapted for the WMST

through the inclusion of a weight constraint [25]. Other extended formulations, using e.g. Miller-

Tucker-Zemlin (MTZ) inequalities to prevent the existence of circuits in the feasible solutions,

can be derived [25].

Consider the canonical binary variables xe (for all e = {i, j} ∈ E) indicating whether edge e

is in the MST solution. A formulation for the WMST is as follows.

(WMST ) : min
∑
e∈E

cexe

s.t. x ∈ (MST )∑
e∈E

wexe ≤W (2.1)

Where x = (xe) ∈ R|E| and (MST ) represents a set of inequalities describing the convex hull of the

(integer) solutions of the MST and can use one of the sets of inequalities referred previously (the

circuit elimination inequalities, the cut-set inequalities, the multicommodity flow conservation

constraints together with the connecting constraints) plus the following two sets of constraints:

constraints
∑

e∈E xe = n− 1, guaranteeing that the solution has |V | − 1 edges, and the variables

integrality constraints xe ∈ {0, 1}, for all e ∈ E. Constraint (2.1) is the weight constraint and

we emphasize that the above formulation without the weight constraint is a formulation for the

MST [20]. Let ϑ(WMST ) be the optimal value of the WMST.

3 Some properties of the WMST

The well known Minimum Spanning Tree problem (MST) is to find a spanning tree Tc =

(V,ETc), with ETc ⊂ E, of minimum cost C(Tc) =
∑

e∈ETc
ce. For this combinatorial optimiza-

tion problem there are several polynomial algorithms such as Kruskal and Prim’s algorithms
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(see Ahuja et al. [4] for descriptions of these algorithms). Consider a companion problem, the

Minimum-weight Spanning Tree problem that is to find a spanning tree Tw = (V,ETw), with

ETw ⊂ E, of minimum weight W (Tw) =
∑

e∈ETw
we. The trees Tc and Tw are two spanning trees

of G, tree Tc is of minimum cost C(Tc) =
∑

e∈ETc
ce having weight W (Tc) =

∑
e∈ETc

we and tree

Tw is of minimum weight W (Tw) =
∑

e∈ETw
we having cost C(Tw) =

∑
e∈ETw

ce. The costs of

these trees give lower and upper bounds to the optimal value of the problem

C(Tc) ≤ ϑ(WMST ) ≤ C(Tw).

The tree Tw corresponds to a feasible solution for the WMST and the tree Tc corresponds to

an unfeasible solution when W (Tc) > W . We have the following propositions.

Proposition 1. If W ≥ W (Tc) the WMST reduces to the MST and the tree Tc corresponds to

the optimal solution.

Proposition 2. When W < W (Tc), there exists an optimal solution for the WMST if and only

if W (Tw) ≤W.

If W (Tw) > W , then the WMST has no solution. If W (Tw) ≤ W and C(Tw) = C(Tc), then

the tree Tw corresponds to an optimal solution for the WMST.

In the case of W (Tw) ≤ W < W (Tc) and neither the tree Tc nor the tree Tw are optimal

solutions for the WMST, we need to find another tree that is an optimal solution to the problem.

To search for another tree, different from Tc and from Tw, we may use in the objective function

different positive coefficients associated to each variable xe corresponding to edge e ∈ E. Denote

by pe these new coefficients that are defined as a linear combination of the cost ce and of the

weight we associated to each edge e ∈ E. Thus pe = a we + b ce, where a and b are real

non-negative scalars. With these coefficients in the objective function, find a new spanning tree

Tp = (V,ETp) with ETp ⊂ E, of minimum value P (Tp) =
∑

e∈ETp
pe. The spanning tree Tp of

G has cost C(Tp) =
∑

e∈ETp
ce and weight W (Tp) =

∑
e∈ETp

we. Notice that, the Minimum-cost

Spanning Tree problem and the Minimum-weight Spanning Tree problem are particular cases of

this Minimum Spanning Tree problem. If a = 0 and b = 1, then Tp ≡ Tc. If a = 1 and b = 0,

then Tp ≡ Tw.

The tree Tp obtained with the coefficients pe may be feasible or unfeasible. It holds C(Tp) ≥
C(Tc) and the following result.

Proposition 3. Consider a tree Tp such that C(Tc) ≤ C(Tp) ≤ C(Tw).

If tree Tp is feasible, W (Tp) ≤W , then C(Tp) is an upper bound to ϑ(WMST ).

If tree Tp is unfeasible, W (Tp) > W , then C(Tp) is a lower bound to ϑ(WMST ).

Therefore, with tree Tp we may obtain a better upper bound or a better lower bound to

ϑ(WMST ), depending on the feasibility or unfeasibility of the tree Tp.

4 Lagrangian relaxation

In order to derive a Lagrangian relaxation, assign a non-negative Lagrangian multiplier λ to

the weight constraint (2.1) and dualize the constraint in the usual Lagrangian way. This leads
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to the following relaxed problem.

(WMSTλ) : −λW + min
∑
e∈E

(ce + λwe)xe

s.t. x ∈ (MST )

For every λ ≥ 0, the solutions to this relaxed problem give lower bounds on the optimum value,

i.e.

ϑ(WMSTλ) ≤ ϑ(WMST ).

For a given non-negative value of λ, the relaxed problem WMSTλ can be solved using any

well known polynomial algorithm to solve the MST [4]. For each λ define positive coefficients

pλe = λwe + ce associated to each edge e = {i, j} ∈ E, this is, take b = 1 and a = λ. Let Tpλ

be the tree that corresponds to the solution for the problem WMSTλ, which is the minimum

spanning tree obtained with the objective function coefficients defined by pλe , therefore

ϑ(WMSTλ) = −λW + P (Tpλ).

Notice that different values of λ may yield different trees Tpλ , so that ϑ(WMSTλ) is a concave

and piecewise linear function of λ. To obtain the best lower bound of the function ϑ(WMSTλ)

we have to solve the following Dual Lagrangian problem

ϑ∗ = ϑ(WMSTλ∗) := max
λ≥0

ϑ(WMSTλ),

being λ∗ the non-negative multiplier which maximizes ϑ(WMSTλ).

Classically a Lagrangian relaxation is solved using a subgradient optimization procedure [27].

