Skip to main content
Log in

Using multiobjective optimization models to establish healthy diets in Spain following Mediterranean standards

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Last reviews show how the Spanish consumption patterns have become away from the Mediterranean diet, traditionally consumed in Spain and widely supported by the nutritional expert community. Hence, the aim of this study is to explore and provide different alternatives to the current Spanish diet. The idea is to obtain a set of palatable diets fulfilling the nutritional requirements and conform the Mediterranean standards, while staying as close as possible to the current population pattern, under a budget constraint. In this context, different models are developed using multiobjective techniques. Additionally, this work defines an alternative diet more stable in comparison with the diets on the boundary of the feasible set. The consumption data used in this study is taken from Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (in Spanish MAPAMA) that contains relevant information about the foods consumed in Spain. Using this data, each model has been solved with Matlab Software, obtaining different feasible diets, whose composition corresponds to the suggested daily intake for a Spanish adult. In any case, the budget constraint reduces the current cost and fulfills the nutritional requirements, attending to the Mediterranean standards. Results show different food baskets to guide the current Spanish diet towards the consumption of healthy foods in the appropriate proportions, going back to the diet traditionally consumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AECOSAN (Agencia Española de Consumo, Seguridad Alimentaria y Nutrición) (2011) Encuesta Nacional de Ingesta Dietética Española. http://www.cibr.es/ka/apps/cibr/docs/estudio-enide-1.pdf. Accessed Jan 2016

  • Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S et al (2011) Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr 14(12A):2274–2284

    Article  Google Scholar 

  • Baourakis G, Baltas G, Izmiryan M, Kalogeras N (2007) Brand preference: a comparative consumer study in selected EU countries. Oper Res Int Journal 7(1):105–120

    Article  Google Scholar 

  • Benedetti I, Biggerib L, Lauretic T, Secondid L (2016) Exploring the Italians’ food habits and tendency towards a sustainable diet: the Mediterranean eating pattern. Agric Agric Sci Procedia 8:433–440

    Google Scholar 

  • Bonaccio M, Iacoviello L, de Gaetano G (2012) The Mediterranean diet: the reasons for a success. Thromb Res 129:401–404

    Article  Google Scholar 

  • Bonaccio M, Bes-Rastrollo M, de Gaetano G, Iacoviello L (2016) Challenges to the Mediterranean diet at a time of economic crisis. Nutr Metab Cardiovasc Dis 26:1057–1063

    Article  Google Scholar 

  • Briend A, Darmon N, Ferguson E, Erhardt J (2003) Linear programming: a mathematical tool for analyzing and optimizing children´s diets during the complementary feeding period. J Pediatr Gastroenterol Nutr 36:12–22

    Article  Google Scholar 

  • Buttriss JL, Briend A, Darmon N, Ferguson EL, Maillot M, Lluch A (2014) Diet modelling: how it can inform the development of dietary recommendations and public health policy. Nutr Bull 39:115–125

    Article  Google Scholar 

  • Carlson A, Lino M, Fungwe T (2007) The low-cost, moderate-cost, and liberal food plans, 2007 (CNPP-20). Department of Agriculture, Center for Nutrition Policy and Promotion, Washington

    Google Scholar 

  • Conforti P, D’Amicis A (2000) What is the cost of a healthy diet in terms of achieving RDAs? Public Health Nutr 3:367–373

    Article  Google Scholar 

  • Darmon N, Ferguson EL, Briend A (2002) A cost constraint alone has adverse effects on food selection and nutrient density: an analysis of human diets by linear programming. J Nutr 132(12):3764–3771

    Article  Google Scholar 

  • Darmon N, Ferguson EL, Briend A (2006) Impact of a cost constraint on nutritionally adequate food choices for French women: an analysis by linear programming. J Nutr Educ Behav 38(2):82–90

    Article  Google Scholar 

  • del Pozo S, García-Iglesias V, Cuadrado-Vives G, Ruiz-Moreno E, Valero-Gaspar T, Ávila-Torres JM, Varela-Moreiras G (2013) Valoración nutricional de la dieta española de acuerdo al Panel de Consumo Alimentario. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  • Dhoruri A, Lestari D, Ratnasari E (2017) Sensitivity analysis of Goal Programming model for dietary menu of diabetes mellitus patients. Int J Model Optim 7(1):7–12

