
An LP-based, Strongly-Polynomial 2-Approximation
Algorithm for Sparse Wasserstein Barycenters

Steffen Borgwardt

steffen.borgwardt@ucdenver.edu University of Colorado Denver

Abstract. Discrete Wasserstein barycenters correspond to optimal solutions of transportation
problems for a set of probability measures with finite support. Discrete barycenters are measures
with finite support themselves and exhibit two favorable properties: there always exists one
with a provably sparse support, and any optimal transport to the input measures is non-mass
splitting.
It is open whether a discrete barycenter can be computed in polynomial time. It is possible to
find an exact barycenter through linear programming, but these programs may scale exponen-
tially. In this paper, we prove that there is a strongly-polynomial 2-approximation algorithm
based on linear programming. First, we show that an exact computation over the union of
supports of the input measures gives a tight 2-approximation. This computation can be done
through a linear program with setup and solution in strongly-polynomial time. The resulting
measure is sparse, but an optimal transport may split mass. We then devise a second, strongly-
polynomial algorithm to improve this measure to one with a non-mass splitting transport of
lower cost. The key step is an update of the possible support set to resolve mass split.
Finally, we devise an iterative scheme that alternates between these two algorithms. The al-
gorithm terminates with a 2-approximation that has both a sparse support and an associated
non-mass splitting optimal transport. We conclude with some sample computations and an
analysis of the scaling of our algorithms, exhibiting vast improvements in running time over
exact LP-based computations and low practical errors.

Keywords: discrete barycenter, optimal transport, 2-approximation, linear programming

MSC: 90B80, 90C05, 90C46, 90C90

1 Introduction

Transportation problems for several marginals arise in applications ranging from finance and
economics [4, 24, 39, 37] to physics [11, 17], economics [12, 15], statistics [7, 8, 33], and data
analytics [20, 23]. The so-called Wasserstein barycenters correspond to optimal solutions to
these problems, and have seen much recent attention. Barycenters are intimately connected
to Fréchet means in Euclidean space [35, 45, 46, 51], which is one of the origins of this field
of research and the reason why statistical and probability notation is commonly used.

Given probability measures P1, . . . , PN on Rd and a weight vector λ = (λ1, . . . , λN) ∈ RN>0

with
∑N

i=1 λi = 1, a (λ-weighted) Wasserstein barycenter is a probability measure P̄ on Rd
which satisfies

φ(P̄) :=

N∑
i=1

λiW2(P̄ , Pi)
2 = inf

P∈P2(Rd)

N∑
i=1

λiW2(P, Pi)
2, (1)

where W2 is the quadratic Wasserstein distance and P2(Rd) is the set of all probability
measures on Rd with finite second moments. We recommend the monographs [47, 48], and
the more recent [36, 38], for a review of the Wasserstein distance and an overview of the
literature on optimal transport problems.

ar
X

iv
:1

70
4.

05
49

1v
6

 [
m

at
h.

O
C

]
 2

2
A

pr
 2

02
0

mailto:steffen.borgwardt@ucdenver.edu

1.1 Exact, approximate and heuristic algorithms

Exact barycenter computations for a set of continuous measures are intractable outside of
some special cases, in particular because an evaluation of the Wasserstein distance between
two given continuous measures itself already is challenging. Because of this, the literature
uses several types of simplifications to facilitate practical computations. The arguably most
important one is an input of discrete data:

In many applications, data is given as a set of discrete (probability) measures P1, . . . , PN
having finite support in Rd. A discrete Wasserstein barycenter is a probability measure P̄
which satisfies Eq. (1) for such measures. Discrete probability measures arise naturally in
applications in operations research. The finite support often corresponds to a set of geo-
graphical locations (customers, facilities, service providers) and the measures represent data
that varies over time. In computer graphics or image science, discrete probability measures
are supported on a grid or arise through a discretization of the underlying space.