The subgradient optimization procedure starts by initializing the Lagrangian multiplier λ to

some value λ0. After, iteratively at each iteration (k = 0, 1, . . .), it solves the relaxed problem

WMSTλk , and updates the Lagrangian multiplier λk by setting λk+1 = max{0, λk + skdk} using

a direction dk and a step-size sk. Several directions dk can be defined [15]. Together with an

appropriate choice for the step size sk [27] produces a convergent method. Finally some stopping

criteria is verified.

For the solution xk = (xke) of the Lagrangian relaxed problem WMSTλk , corresponding to the

tree Tpλk , we have W (Tpλk ) =
∑

e∈E wex
k
e , C(Tpλk ) =

∑
e∈E cex

k
e and ϑ(WMSTλk) = −λkW +

P (Tpλk ) = λk(W (Tpλk )−W ) + C(Tpλk ). When the tree Tpλk is unfeasible, i.e. W (Tpλk ) > W , it

is ϑ(WMSTλk) ≥ C(Tpλk ), thus C(Tpλk ) is a lower bound for ϑ(WMSTλk). When the tree Tpλk

is feasible, i.e. W (Tpλk ) ≤W , it is ϑ(WMSTλk) ≤ C(Tpλk ), hence C(Tpλk ) is an upper bound for

ϑ(WMSTλk).

For the Lagrangian multipliers λk, of the subgradient optimization procedure, the following

upper bound can be established.

Proposition 4. The Lagrangian multipliers λk satisfy 0 ≤ λk ≤ C(Tw)−C(Tc)
W−W (Tw)

.

Proof. First notice that, by construction, λk ≥ 0. Any feasible tree T is such that C(Tc) ≤
C(T ) ≤ C(Tw) andW (Tw) ≤W (T ) ≤W . The line segment connecting the points (W (Tw), C(Tw))

and (W (Tc), C(Tc)) is represented by the equation y = C(Tw) +m(x−W (Tw)), with coordinates

x representing the weights and coordinates y representing the costs, and has non-positive slope
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m = C(Tc)−C(Tw)
W (Tc)−W (Tw)

= −λk ≤ 0. Any feasible tree T has weight x ≤ W , thus it is such that

y = C(Tw)− λk(x−W (Tw)) ≥ C(Tw)− λk(W −W (Tw)). Therefore, any feasible tree T is such

that its cost C(T ) ≥ C(Tw)− λk(W −W (Tw)). On the other hand, when W (Tc) > W , the tree

Tc is unfeasible implying that C(Tc) ≤ C(Tw)− λk(W −W (Tw)), and λk ≤ C(Tw)−C(Tc)
W−W (Tw)

.

5 Solution procedure

In this section we propose a general framework for deriving approximate solutions for the

WMST.

Iteratively several trees are generated. We start by generating the tree Tc, and the tree Tw.

After, at each iteration, a different tree Tp is generated by using appropriate objective function

coefficients, the coefficients pe = awe + bce. For each e ∈ E, these objective function coefficients

pe are linear combination of the cost ce and of the weight we. Different algorithms are obtained

depending on the settings for parameters a and b.

The tree Tp can either be feasible or unfeasible. We keep track of the best obtained feasible

tree with the tree Tuk , and of the best obtained unfeasible tree with the tree T`k . The values of the

cost of these trees correspond to the best upper bound (UB) and to the best lower bound (LB),

respectively. The tree T`k is initialized with tree Tc, T`0 := Tc. The tree Tuk is initialized with

tree Tw, Tu0 := Tw, if its weight is less than or equal to W . Otherwise there is no feasible solution.

If tree Tp is feasible and its cost is less than or equal to the actual UB value, which is the cost of

the current tree Tuk , then the UB value is updated. Otherwise tree Tp is unfeasible and if its cost

is greater than or equal to the actual LB value, the cost of the current tree T`k , then the LB value

is updated. If the Interval Reduction procedure returns two trees, both LB and UB values can be

updated. Accordingly, the trees associated to the sequences of the UB and of the LB values are

also updated. Parameters a and b depend from parameter λk and these parameters are iteratively

updated according to the algorithm setting. In some algorithm settings the parameter λk belongs

to the interval [`0, u0] which is iteratively reduced according to the setting. Different coefficient

settings yielding different Lagrangian dual variables and updating rules will be discussed. The

general framework is as follows and the specific algorithm settings are displayed in Tables 1 and 2

and will be discussed next.

Algorithm General Framework

Input: Graph G = (V,E), W , tol.

Step 1 - Initializations.

Iteration k := 0.

Step 1.1 - Obtain a lower bound.

Find Tc = (V,ETc) of minimum cost C(Tc) and compute W (Tc).

If W (Tc) ≤W then Tc corresponds to an optimal solution. STOP.

Else set T`k := Tc, W (T`k) := W (Tc), LB := C(T`k).

End-if.

Step 1.2 - Obtain an upper bound.

Find Tw = (V,ETw) of minimum weight W (Tw) and compute C(Tw).
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If W (Tw) > W then there is no solution. STOP.

Else set Tuk := Tw, W (Tuk) := W (Tw), P (Tuk) := P (Tw), UB := C(Tuk);

if an interval [`k, uk] is used then

initialize parameters `k and uk as specified by the algorithm setting;

end-if ;

initialize parameters λk and νk as specified by the algorithm setting.

End-if.

Step 2 - Compute an approximate tree.

Obtain the parameters a and b according to the algorithm setting.

Compute pe = awe + bce, ∀e ∈ ETc .

Find Tp = (V,ETp) of minimum P (Tp), compute C(Tp) and W (Tp).

If an interval [`k, uk] is used then

use Interval Reduction [`k, uk] according to the algorithm setting.

End-if.

Step 3 - Update trees and bounds.

If the output of Step 2 is tree Tp then

If W (Tp) ≤W then

if C(Tp) ≤ C(Tuk) then UB := C(Tp); Tuk+1
:= Tp; T`k+1

:= T`k .

Else if C(Tp) ≥ C(T`k) then LB := C(Tp); T`k+1
:= Tp; Tuk+1

:= Tuk .

End-if

Else (the output of Step 2 is tree Tp1 and tree Tp2)

If C(Tp1) ≥ C(T`k) and C(Tp2) ≤ C(Tuk) then

LB := C(Tp1); UB := C(Tp2); T`k+1
:= Tp1 ; Tuk+1

:= Tp2 .

Else

If C(Tp1) ≥ C(T`k) then LB := C(Tp1); T`k+1
:= Tp1 ; Tuk+1

:= Tuk .

If C(Tp2) ≤ C(Tuk) then UB := C(Tp2); T`k+1
:= T`k ; Tuk+1

:= Tp2 .