    Google Scholar 

  • Ferguson EL, Darmon N, Briend A, Premachandra IM (2004) Food-based dietary guidelines can be developed and tested using linear programming analysis. J Nutr 134:951–957

    Article  Google Scholar 

  • Ferguson EL, Darmon N, Fahmida U, Fitriyanti S, Harper TH, Premachandra IM (2006) Design of optimal food-based complementary feeding recommendations and identification of key “problem nutrients” using Goal Programming. J Nutr 136(9):2399–2404

    Article  Google Scholar 

  • Fletcher LR, Soden PM, Zinober ASI (1994) Linear programming techniques for the construction of palatable human diets. J Oper Res Soc 45(5):489–496

    Article  Google Scholar 

  • Gao X, Wilde PE, Lichtenstein AH, Tucker L (2006) The 2005 USDA Food Guide Pyramid is associated with more adequate intakes within energy constraints than the 1992 Pyramid. J Nutr 136:1341–1346

    Article  Google Scholar 

  • García-Meseguer MJ, Cervera F, Vico C, Serrano-Urrea R (2014) Adherence to Mediterranean diet in a Spanish university population. Appetite 78:156–164

    Article  Google Scholar 

  • Gerdessen JC, de Vries JHM (2015) Diet models with linear Goal Programming: impact of achievement functions. Eur J Clin Nutr 69:1272–1278

    Article  Google Scholar 

  • Gerdessen JC, Claasen GDH, Banasik A (2013) General 0–1 fractional programming with conditional fractional terms for design of food frequency questionnaires. Oper Res Lett 411:7–11

    Article  Google Scholar 

  • Gerdessen JC, Kanellopoulos A, Claassen GDH (2018) “Combinig equity and utilitarianism”—additional insights into a novel approach. Int Trans Oper Res 25:7–11

    Article  Google Scholar 

  • Germani A, Vitiello V, Giusti AM, Pinto A, Donini LM, del Balzo V (2014) Environmental and economic sustainability of the Mediterranean diet. Int J Food Sci Nutr 65(8):1008–1012

    Article  Google Scholar 

  • Hollander M, Wolfe DA (1999) Nonparametric statistical methods. Wiley, Hoboken

    Google Scholar 

  • Hooker JN, Williams HP (2012) Combining equity and utilitarianism in a mathematical programming model. Manage Sci 58:1682–1693

    Article  Google Scholar 

  • Horgan GW, Perrin A, Whybrow S, Macdiarmid JI (2016) Achieving dietary recommendations and reducing greenhouse gas emissions: modelling diets to minimise the change from current intakes. Int J Behav Nutr 13:1–11

    Article  Google Scholar 

  • Iaccarino P, Scalfi L, Valerio G (2017) Adherence to the Mediterranean diet in children and adolescents: a systematic review. Nutr Metab Cardiovasc Dis 27:283–299

    Article  Google Scholar 

  • Lancaster LM (1992) The history of the application of mathematical programming to menu planning. Eur J Oper Res 57:339–347

    Article  Google Scholar 

  • Latasa ML, Louzada E, Martinez Steele CA, Monteiro P (2018) Added sugars and ultra-processed foods in Spanish households (1990–2010). Eur J Clin Nutr 72:1404–1412

    Article  Google Scholar 

  • Levesque S, Delisle H, Agueh V (2014) Contribution to the development of a food guide in Benin: linear programming for the optimization of local diets. Public Health Nutr 18(4):622–631

    Article  Google Scholar 

  • Maderuelo-Fernández JA, Recio-Rodríguez J, Patino-Alonso MC, Pérez-Arechaedra D, Rodríguez-Sánchez E, Gómez-Marcos MA, García-Ortiz L (2015) Effectiveness of interventions applicable to primary health care settings to promote Mediterranean diet or healthy adherence in adults: a systematic review. Prev Med 76:S39–S45

    Article  Google Scholar 

  • Maillot M, Ferguson EL, Drewnowski A, Darmon N (2008) Nutrient profiling can help identify foods of good nutritional quality for their price: a validation study with linear programming. J Nutr 138(6):1107–1113