In [2], some theoretical results were developed for these discrete barycenters. They mirror
the continuous case, established in [1], with a few notable exceptions. First, unlike in the
continuous case, there may exist several discrete barycenters for the same set of measures. All
of them have finite support and there always exists a discrete barycenter with provably sparse
support. Analogously to the continuous case, a discrete barycenter always has a non-mass
splitting optimal transport to each discrete marginal, i.e., each barycenter support point
transports its whole mass to just a single support point for each measure. These results were
proven for uniform λi = 1

n in [2], but are readily transferred to general λi ([34]).
Both sparsity and non-mass split are crucial to applications. Sparsity is desirable in many

applications of operations research such as facility location. Non-mass split is often imposed
by physical limitations of applications, such as the design of deformable templates [8, 25, 45].
For example, in metal shaping, sheets of metal have to be pressed into a collection of different
shapes. Each of these shapes is modeled as a measure. A ‘mean deformation’ (barycenter)
is a best shape for the initial sheet of metal with respect to the energy required to mold
(transport) it into all required shapes. Only because of the existence of a non-mass splitting
transport, the mean deformation can indeed be transformed into each shape through only
bending and stretching. See [8] for more details on such applications. We are interested in
the computation of a discrete barycenter that exhibits these beneficial properties.

It is open whether the computation of an exact discrete barycenter can be done in
polynomial time. It is well-known that linear programming can be used to approximate or
solve optimal transport problems [42, 50]. Most importantly, exact discrete barycenters can
be computed through linear programming [2, 10, 13]. However, these programs may scale
exponentially in the number of measures N (see Section 2.2) and thus have not been widely
considered for practical use. Much larger and faster practical computations are possible
through various heuristics that fundamentally differ from LP-based approaches. Most of
these algorithms are based on simplifications to the Wasserstein distance to obtain an easier
objective function.

The arguably most popular tools are entropic regularization techniques, which are used
to make the objective function smooth and strictly convex [18]. In recent years there has been
significant progress on these techniques and they led to a flurry of competitive algorithms
for good approximations of barycenters in practice. For example, regularization is used in
a well-behaved implementation of a gradient descent algorithm that uses information from
both smoothed primal and dual optimal transport formulations [19]. Further, regularization
not only greatly simplifies the underlying optimal transport problem itself, but the regu-
larized barycenter problem then also allows the efficient computation of iterative Bregman

2

projections [5]. Iterative Bregman methods have proven to be a competitive approach for
large-scale computations [49, 50]; their number of variables scales roughly linearly in the
number of marginals. The entropy regularized Wasserstein distance converges towards the
actual Wasserstein distance in O(1

w), where w is the entropic regularization factor, and the
non-regularized transport cost computed with a regularized transport plan converges towards
the Wasserstein distance in O(e−w) [5, 14, 30]. The factor w usually is chosen empirically.

The great scalability of regularization-based methods, see for example [41], comes at
the cost of a few drawbacks. First, they typically require a fixed support over which a
barycenter approximation is to be computed. For grid-structured data, approaches in the
literature usually just specify the underlying grid as the support set. One of the main results
in this paper is that doing so, by itself, leads to an approximation error of up to 2 – an exact
optimum over the original support is only a (possibly tight) 2-approximation. An exact
barycenter for grid-structured data lies in an N -times finer grid. An additional challenge lies
in scenarios where measures with sparse support are spread out over a large region, or where
they lie in high dimension, such that it is not feasible to discretize the whole underlying
space. These restrictions have led to interest in (different) approaches where the support
for a barycenter approximation [16, 22, 31] or a discretization of the input measures [43]
is not part of the input. Second, regularization leads to fully dense solutions, which are
considered an undesirable ‘blur’ in many applications. This contrasts with the search for
sparse exact or approximate barycenters as done in this paper. Post-processing could be
used to ‘sparsify’ a dense solution, but it is open whether this can be done in a way to retain
a provable approximation guarantee or to obtain a non-mass splitting transport. And third,
they sometimes exhibit poor numerical behavior as regularization decreases [26]; typically a
fixed number of iterations is hard-coded.

There are other successful algorithms that do not rely on smoothing or regularization:
for example, a non-smooth optimization algorithm based on quasi-Newton steps and the
fast computation of super-gradients performs well in practice [13]. Many further examples
are based on other types of simplifications of the Wasserstein distance. The so-called Radon
barycenters and Sliced barycenters [9, 39] are restricted to special instances (Radon barycen-
ters are only practical for data on a grid, Sliced barycenters deal with support points of
uniform mass), but provide good results in low dimension. The idea is to use a Radon trans-
form to obtain 1-dimensional projections of the support points to lines sampled randomly,
from which an expectation of the Wasserstein distance can be devised. Further, a use of the
simpler W1-distance instead of the W2-distance leads to the so-called Beckmann problem,
which allows various efficient approaches [3, 21, 40].