End-if

End-if.

Step 4 - Stopping criteria.

If |P (Tuk) − P (Tp)| ≤ tol or (uk+1 − `k+1) ≤ tol then tree Tuk+1
corresponds to the

approximate solution, STOP.

Else Iteration k := k + 1 and go to Step 2.

End-if.
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Table 1 specifies for each algorithm setting the initialization of the parameters `0, λ0, ν0

and u0; the definition of the parameters a and b; and the updating rules. For some algorithm

settings an interval reduction is used. The details of these interval reduction procedures are

given in Table 2. In Step 4 the tolerance tol is a small real positive value given as an input of

the algorithm.

To evaluate the complexity of this algorithm one has to take into account the complexity of

the algorithm used to build the trees, consider that such algorithm has complexity of ϕ(m,n) as

it depends on the number m = |E| of edges and on the number n = |V | of nodes of the graph

G. One also has to take into account the number of trees formed. If K is the total number of

trees that can be formed, then this algorithm stops after O(logK) iterations (in the worst case,

the number of trees is proportional to K). The main effort of the algorithm is on the obtention

of a tree. Consequently, the complexity of this algorithm is O(ϕ(m,n) logK).

Different algorithms are obtained depending on the settings for parameters a and b in the

definition of the new coefficients in Step 2 and the interval reduction when applied. Notice that

the subgradient optimization scheme perfectly fits this algorithm layout and is one of the settings

discussed bellow. Next we will discuss different settings for the positive coefficients pe = awe+bce,

with non-negative real scalars a and b, associated to each edge e ∈ ETc and their update at each

iteration.

First consider a setting for the coefficients pe characterized by a convex linear combination

of costs ce and of weights we, more precisely associate parameter a = 1− λk for the weights and

parameter b = λk ∈ [0, 1] for the costs. These settings were proposed in Xue [31] for the weight-

constrained shortest path problem. It is proposed that λk =
W (T`k )−W (Tuk )

C(Tuk )−C(T`k )+W (T`k )−W (Tuk )
≤ 1

on an odd iteration and λk = `k+uk
2 ≤ 1 on an even iteration, with `k, uk ∈ [0, 1] and initializing

`0 = 0 and u0 = 1, see Table 1. An interval reduction is applied as displayed in Table 2. This

setting is referred as Alg1.

Now consider settings for the coefficients pe characterized by associating a parameter, the

Lagrangian multiplier, for the weights, a = λk, and a parameter with value equal to one for the

costs, b = 1. Some examples of such settings will be given next.

Jüttner et al. [19] built up the LAgrangian Relaxation based Aggregated Cost (LARAC)

algorithm which solves the Lagrangian relaxation of the constrained shortest path problem. Xiao

et al. [30] establish the equivalence between the LARAC algorithm and other algorithms in

[7, 12, 19]. Afterwards Mehlhorn and Ziegelmann [21] also consider this algorithm and Xue [32]

presents a variant of the algorithm. Using the ideas of these algorithms, consider the setting

a = λk =
C(Tuk )−C(T`k )

W (T`k )−W (Tuk )
and b = 1, see Table 1. This setting is referred as Alg2.

The settings for the classical subgradient algorithm consider a direction dk and an appro-

priate step-size sk to update the Lagrange multiplier at each iteration of the algorithm. If

the Held, Wolfe and Crowder [15] setting for a direction is considered, then the direction is

dk =
∑

e∈ETc
wex

k
e −W = W (Tpλk )−W. Using, as suggested in Shor [27], the step-size

sk = ρ
C(Tuk)− ϑ(WMSTλk)

(
∑

e∈ETc
wexke −W )dk

= ρ
C(Tuk)− P (Tpλk ) + λkW

(W (Tpλk )−W )dk
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Table 2: Settings for the interval reduction.

Algorithm Interval Reduction [`k, uk]

Alg1 and Alg4
If W (Tp) ≤W then set `k+1 := λk and uk+1 := uk.

Else set `k+1 := `k and uk+1 := λk.

Alg5

If ϑ(λk) ≥ max{ϑ(uk), ϑ(`k)} then

set λak = `k+λk
2 and λbk = λk+uk

2 ;

obtain ϑ(λak) and ϑ(λbk);

if ϑ(λak) ≥ ϑ(λk) then

set `k+1 := `k and uk+1 := λk;

set Tp := T
p
λa
k
;

else-if ϑ(λbk) ≥ ϑ(λk) then

set `k+1 := λk and uk+1 := uk;

set Tp := T
p
λb
k
;

else set `k+1 := λak and uk+1 := λbk;

set Tp1 := T
p
λa
k

and Tp2 := T
p
λb
k
;

end-if.

Else-if ϑ(`k) ≤ ϑ(λk) ≤ ϑ(uk) then set `k+1 := λk and uk+1 := uk.

Else set `k+1 := `k and uk+1 := λk.

End-if.

Alg6 and Alg7

If (W (Tp)−W )(W (T`k)−W ) > 0 then

set `k+1 := λk and uk+1 := uk.

Else-if (W (Tp)−W )(W (Tuk)−W ) > 0 then

set `k+1 := `k and uk+1 := λk.

Else set `k+1 := `k+λk
2 and uk+1 := λk+uk

2 .

set Tp1 := T`k and Tp2 := Tuk .

End-if.
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with ρ ∈]0, 2[ and the upper bound C(Tuk) to approximate the optimum value of the problem,

leads to the setting

a = λk+1 = max

{
0, λk + ρ

C(Tuk)− P (Tpλk ) + λkW

W (Tpλk )−W

}

and b = 1. Initialize λ0 = C(Tw)−C(Tc)
W (Tc)−W . The parameter ρ ∈]0, 2[ needs to be carefully chosen, this

tuning process is a drawback of this setting. This setting corresponds to the classical subgradient

optimization procedure to a Lagrangian relaxation, see Table 1, and is referred as Alg3.

In Xiao et al. [30] another algorithm is proposed to solve the Lagrangian relaxation of the

constrained shortest path problem. This algorithm uses a binary search to iteratively reduce

the interval [`k, uk] and obtain the tree that corresponds to the approximate solution. This

setting for the approximate tree coefficients is a = λk = `k+uk
2 and b = 1. Initialize `0 = 0

and u0 = C(Tw)−C(Tc)
W−W (Tw)

, see Table 1, and update the interval extremes `k and uk as displayed in

Table 2. This setting is referred as Alg4.