    Article  Google Scholar 

  • Maillot M, Vieux F, Amiot MJ, Darmon N (2010) Individual diet modeling translates nutrient recommendations into realistic and individual-specific food choices. Am J Clin Nutr 91:421–430

    Article  Google Scholar 

  • MAPAMA (Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente). (2013) Base de Datos de Consumo en hogares. http:// www.mapama.gob.es/es/alimentacion/temas/consumo-y-comercializacion-y-distribucion-alimentaria/panel-de-consumo-alimentario/base-de-datos-de-consumo-en-hogares/consulta.asp. Accessed Jan 2016

  • Masset G, Monsivais P, Maillot M, Darmon N, Drewnowski A (2009) Diet optimization methods can help translate dietary guidelines into a cancer prevention food plan. J Nutr 139:1541–1548

    Article  Google Scholar 

  • Mertens E, van’t Veer p, Hiddink GJ, Steijns J, Kuijsten A (2016) Operationalising the health aspects of sustainable diets: a review. Public Health Nutr 20:739–757

    Article  Google Scholar 

  • Metzgar M, Rideout TC, Fontes-Villalba M, Kuipers RS (2011) The feasibility of a Paleolithic diet for low-income consumers. Nutr Res 3:444–451

    Article  Google Scholar 

  • Moreiras O, Carbajal A, Cabrera L, Cuadrado C (2016) Tablas de composición de alimentos. Guía de Prácticas, 18ª edn. Ediciones Pirámide, Madrid

  • Muros JJ, Cofre-Bolados C, Arriscado D, Zurita F, Knox E (2017) Mediterranean diet adherence is associated with lifestyle, physical fitness, and mental wellness among 10-y-olds in Chile. Nutrition 35:87–92

    Article  Google Scholar 

  • Romero C (1991) Handbook of critical issues in Goal Programming. Pergamon Press, Oxford

    Google Scholar 

  • Romero C (2001) Extended lexicographic Goal Programming: a unifying approach. Omega 29:63–71

    Article  Google Scholar 

  • Romero C (2004) A general structure of achievement function for a Goal Programming model. Eur J Oper Res 153:675–686

    Article  Google Scholar 

  • SENC (Sociedad Española de Nutrición Comunitaria) (2011) Objetivos nutricionales para la población española. Rev Esp Nutr Comunitaria 17(4):178–199

    Google Scholar 

  • Serra-Majem L, Bes-Rastrollo M, Román-Viñas B, Pfrimer K, Sánchez-Villegas A, Martínez-González MA (2009) Dietary patterns and nutritional adequacy in a Mediterranean country. Br J Nutr 101(S2):S21–S28

    Article  Google Scholar 

  • Shankar B, Srinivasan CS, Irz X (2008) World Health Organization dietary norms: a quantitative evaluation of potential consumption impacts in the United States, United Kingdom, and France. Rev Agric Econ 30(1):151–175

    Article  Google Scholar 

  • Smith VE (1959) Linear programming models for the determination of palatable human diets. J Farm Econ 41:272–283

    Article  Google Scholar 

  • Srinivasan CS (2007) Foods consumption impacts of adherence to dietary norms in the United States: a quantitative assessment. Agric Econ 37:249–256

    Article  Google Scholar 

  • Steuer RE, Choo E-H (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Math Program 26:326–344

    Article  Google Scholar 

  • Stigler GJ (1945) The cost of subsistence. J Farm Econ 27(2):303–314

    Article  Google Scholar 

  • UNESCO (2013) Representative list of the intangible cultural heritage of humanity. https://ich.unesco.org/en/RL/mediterranean-diet-00884. Accessed June 2018

  • Varela-Moreiras G, Ávila-Torres JM, Cuadrado-Vives C, del Pozo S, Ruiz-Moreno E, Moreiras-Tuny O (2008) Valoración de la dieta española de acuerdo al panel de consumo alimentario. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  • Varela-Moreiras G, Avila JM, Cuadrado C, del Pozo S, Ruiz E, Moreiras O (2010) Evaluation of food consumption and dietary patterns in Spain by the Food Consumption Survey: updated information. Eur J Clin Nutr 64(3):S37–S43