1.2 Contributions

In this paper, we study LP-based approaches to the discrete barycenter problem. In Section
2, we introduce some notation and recall previous related work on linear programming for
the problem. In Section 3, we present and discuss our main contributions.

First, we show that an optimal measure for Eq. (1), when restricted to the union of
supports of the original measures, gives a tight 2-approximation for the barycenter problem
(Theorem 1). This result has an immediate implication for algorithms in the literature that
compute an approximate barycenter for grid-structured data: if the computation is done over
the original grid itself, the algorithm does not converge to an exact barycenter, but to a best
approximation of it over the grid, which can give up to a 2-error.

Next, we exhibit that a restriction to the support of the original measures allows us
to trade this small, provable approximation error for a dramatic improvement in the size

3

of barycenter LPs: we obtain an LP-based 2-approximation algorithm that can be set up
and solved in strongly-polynomial time (Algorithm 1, Theorem 2), i.e., polynomial in the
number of variables and constraints in the input (and their actual size does not matter).
The algorithm finds a sparse approximation; to the best of the author’s knowledge, this is
the first algorithm with an approximation guarantee for a sparse solution to the problem.
The result shows that the barycenter problem can be efficiently approximated for any data.

The output of Algorithm 1 may not allow for a non-mass splitting transport. (Recall
that the existence of such a transport is a property of all exact barycenters and is important
for many applications.) Next, we present a second algorithm that improves an approximate
barycenter as computed through Algorithm 1 to another measure with a non-mass splitting
transport of lower cost, and prove that this computation also runs in strongly-polynomial
time (Algorithm 2, Theorems 3 and 4, proofs in Appendix A). This algorithm achieves the
improvement by moving mass out of the union of original supports to a new, updated support
set. Both Algorithms 1 and 2 work for any input and do not require the a priori specification
of a fixed support set.

Finally, we use the two algorithms as the building blocks of an iterative scheme alter-
nating between them (Algorithm 3). We prove that it terminates with a 2-approximation
with both sparse support and an associated non-mass splitting optimal transport at the
same time (Theorem 5, proof in Appendix B). The theoretical running time of this third
algorithm remains open at this time; in practical computations we observe a low number
of iterations (often just two to four) before termination. This behavior is reminiscent of the
well-known k-means algorithm [28, 32]. Further, while we exhibit an example that shows the
2-approximation bound for Algorithm 3 is tight in theory, we have not observed more than
a 20% error, respectively a multiplicative 1.2 error, in the computations in this paper.

We conclude with sample computations and an analysis of the scaling of the algorithms in
Section 4. We provide comparisons to exact, LP-based computations, and observe dramatic
improvements in running time. We also provide a brief comparison to one of the most popular
regularization-based algorithms in the literature ([19]) for grid-structured data. However, one
has to be careful in such a comparison; our algorithms have some properties that come at
a significant computational cost: Algorithm 1 already is an exact, sparse solution over the
original support, and its result is further refined through Algorithms 2 and 3. Further, the
algorithms are numerically stable, work for any data, and work without specification of a
fixed support set for the solution. As expected, simplifications to the objective function
(like entropy regularized input), and the search for dense approximations over the original
support, leads to worse approximation errors, but much faster running times. In fact, we
discuss why grid data is an especially poor setting for our methods in view of computational
speed: the size of the original support scales quadratically with the density of the grid.

We close the discussion with a ‘best-case’ example for computational speed: a large num-
ber of measures of small, overlapping support (without grid-structure). Due to a linear scaling
of the LPs in the number of measures, we are then able to find solutions for thousands of
measures. Such data is common in operations research applications that involve geographical
locations, but algorithms in the literature are not designed to work (well) in this setting.

2 Preliminaries

We begin by recalling some background on LP-based approaches to the discrete barycenter
problem, following [2] and [34]. We are given a set of discrete probability measures P1, . . . , PN ,
i.e., they have finite support in Rd and their total mass sums up to 1. For a simple wording,

4

we call them measures in this paper, or discrete measures to stress that they have a finite
support. A set of support points with associated total mass less than 1 will be called a partial
measure. We denote the support of Pi as supp(Pi) and the corresponding number of support
points as |Pi| = |supp(Pi)|. |Pi| is called the size of Pi. Further, we are given a weight vector
λ = (λ1, . . . , λN) ∈ RN>0 with

∑N
i=1 λi = 1.