Amado and Barcia [5] propose an algorithm to solve several matroidal knapsacks such as

the Multiple Choice Knapsack Problem and the WMST. Their algorithm initializes the interval

[`0, u0] with `0 = 0 and u0 = U , with U := maxe∈ETc{ce, we}, iteratively updates the reduced

interval [`k, uk] until a stopping criteria is satisfied and the tree that corresponds to the ap-

proximate solution is identified. By setting a = λk = `k+uk
2 and b = 1 the reduced interval

is obtained by comparing the values of ϑ(WMST`k), ϑ(WMSTλk) and ϑ(WMSTuk). To ease

notation use ϑ(`k) instead of ϑ(WMST`k), ϑ(λk) instead of ϑ(WMSTλk), and ϑ(uk) instead

of ϑ(WMSTuk). Initially ϑ(`0) = C(T`0) = C(Tc) and ϑ(u0) is obtained using the tree Tu0 of

minimum P (Tu0), with pe = u0we + ce. Notice that ϑ(λk) = ϑ(WMSTλk) = −λkW +P (Tpλk ) =

−λkW + C(Tpλk ) + λkW (Tpλk ). The tree Tp corresponds to tree Tpλk . In the interval reduction

procedure to obtain values ϑ(λak) and ϑ(λbk) two more trees are obtained, tree T
p
λa
k

and tree T
p
λb
k
.

The tree Tp is updated to the best tree chosen among the three trees obtained to reduce the

interval. The interval reduction and the update of the tree Tp are displayed in Table 2. Using

the Proposition 4, here the initialization of the interval [`0, u0] is done differently from [5] with

`0 = 0 and u0 = C(Tw)−C(Tc)
W−W (Tw)

. This setting is referred as Alg5.

As the Lagrangian function is concave, the interval extremes can be updated according to

the gradient W −W (Tpλk ) of the Lagrangian function at λk and at the interval extremes `k and

uk. If both slopes at λk and at one of the extremes have the same inclination, that extreme

can be updated to λk. Otherwise, both extremes (lower and upper) can be updated. Therefore,

the interval reduction is simplified and the previous procedure for the interval reduction can be

modified. This setting we propose is referred as Alg6 and the new interval reduction procedure

is displayed in Table 2.

Following Amado and Barcia [5] another Lagrangian based algorithm to solve several ma-

troidal knapsacks can be used. This algorithm is obtained by dualizing not only the weight

inequality (2.1) but also an extra valid inequality, inequality (5.1), added to the model as it

11



follows.

(WMST+) : min
∑
e∈ETc

cexe

s.t. x ∈ (MST )∑
e∈ETc

wexe ≤W∑
e∈C

xe ≤ |C| − 1 (5.1)

The valid inequality (5.1) added to the model is a cover inequality [3]. A set C ⊆ E is called a cover

if
∑

e∈C we > W. Given a cover C the cover inequality
∑

e∈C xe ≤ |C|−1 is valid for the WMST [3].

Any other family of valid inequalities can be used, one example is the family of implicit cover

inequalities proposed by Agra et al. [3]. By adding a valid inequality to the model and dualizing

both constraints (2.1) and (5.1) in the Lagrangian way, a Lagrangian function with a better lower

bound can be obtained. This is ϑ(WMSTλ) ≤ ϑ(WMSTλ,ν) ≤ ϑ(WMST ), for non-negative

Lagrangian multipliers λ and ν, with λ the non-negative Lagrangian multiplier associated to

inequality (2.1) and ν the non-negative Lagrangian multiplier associated to inequality (5.1). This

setting for the approximate tree coefficients pe is a = λ and b = 1 with pe := awe+bce, for all e 6∈ C
and pe := awe+bce+ν, for all e ∈ C. For the solution x = (xe) of the Lagrangian relaxed problem

WMSTλ,ν , corresponding to the tree Tpλ,ν , define W (Tpλ,ν ) =
∑

e∈E wexe, C(Tpλ,ν ) =
∑

e∈E cexe

and P (Tpλ,ν ) = λW (Tpλ,ν ) + C(Tpλ,ν ) + ν
∑

e∈C xe. Therefore

ϑ(WMSTλ,ν) = −λW − ν(|C| − 1) + P (Tpλ,ν ).

Several cover inequalities will be dynamically added to the model. At each iteration, whenever

an unfeasible tree is obtained one cover inequality is constructed and added, by dualization, to

the model. The proposed algorithm to solve this problem by Amado and Barcia [5] is the two

dimension version to the one previously presented. This setting is referred as Alg7, see Tables 1

and 2 for details. The algorithm initializes the interval [`0, u0]. Additionally the multiplier ν must

also be initialized in Step 1.2 to a small value, we may use ν0 = tol. Iteratively the algorithm

builds an approximate tree Tp. Notice that this tree Tp uses multiplier λk and multiplier νk. Thus

the tree Tp corresponds to tree Tpλk,νk . Whenever this tree Tp is unfeasible, a cover inequality

is constructed using a separation algorithm to identify a valid cover Ck [3]. The corresponding

cover inequality is added to the problem associated with multiplier νk. When reducing the

interval [`k, uk] for the multiplier λk using the previous simplified interval reduction procedure

(the same as Alg6), the value of the multiplier νk must be updated. Considering |Ck| =
∑

e∈Ck xe,

the multiplier νk is updated to the following setting

νk =
(C(Tuk)− C(T`k))(W −W (Tuk))

|Ck|
(W −W (Tuk))−W (Tuk) +W (T`k).

This algorithm we propose, referred as Alg7, obtains good upper bounds and the best lower

bounds to the WMST.

The simplicity of all these procedures has its price as it depends greatly on the ability of each

algorithm setting to find near optimal multipliers quickly and specific to each instance. As we will

observe in the next section different gaps are reported for the same problem instance depending

on the specificity of the overall algorithm settings and its ability in finding approximate solutions.
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6 Computational experience

Computational results will assess the quality of the approximate solutions obtained with each

setting and the corresponding updating process of the Lagrangian scheme presented in Section 5.

The algorithms from Section 5 were implemented in C++ and all the tests were performed in

an Intel(R) Core(TM)2 Duo CPU (T7100) 2.00 GHz processor and 4Gb of RAM. We present

computational results for instances to the WMST defined on complete graphs with a number of

nodes varying between 10 and 1000, in a total of 215 instances.