    Article  Google Scholar 

  • WHO (2003) Diet, nutrition and the prevention of chronic diseases: report of a join WHO/FAO expert consultation. Technical report series no 916. World Health Organization

  • WHO (2015) Guideline: sugars intake for adults and children. World Health Organization, Geneve

    Google Scholar 

  • Wilde P, Llobrera J (2009) Using the Thrifty Food Plan to assess the cost of a nutritious diet. J Consum Aff 43(2):274–304

    Article  Google Scholar 

  • Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, Trichopoulos D (1995) Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61(6):1402S–1406S

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the referees for their valuable and helpful comments which have contributed to improve the quality of the paper. This work was supported by the Ministerio de Ciencia, Innovación y Universidades from Spain [ECO2016-76567-C4-4-R] with a Grant (BES-2014-068507) and by the Consejería de Conocimiento, Investigación y Universidad from Andalucia [SEJ417]. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Complete models

EGP model

$$\begin{array}{*{20}l} {Min\quad \lambda D + \left( {1 -\lambda } \right)\mathop \sum \limits_{i = 1}^{101} w_{i} \left( {n_{i} + p_{i} } \right)} \hfill \\ {subject \, to} \hfill \\ {x_{i} + n_{i} - p_{i} = x_{i}^{0} \quad i = 1,2, \ldots .101} \hfill \\ {w_{i} \left( {n_{i} + p_{i} } \right) \le D\quad i = 1,2, \ldots .101} \hfill \\ \end{array}$$

Hard constraints

$$\begin{aligned} & \mathop \sum \limits_{i = 1}^{101} c_{i} x_{i} \le C \\ & \quad \alpha \cdot E \le \mathop \sum \limits_{i = 1}^{101} E_{i} x_{i} \le E \\ & \quad \alpha_{j}^{L} \le \frac{{\mathop \sum \nolimits_{i = 1}^{101} N_{ji}^{c} x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} E_{i} x_{i} }} \le \alpha_{j}^{U} \quad j = 1,2,3 \\ & \quad RN_{k}^{L} \le \mathop \sum \limits_{i = 1}^{101} N_{ki} x_{i} \le RN_{k}^{U} \quad k = 1,2, \ldots ,13 \\ & \quad \mathop \sum \limits_{i = 1}^{101} N_{Fi} x_{i} \ge 25 \\ & \quad \mathop \sum \limits_{i = 1}^{101} N_{Hi } x_{i} \le 300 \\ & \quad \frac{{\mathop \sum \nolimits_{i = 1}^{101} N_{Si}^{c} x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} E_{i} x_{i} }} \le 0.1 \\ & \quad \frac{{\mathop \sum \nolimits_{i = 1}^{101} PUFA_{i} x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} SFA_{i} x_{i} }} \ge 0.5 \\ & \quad \frac{{ \mathop \sum \nolimits_{i = 1}^{101} (PUFA_{i} + MUFA_{i} )x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} SFA_{i} x_{i} }} \ge 2 \\ & \quad TX_{i}^{L} \le x_{i } \le TX_{i}^{U} \quad i \in \left\{ {1,2, \ldots ,101} \right\} \\ & \quad TG_{r}^{L} \le \mathop \sum \limits_{{i \in G_{r} }} x_{i} \le TG_{r}^{U} \quad r \in \left\{ {1,2, \ldots ,10} \right\} \\ & \quad \mathop \sum \limits_{{i \in S_{1}^{j} }}^{{}} x_{i} \le \mathop \sum \limits_{{i \in S_{2}^{j} }}^{{}} x_{i} \quad j = 1,2, \ldots ,J \\ & \quad where\,S_{1}^{j} , S_{2}^{j} \subset \left\{ {x_{1} ,x_{2} , \ldots ,x_{101} } \right\} \\ & \quad PG_{r}^{L} \le \frac{{\mathop \sum \nolimits_{{i \in G_{r} }} x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} x_{i} }} \le PG_{r}^{U} \quad r = 1,2, \ldots ,10 \\ & \quad x_{i} ,n_{i} ,p_{i} \ge 0\quad i = 1,2, \ldots , 101 \\ \end{aligned}$$