The general definition of a Wasserstein barycenter refers to a measure P̄ on Rd which
satisfies Eq. (1), i.e.,

φ(P̄) =
N∑
i=1

λiW2(P̄ , Pi)
2 = inf

P∈P2(Rd)

N∑
i=1

λiW2(P, Pi)
2.

For discrete measures P1, . . . , PN , one can show [2] that all optimizers of Eq. (1) must be
supported in the finite set S ⊂ Rd defined as

S :=

{
N∑
i=1

λixi : xi ∈ supp(Pi)

}
. (2)

S is the set of weighted centroids for all possible combinations of support points, one from
each measure Pi. Note that S does not have to overlap with the support sets supp(Pi).

2.1 Linear programs for discrete barycenters

Setting P2
S (Rd) := {P ∈ P2(Rd)| supp(P) ⊆ S}, the infinite-dimensional problem in Eq. (1)

can be solved by replacing the requirement P ∈ P2(Rd) with P ∈ P2
S (Rd) to obtain

φ(P̄) = inf
P∈P2

S (Rd)

N∑
i=1

λiW2(P, Pi)
2. (3)

This yields a finite-dimensional minimization problem, which can be solved through lin-
ear programming [2, 10, 13]. We recall this construction in two steps: we begin with the
computation of the value φ(P0) =

∑N
i=1 λiW2(P0, Pi)

2, i.e., the cost of an optimal transport
from P0 to all the Pi for a given P0. Then we make P0 part of the optimization, too.

Let P1, . . . , PN be a set of discrete measures and let supp(Pi) = {xik
∣∣k = 1, ..., |Pi|}.

Further, let P0 be another (fixed) discrete measure and let supp(P0) = {xj
∣∣j = 1, ..., |P0|}.

Finally, let dik be the mass of support point xik in Pi and dj be the mass of support point
xj in P0. Then we can find the value of φ(P0) by solving the following LP:

min
y

N∑
i=1

λi

|P0|∑
j=1

|Pi|∑
k=1

‖xj − xik‖2yijk (opt. transport)

s.t.

|Pi|∑
k=1

yijk = dj ∀i = 1, . . . , N, ∀j = 1, . . . , |P0|

|P0|∑
j=1

yijk = dik ∀i = 1, . . . , N, ∀k = 1, . . . , |Pi|

yijk ≥ 0 ∀i = 1, . . . , N, ∀j = 1, . . . , |P0|, ∀k = 1, . . . , |Pi|

Note that we not only find the optimal objective function value φ(P0), but also a corre-
sponding (optimal) transport y = (yijk)i≤N,j≤|P0|,k≤|Pi| between P0 and the P1, . . . , PN .

5

Next, the mass becomes part of the optimization. Instead of just searching for an optimal
transport from a fixed measure P0, we use a set S0 of possible support points with associated
variables that represent mass on them. By introducing variables z = (zj)j≤|S0| for the points
in a given set S0 = {xj

∣∣j = 1, ..., |S0|} to denote the possible mass at xj ∈ S0, we obtain
an LP that both finds an optimal measure P0 supported on S0, as well as a corresponding
optimal transport:

min
z,y

N∑
i=1

λi

|S0|∑
j=1

|Pi|∑
k=1

‖xj − xik‖2yijk (barycenter)

s.t.

|Pi|∑
k=1

yijk = zj ∀i = 1, . . . , N, ∀j = 1, . . . , |S0|

|S0|∑
j=1

yijk = dik ∀i = 1, . . . , N, ∀k = 1, . . . , |Pi|

yijk ≥ 0 ∀i = 1, . . . , N, ∀j = 1, . . . , |S0|, ∀k = 1, . . . , |Pi|
zj ∈ R ∀j = 1, . . . , |S0|

Note that the variables zj satisfy zj ≥ 0 and
∑|S0|

j=1 zj = 1 because of satisfaction of the other

constraints and because
∑|Pi|

i=1 dik = 1 for all i ≤ N . Thus, it suffices to specify zj ∈ R.

The above LP computes a measure represented by z and a corresponding optimal trans-
port y. For S0 = S, the returned (z, y) represents a discrete barycenter by z and a cor-
responding optimal transport by y. For S0 6= S, we call the measure represented by z an
S0-barycenter, an approximation of the barycenter in S0, or simply an approximate barycenter
when the context is clear.