To generate an instance of the WMST, two values to associate to each edge e, a cost ce and

a weight we, have to be defined. Afterwards, a (feasible) value to the weight limit W must also

be defined. We built three sets of instances, constituting three different ways of generating costs

and weights.

In a first set of instances, costs ce and weights we are generated similarly to a set of instances

described in Pisinger [22] and named therein as Spanner instances. We use the following values

for W : W = 1000 for all instances with n ≤ 100, W = 1500 for all instances with n = 150, 200,

W = 2000 for all instances with n = 300, W = 2500 for all instances with n = 400, W = 3000

for all instances with n = 500 and W = 3500 for all instances with n = 1000. The costs and the

weights are multiples of a small set (the so-called spanner set in [22]) of costs and weights following

one particular distribution, we use the Uncorrelated distribution (which is in the Pisinger’s [22]

proposed list of distributions), and the following two parameters s and m, such that s is the size

of the small set and m is the multiplier limit. Pisinger [22] proposes s = 2 and m = 10. The

small set of s pairs of costs and weights is constructed by randomly selecting w̃j and c̃j both

in [1, 100], for j ∈ {1, . . . , s}. Then the s costs and weights in the small set are normalized by

dividing them by m + 1. After the costs ce and weights we are constructed by (1) randomly

selecting a pair of costs and weights (c̃k, w̃k), k ∈ {1, . . . , s}, from the normalized small set, (2)

randomly selecting a multiplier a in [1, m], (3) setting we = a w̃k, (4) setting ce = a c̃k. Finally

the weights of some edges are manipulated in such a way that the optimal solution has a desired

predefined structure. After testing a few structures we obtained some challenging instances when

the optimal structure of the WMST instance solution has large diameter values, almost n − 1,

but not equal to n− 1, in such way that the tree is almost a path. Thus we name this instances

set as ”Almost Path” (AP). To obtain such structured instances, they are generated in such a

way that the optimal solution is a graph with very large diameter, but not diameter equal to

n−1, as follows. (i) Obtain the minimal spanning tree. (ii) Assign big weight values to the edges

in the minimal spanning tree. We use we = (W/n) × a/100 , with a ∈ [50, 90]. (iii) For the

remaining edges, assign the value we = round(r +W (1− p)/(n− 1)) to their weight, with some

p ∈ [0.5, 1] and r randomly selected in the interval [1, W × p/(n − 1)]. If we = 1, then assign

the value we = r × a1 +W (1− p× a2)/(n− 1), with a1 and a2 selected in the interval [0, 10].

For the second set of instances, named Random (R) instances, the costs ce and the weights

we are uniformly generated in the interval [1, 1000].

For the third set of instances, named Euclidean (E) instances, costs ce and weights we are

obtained using Euclidean distances. After randomly generating the coordinates of n points/nodes

in a 100×100 grid, the cost ce of each edge e = {i, j} is the integer part of the Euclidean distance

between points/nodes i and j. We proceed independently and similarly to obtain the weights.
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To define a (feasible) value to the weight limit W for each instance of these two sets of

instances (sets R and E), we start by obtaining the weight of the minimum spanning tree W (Tc)

and the weight of the minimum weight spanning tree W (Tw) and we select W to be one of the

values Wi = W (Tc)+W (Tw)
2i

, for i ∈ {1, . . . , 10}.
A total of 215 instances were generated, 95 of the set AP and 60 of each set R and E. For each

set AP and each instance size between 10 and 150 we have 10 instances and for each instance

size between 200 and 1000 we have 5 instances. For each set R and E and each instance size we

have 5 instances.

To use the approximation schemes from Section 5, some parameters were defined as follows.

After testing values within the interval [0.0001, 0.1] we fixed tol = 0.001. In Alg3 we tested several

values for ρ ∈]0, 2[. For the AP instances we fixed ρ = 0.001. For the R instances this value was

fixed in 0.001, 0.0065, 0.075, 0.25, 0.095, 0.125, 0.085, 0.06, 0.045, 0.04, 0.04 and 0.03, depending

on the number of nodes. For the E instances this value was fixed in 0.0001 for n = 10, 20, 40, 60, 80,

in 0.04 for n = 100, 150, 200, 300, 400, in 0.035 for n = 500 and in 0.015 for n = 1000. In

Alg5 the interval upper bound u0 must be initialized. We tested u0 = maxe∈ETc {ce, we} and

u0 = C(Tw)−C(Tc)
W−W (Tw)

. Better results were obtained with the second initialization. In Alg7, for the

construction of the cover inequality, after testing three ordering schemes ((i) increasing order

of the edges costs ce, (ii) decreasing order of the edges weights we, (iii) decreasing order of the

quotient ce/we) for selecting the edges of the tree T`k to be in the cover, we noticed that better

results are obtained with ordering scheme (ii).

In [18] a Lagrangian decomposition procedure is proposed that separates the WMST problem

into two subproblems, a MST and a Knapsack problem. At each iteration both a MST and a

Knapsack subproblems have to be solved. In the algorithms described in Section 5 only a MST

subproblem has to be solved. Although the reported theoretical bound in [18] is superior, the

performance of this decomposition approach depends greatly on the ability to find near optimal

multipliers quickly and specific to each instance. Additionaly, when using this decomposition,

the number of parameters to tune is larger. We were not able to obtain interesting computa-

tional results using this decomposition on our instances and the values obtained are far from

the theoretical ones. Therefore we will not report computational results using this Lagrangian

decomposition.

In [2, 25] the best results to obtain the optimal value using the software Xpress 7.3 (Xpress

Release 2012 with Xpress-Optimizer 23.01.03 and Xpress-Mosel 3.4.0) [9], were obtained with

the Branch and Cut algorithm based on a weighted MTZ (Miller-Tucker-Zemlin) formulation

with the inclusion of cuts preventing cycles at the root node. This procedure will be denoted by

HP (Hybrid Procedure) and is used to access the quality of the approximate solutions obtained

with the Lagrangian based algorithms from Section 5. To compare the performance of those

algorithms with the performance of the HP, two gaps are calculated, the upper bound gap, gapU ,

and the lower bound gap, gapL. Denote with OPT the optimal value obtained with the HP

or the best obtained value with this procedure within a time limit of 10000 seconds. Denote

with UL the upper bound and with LL the lower bound obtained with a Lagrangian based

approximation scheme. The upper bound gap is gapU = UL−OPT
OPT × 100, and the lower bound

gap is gapL = OPT−LL
OPT × 100, which is the Lagrangian relaxation bound.
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Table 3: Percentage of instances with gapU = 0, for each instance set AP, R and E and, in the

last line, for all instances.

Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7

AP 6.32 35.79 16.84 6.32 35.79 35.79 37.89

R 5.00 6.67 1.67 5.00 6.67 6.67 5.00

E 25.00 30.00 11.67 23.33 30.00 30.00 28.33

%(gapU = 0) 11.16 26.05 11.16 10.70 26.05 26.05 26.05

Table 4: Percentage of instances with gapU < gapL, for each instance set AP, R and E and, in

the last line, for all instances.

Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7

AP 54.74 75.79 67.37 97.89 75.79 75.79 76.84

R 16.67 20.00 11.67 13.33 20.00 20.00 18.33

E 38.33 40.00 25.00 31.67 40.00 40.00 35.00

%(gapU < gapL) 39.53 50.23 40.00 55.81 50.23 50.23 48.84

Table 3 presents, for each algorithm, the percentage of instances having gapU = 0, for each

instance set AP, R and E and, in the last line of the table, the percentage for all instances.

Generally, algorithms Alg2, Alg5, Alg6 and Alg7 obtain the higher percentage of null upper

bound gap, gapU , each with the same value of 26.05% (56 instances out of 215). Instances AP

and E obtain the higher percentage of null gapU .

Table 4 presents, for each algorithm, the percentage of instances having the gapU less than the

lower bound gap gapL, for each instance set AP, R and E and, in the last line, for all instances.

This indicates when the gapU is closer to the optimum value than the gapL. For the AP instances

the upper bound value is closer to the optimum value than the lower bound value. For R and E

instances the lower bound, the Lagrangian bound, is closer to the optimal value than the upper

bound value obtained using the Lagrangian scheme.

In Figure 1 we compare the mean computational times (in seconds) between all the algorithms

for all the instances sets. All the algorithms are fast in obtaining an approximate solution. Clearly

Alg3, the classical subgradient algorithm for the Lagrangian relaxation, is more frequently the

most time consuming, followed by Alg5.

Algorithms Alg5 and Alg6 are very similar and differ on the interval reduction procedure hav-

ing, as a consequence, different number of calculated trees. In both algorithms the initialization

used is u0 = C(Tw)−C(Tc)
W−W (Tw)

. In Figure 2 we compare the mean number of trees that each algorithm

Alg5 and Alg6 has to build during its execution. Alg5 builds more trees than Alg6 and this may

explain the execution time difference between both algorithms and why Alg5 is much more time

consuming than Alg6.

It is worth to mention that in order to try to reduce the number of trees computed in Alg5 and

in Alg6 we tested a Fibonacci search [13] for the interval reduction procedure. In the following

Fibonacci search interval reduction procedure consider that F0 = F1 = 1 and Fn = Fn−2 +Fn−1,

n ≥ 2, denote the Fibonacci numbers.
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Figure 1: Comparing mean execution times (in seconds) for all the algorithms.

Figure 2: Comparing the mean number of trees of algorithm Alg5 and Alg6.
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Interval Reduction [`k, uk] with Fibonacci search

If uk − `k < ξ × Fn then

set λak := uk − Fn−1

Fn
× (uk − `k) and λbk := `k + Fn−1

Fn
× (uk − `k);

obtain ϑ(λak) and ϑ(λbk);

if ϑ(λak) < ϑ(λbk) then set Tp := T
p
λa
k
, `k+1 := λak and uk+1 := uk;

Else-if ϑ(λak) > ϑ(λbk) then set Tp := T
p
λb
k
, `k+1 := `k and uk+1 := λbk;

Else set `k+1 := λak and uk+1 := λbk.

End-if.

End-if.

Comparatively to Alg5 the number of computed trees is smaller, however comparatively to

Alg6 the number of computed trees is higher. Further, for the trees with more than 400 nodes it

is necessary to use a small value for parameter ξ in order to obtain similar quality values for the

bounds as Alg6, and the use of a small value for parameter ξ implies an increase on the number

of computed trees. Additionally, a drawback of this procedure is that its performance is highly

dependent on the parameter ξ that has to be tuned. We do not report computational results

with this procedure because even testing several values to the ξ parameter a superiority of this

procedure over the Alg6 setting for the interval reduction was not evident.

To compare the performance of the several Lagrangian based solution procedure, for each

approximation scheme, for each instance set AP, R, and E and each instance size set we present

the mean upper bound gap and the mean lower bound gap together with the corresponding

standard deviation values. These results are presented in Tables 5, 7, 9, one table for each

instance set. The top part of each table presents the mean gaps and the bottom parte of each

table presents the corresponding standard deviation values. We also present the mean execution

times (in seconds) and corresponding standard deviation values. These results are presented in

Tables 6, 8, 10, one table for each instance set. The top part of each table presents the mean

execution times and the bottom parte of each table presents the corresponding standard deviation

values. In Figure 3 we compare the lower bound gaps gapL between Alg6 and Alg7 for the three

sets of instances AP, R and E.

Table 5 presents the mean gaps (top part) and corresponding standard deviation values (bot-

tom part) for the AP instances. Algorithms Alg1 and Alg4 present the higher mean gap values.

Algorithms Alg2, Alg5 and Alg6 have the same mean gap values. Algorithm Alg7 has the best

mean lower bound gaps and has mean upper bound gap gapU equal to Alg2, Alg5 and Alg6. In

Figure 3 we compare the mean lower bound gaps gapL between Alg6 (which are the same as Alg2

and Alg5) and Alg7. For the upper bound gaps gapU , algorithm Alg6 obtains lower gaps than

the Alg7 in 7.37% of the instances (7 out of 95 instances) and Alg7 presents lower gapU in 4.21%

of the instances (4 out of 95 instances). For the remaining 84 instances the upper bound gaps

gapU are equal in both algorithms.
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Table 6: Mean execution times, in seconds, (top part) and corresponding standard deviation

values(bottom part) for the AP instances.

n Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7

10 0.005 0.005 0.002 0.002 0.002 0.000 0.000

20 0.000 0.000 0.006 0.002 0.002 0.003 0.002

40 0.006 0.005 0.012 0.006 0.006 0.008 0.006

60 0.011 0.014 0.020 0.011 0.018 0.014 0.015

80 0.015 0.015 0.036 0.015 0.024 0.015 0.021

100 0.026 0.021 0.064 0.026 0.028 0.021 0.029

150 0.037 0.043 0.120 0.042 0.066 0.046 0.045

200 0.043 0.056 0.231 0.056 0.091 0.065 0.062

300 0.087 0.087 0.465 0.081 0.165 0.112 0.118

400 0.127 0.130 0.649 0.115 0.260 0.171 0.174

500 0.190 0.212 1.254 0.184 0.429 0.271 0.283

1000 0.742 0.801 5.622 0.689 1.708 1.076 1.232

10 0.010 0.015 0.005 0.005 0.004 0.000 0.000

20 0.000 0.000 0.008 0.005 0.001 0.006 0.005

40 0.008 0.007 0.006 0.008 0.002 0.008 0.008

60 0.007 0.005 0.008 0.007 0.002 0.009 0.000

80 0.007 0.007 0.007 0.007 0.004 0.010 0.008

100 0.008 0.013 0.016 0.008 0.010 0.011 0.011

150 0.018 0.022 0.013 0.023 0.021 0.024 0.014

200 0.013 0.024 0.026 0.009 0.010 0.013 0.011

300 0.008 0.014 0.039 0.007 0.015 0.013 0.021

400 0.007 0.009 0.148 0.014 0.015 0.011 0.007

500 0.006 0.008 0.193 0.012 0.016 0.007 0.006

1000 0.028 0.014 0.100 0.034 0.079 0.036 0.047
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Table 6 presents mean execution times, in seconds, (top part) and corresponding standard

deviation values (bottom part) for the AP instances. Execution mean times are, almost all,

less than 1 second, except for five occurrences for which four of these use less than 2 seconds.

Algorithms Alg3 and Alg5 use more execution time than the others.

Table 7 presents the mean gaps (top part) and corresponding standard deviation values (bot-

tom part) for the R instances. In general, and contrary to what happened to the AP instances,

algorithms Alg1 and Alg4 do not have much higher gaps when compared with the other algo-

rithms. We have the same mean gap values for algorithms Alg2, Alg5 and Alg6. The upper

bound mean gaps for Alg3 are the worse. In Figure 3 we compare the lower bound gaps gapL

between Alg6 (which are the same as Alg2 and Alg5) and Alg7. Algorithm Alg7 presents the

lowest values for the lower bound gaps gapL. All algorithms have the same upper bound gaps

gapU .

Table 8 presents mean execution times, in seconds, (top part) and corresponding standard

deviation values (bottom part) for the R instances. As before, execution mean times are, almost

all, less than 1 second, except for ten occurrences, for which six use less than 2 seconds. Except

for Alg3 all the other algorithms use mean computational times less than 5 seconds. As before

we also may say that algorithms Alg3 and Alg5 are the most time consuming. And we can notice

that for instances with 300 or less nodes Alg5 is the most time consuming while for instances

with 400 or more nodes Alg3 is the most time consuming.

Table 9 presents the mean gaps (top part) and corresponding standard deviation values (bot-

tom part) for the E instances. In general, and contrary to what happened to the AP instances,

algorithms Alg1 and Alg4 do not have higher gaps when compared with the other algorithms.

In Figure 3 we compare the lower bound gaps gapL between Alg6 and Alg7. We have the same

mean gap values for algorithms Alg2, Alg5 and Alg6. Algorithm Alg7 has the best lower bound

mean gaps and has mean upper bound gaps gapU equal to Alg2, Alg5 and Alg6, except for one

instance with 1000 nodes.

Table 10 presents mean execution times, in seconds, (top part) and corresponding standard

deviation values (bottom part) for the E instances. As before, execution mean times are, almost

all, less than 1 second, except for four occurrences, that use less than 2 seconds. As before we

may say that algorithms Alg3 and Alg5 are the most time consuming, being Alg3 more time

consuming than Alg5.

In Table 11 we compare the HP procedure (see page 14 for more details) with Alg7, the

algorithm that obtains the best lower bounds. For these two procedures we display the mean

gaps for the three sets of instances considered, AP, R and E, and specified in the first line

of the table. For each node set size (specified in each line 3 to 14) and for each instance set

(specified in the first line) we show in columns two, four and six named HP the mean of the

linear programming gap. For each instance this gap is gapLP = OPT−LP
OPT × 100, where LP is

the linear programming bound obtained by the weighted MTZ formulation used in HP. For each

node set size (specified in each line 3 to 14) and for each instance set (specified in the first line)
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Table 8: Mean execution times, in seconds, (top part) and corresponding standard deviation

values (bottom part) for the R instances.

n Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7

10 0.000 0.000 0.000 0.000 0.001 0.001 0.001

20 0.000 0.000 0.000 0.000 0.003 0.002 0.002

40 0.003 0.015 0.006 0.003 0.012 0.008 0.006

60 0.009 0.006 0.003 0.006 0.020 0.015 0.016

80 0.012 0.012 0.015 0.009 0.034 0.028 0.024

100 0.021 0.015 0.034 0.018 0.060 0.045 0.031

150 0.037 0.046 0.078 0.052 0.114 0.062 0.095

200 0.078 0.081 0.190 0.075 0.205 0.149 0.121

300 0.208 0.162 0.315 0.215 0.463 0.275 0.303

400 0.318 0.302 1.120 0.309 0.699 0.446 0.436

500 0.502 0.480 1.812 0.477 1.101 0.661 0.686

1000 1.853 1.828 6.686 1.922 4.034 2.405 2.477

10 0.000 0.000 0.000 0.000 0.001 0.000 0.000

20 0.000 0.000 0.000 0.000 0.001 0.001 0.001

40 0.007 0.000 0.008 0.007 0.005 0.004 0.001

60 0.008 0.008 0.007 0.008 0.003 0.004 0.005

80 0.007 0.007 0.000 0.008 0.004 0.016 0.007

100 0.009 0.000 0.013 0.007 0.032 0.027 0.007

150 0.008 0.011 0.019 0.009 0.029 0.015 0.078

200 0.000 0.007 0.102 0.007 0.087 0.067 0.043

300 0.067 0.008 0.243 0.124 0.100 0.043 0.120

400 0.052 0.018 0.349 0.007 0.101 0.064 0.055

500 0.063 0.047 1.048 0.067 0.062 0.075 0.073

1000 0.035 0.063 1.931 0.147 0.423 0.074 0.142

Figure 3: Comparing the lower bound gaps gapL between Alg6 and Alg7 for the three sets of

instances AP, R and E.
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Table 10: Mean execution times, in seconds, (top part) and corresponding standard deviation

values (bottom part) for the E instances.

n Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7

10 0.003 0.003 0.003 0.000 0.008 0.003 0.000

20 0.009 0.000 0.084 0.003 0.006 0.001 0.003

40 0.003 0.003 0.149 0.006 0.015 0.010 0.004

60 0.009 0.006 0.427 0.012 0.022 0.022 0.013

80 0.015 0.031 1.332 0.015 0.062 0.022 0.025

100 0.021 0.025 0.046 0.018 0.064 0.033 0.043

150 0.043 0.053 0.100 0.052 0.118 0.107 0.076

200 0.090 0.078 0.174 0.128 0.318 0.200 0.125

300 0.174 0.258 0.792 0.230 0.572 0.336 0.297

400 0.449 0.408 1.213 0.387 0.723 0.528 0.471

500 0.539 0.596 1.307 0.617 1.253 0.684 0.739

10 0.007 0.007 0.007 0.000 0.015 0.004 0.000

20 0.008 0.000 0.171 0.007 0.004 0.001 0.004

40 0.007 0.007 0.032 0.008 0.007 0.006 0.004

60 0.008 0.008 0.107 0.007 0.005 0.013 0.004

80 0.011 0.035 0.271 0.000 0.038 0.002 0.004

100 0.009 0.009 0.025 0.007 0.024 0.006 0.019

150 0.007 0.014 0.045 0.014 0.024 0.060 0.016

200 0.030 0.000 0.058 0.094 0.094 0.089 0.031

300 0.007 0.099 0.500 0.074 0.118 0.091 0.076

400 0.072 0.086 0.790 0.071 0.052 0.133 0.051

500 0.101 0.093 0.800 0.106 0.117 0.056 0.101

1000 0.085 0.094 2.808 0.072 0.120 0.086 0.066

Table 11: Comparing the mean gaps between HP procedure and algorithm Alg7

AP R E

n HP Alg7 HP Alg7 HP Alg7

10 22.292 18.987 15.056 12.542 9.035 7.237

20 9.874 9.145 4.079 3.477 2.888 2.425

40 6.362 6.101 1.769 1.556 0.894 0.758

60 4.830 4.729 0.589 0.529 0.390 0.357

80 3.778 3.701 0.387 0.328 0.231 0.209

100 3.192 3.141 0.068 0.328 0.091 0.209

150 1.680 1.651 0.063 0.054 0.040 0.078

200 0.770 0.739 0.040 0.034 0.012 0.009

300 0.299 0.282 0.016 0.013 0.011 0.009

400 0.232 0.219 0.021 0.003 2.848 0.102

500 0.207 0.198 0.003 0.002 2.938 0.105

1000 1.757 1.754 0.094 0.036 3.517 0.046
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Figure 4: Performance profiles for the computational times (in seconds) in the left figure and for

the gaps in the right figure, for each set of instances.

we show in columns three, five and seven named Alg7 the mean of the lower bound gaps for the

Alg7, which is gapLB = OPT−LB
OPT × 100, where LB is the lower bound obtained by Alg7.

It is worth to note that, generally, the gaps decrease with the increase on the number of

nodes. This can be explained because in such cases the number of edges that can replace an edge

discarded from an infeasible solution also increases. Therefore the obtention of a feasible solution

does not gets harder.

In Figure 4, following [8, 10], we present some performance profiles to compare the perfor-

mance of the algorithms Alg1, Alg2, Alg3, Alg4, Alg5, Alg6, Alg7 for each one of the three sets

of instances, sets AP, E and R. We used nAP = 95 instances of the set AP and nE = nR = 60

instances of each set E and R. For each set of instances two performance measures were consid-

ered: the computational times (in seconds) presented in the left part of the figure, and the lower

bound gaps in the right part of the figure.

We explain the construction of the performance profiles for the computational times. Similarly
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they are build for the lower bound gaps. Consider that tia is the computational time (in seconds)

used by algorithm a ∈ {Alg1, Alg2, Alg3, Alg4, Alg5, Alg6, Alg7} to obtain an approximate

value to instance i from a set of instances. To build the performance profiles a baseline for

comparisons is required. Therefore, we compare the performance of instance i by algorithm a

with the best performance by any algorithm on this instance; that is, we use the performance

ratio ria = tia/ti where ti = min{tia, a ∈ {Alg1, . . . , Alg7}}. To obtain an overall assessment

of the performance of the algorithms define µa(T ) = sa(T )/nj where sa(T ) is the number of

instances such that the performance ratio ria ≤ T and where nj = 95 or 60, depending on the

set of instances in consideration. Thus, µa(T ) is a probability estimate for algorithm a that a

performance ratio ria is within a factor T ∈ R of the best possible ratio. The function µa is the

empirical (cumulative) distribution function for the performance ratio.

We presented several Lagrangian based schemes to approximate the WMST problem solution.

Their simplicity has its price as the quality of the approximation depends greatly on their ability

to find near optimal multipliers quickly and specific to each instance. In many cases the method

can only give a coarse approximation of the optimal value. As a consequence different gaps and

computational times are reported for the same problem instance depending on the specificity of

the overall algorithm settings.

The following final remark can be done. When the computational time is a concern Alg2 is

better suited if one is interested with obtaining a good solution fast. If the interest is with the

quality of the solution, Alg7 is a good recommendation to obtain good lower and upper bounds.

7 Conclusions

Our computational results show that the Lagrangian based algorithms are fast (use less than

13 seconds in our experiments) and present small gap values. Therefore these algorithms are a

good choice in obtaining both a lower and an upper bound for the WMST. We present seven

different settings, among them four were published by others, another, Alg3, is the classical

subgradient setting and two other settings, Alg6 and Alg7, are new. Four of the algorithms Alg2,

Alg5, Alg6 and Alg7 are very efficient in all instances sets, and several optimal solutions were

obtained when using those settings. Algorithm Alg5 has the disadvantage of being very time

consuming.

The lower bound values obtained using the Lagrangian based algorithms Alg2, Alg5 and Alg6

are equal to the lower bound values obtained with the linear programming of the weighted MTZ

model used within the HP procedure. Algorithm Alg7 obtains better lower bounds than the

lower bound values obtained with the linear programming of the weighted MTZ model.

If the computational time is a concern Alg2 obtains a good solution fast. However the

algorithm Alg7 is the best algorithm as it obtains the best lower bounds.
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