TGP model

$$\begin{array}{*{20}l} {Min\,d} \hfill \\ {\begin{array}{*{20}l} {subject \, to} \hfill & {x_{i} + n_{i} - p_{i} = x_{i}^{0} } \hfill & {i = 1,2, \ldots .101} \hfill \\ {} \hfill & {\mu_{i}^{j} w_{i} \left( {n_{i} + p_{i} } \right) \le d} \hfill & {i = 1,2, \ldots .101} \hfill \\ \end{array} } \hfill \\ \end{array}$$

Hard constraints

$$\begin{aligned} &\mathop \sum \limits_{i = 1}^{101} c_{i} x_{i} \le C \hfill \\ & \quad \alpha \cdot E \le \mathop \sum \limits_{i = 1}^{101} E_{i} x_{i} \le E \hfill \\& \quad \alpha_{j}^{L} \le \frac{{\mathop \sum \nolimits_{i = 1}^{101} N_{ji}^{c} x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} E_{i} x_{i} }} \le \alpha_{j}^{U} \quad j = 1,2,3 \hfill \\& \quad RN_{k}^{L} \le \mathop \sum \limits_{i = 1}^{101} N_{ki} x_{i} \le RN_{k}^{U} \quad k = 1,2, \ldots ,13 \hfill \\& \quad \mathop \sum \limits_{i = 1}^{101} N_{Fi} x_{i} \ge 25 \hfill \\& \quad \mathop \sum \limits_{i = 1}^{101} N_{Hi } x_{i} \le 300 \hfill \\& \quad \frac{{\mathop \sum \nolimits_{i = 1}^{101} N_{Si}^{c} x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} E_{i} x_{i} }} \le 0.1 \hfill \\& \quad \frac{{\mathop \sum \nolimits_{i = 1}^{101} PUFA_{i} x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} SFA_{i} x_{i} }} \ge 0.5 \hfill \\& \quad \frac{{ \mathop \sum \nolimits_{i = 1}^{101} (PUFA_{i} + MUFA_{i} )x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} SFA_{i} x_{i} }} \ge 2 \hfill \\& \quad TX_{i}^{L} \le x_{i } \le TX_{i}^{U} \quad i \in \left\{ {1,2, \ldots ,101} \right\} \hfill \\& \quad TG_{r}^{L} \le \mathop \sum \limits_{{i \in G_{r} }} x_{i} \le TG_{r}^{U} \quad r \in \left\{ {1,2, \ldots ,10} \right\} \hfill \\& \quad \mathop \sum \limits_{{i \in S_{1}^{j} }}^{{}} x_{i} \le \mathop \sum \limits_{{i \in S_{2}^{j} }}^{{}} x_{i} \quad j = 1,2, \ldots ,J \hfill \\& \quad {\text{where}}\,S_{1}^{j} , S_{2}^{j} \left\{ {x_{1} ,x_{2} , \ldots ,x_{101} } \right\} \hfill \\& \quad PG_{r}^{L} \le \frac{{\mathop \sum \nolimits_{{i \in G_{r} }} x_{i} }}{{\mathop \sum \nolimits_{i = 1}^{101} x_{i} }} \le PG_{r}^{U} \quad r = 1,2, \ldots ,10 \hfill \\& \quad x_{i} ,n_{i} ,p_{i} \ge 0\quad i = 1,2, \ldots ,101 \hfill \\ \end{aligned}$$

Appendix 2: Supplementary material

See Tables 5, 6, 7, 8, 9, 10 and Fig. 5.

Table 5 Bounds for particular foods in expression (16)
Table 6 Bounds for particular food groups in expression (17)
Table 7 Food Sets in expression (18)
Table 8 Bounds for the percentage of intake in expression (19)
Table 9 Food sample, divided into groups, cost and consumption per capita in Spain 2013, \(\overline{TGP\_1000}\) and \(\overline{TGP\_1000noMD}\)
Table 10 Average diets for TGP_10, TGP_100, TGP_1000
Fig. 5
figure 5

Food groups consumption for different Average diets and the current diet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, M., Gómez, T., Delgado-Antequera, L. et al. Using multiobjective optimization models to establish healthy diets in Spain following Mediterranean standards. Oper Res Int J 21, 1927–1961 (2021). https://doi.org/10.1007/s12351-019-00499-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-019-00499-9

Keywords

Mathematics Subject Classification

Navigation