2.2 Scaling of the LPs

Let us consider the size of LP (barycenter). It consists of |S0|+ |S0| ·
∑N

i=1 |Pi| variables and

N · |S0| +
∑N

i=1 |Pi| equality constraints. For the computation of an exact barycenter, we

set S0 = S. In this case, we get a worst-case bound of |S0| =
∏N
i=1 |Pi|. Let now |Pmax| =

maxi=1,...,N |Pi|. If all measures have the same number of support points, we get
∑N

i=1 |Pi| =
N · |Pmax| and

∏N
i=1 |Pi| = |Pmax|N . So we have an LP of up to |Pmax|N + |Pmax|N ·N · |Pmax|

variables and N · |Pmax|N +N · |Pmax| equality constraints.

A refined analysis reveals that some of the variables and constraints can be redundant. For
example, if the measures overlap in some of their support points, then |S0| and consequently
the size of the LP becomes smaller. In fact, LP (barycenter) is always of polynomial size for
data on a grid [10]. However, in general one cannot rule out a scaling of the size of the LP
for S0 = S that is exponential in N even if |Pmax| is fixed, and a polynomial scaling in |Pmax|
even if N is fixed. The main reason why it was possible to compute an exact barycenter for
the example in [2] with only 8 measures of 9 support points was the fact that all measures
had the same small support, which had a dramatic effect in reducing |S0|. This highlights
the potential benefit from performing an approximate computation where one replaces S by
a smaller set S0.

6

2.3 Sparsity and non-mass split

The feasible regions of LPs (opt. transport) and (barycenter) are bounded, and thus standard
arguments of linear programming show that there always exists an optimal vertex. In a
vertex, an inclusion-maximal set of variables is set to 0. By a careful analysis of which of the
variables zj , yijk are equal to 0, it is possible to show a first favorable property: in contrast to

the large number |S| of possible support points, which can be up to
∏N
i=1 |Pi|, there always

exists a barycenter that assigns nonzero mass to at most
∑N

i=1 |Pi| −N + 1 points [2].

Proposition 1. Let P1, . . . , PN be discrete measures. Then for any weights λ ∈ Rn>0, there
exists a barycenter P̄ of these measures such that the size |P̄ | satisfies

|P̄ | ≤
N∑
i=1

|Pi| −N + 1. (4)

We call a measure P̄ that satisfies |P̄ | ≤
∑N

i=1 |Pi| −N + 1 sparse. Proposition 1 states
that there always exists a sparse barycenter. A proof is based on the existence of an optimal
vertex of the polyhedron for LP (barycenter) [2, 34]. The argument also works if a support
set S0 6= S is used. LP (barycenter) then optimizes the objective function in Eq. (1) over the
set P2

S0
(Rd) of all measures P with support in S0. For these different support sets, we have

the following generalization of Proposition 1.

Corollary 1. Let P1, . . . , PN be discrete measures in Rd, let S0 = {xj : j = 1, . . . , |S0|} ⊂
Rd, and let P2

S0
(Rd) be the set of all measures P with support in S0. Then for any weights

λ ∈ Rn>0, there exists an approximate barycenter P̄0 in S0 such that the size |P̄0| satisfies

|P̄0| ≤
N∑
i=1

|Pi| −N + 1. (5)

Further, for any exact barycenter P̄ there exists a non-mass splitting optimal transport
from P̄ to the P1, . . . , PN [2, 34]. This means that for all xj ∈ supp(P̄) with mass dj and for
each i, there is exactly one k with yijk = dj , while yijk′ = 0 for all k′ 6= k. Each support point
of a barycenter only transports mass to exactly one support point in each measure. In this
case, we say that a support point does not split mass or that a support point is non-mass
splitting.

In fact, any optimal transport from a discrete barycenter P̄ to the corresponding set
of measures is non-mass splitting. While this has not been stated explicitly in [2], it is
not hard to prove: recall that the (weighted) centroid c of a set of points x1, . . . , xn is
the unique minimizer of a functional that measures the (weighted) summed-up squared
Euclidean distances of a single point to all points in the set. This can be seen through a
simple transformation

N∑
i=1

λi‖(s+ c)− xi‖2 = sT s− cT c+
N∑
i=1

λix
T
i xi,

which is minimal for sT s = 0, so s = 0. If there was a barycenter support point splitting
mass, it could be split into two (or more) centroids of support points in the measures of the
same total mass, and the cost of transport would be strictly lower. We formally state this
observation.

Proposition 2. Let P1, . . . , PN be discrete measures, and let P̄ be a barycenter for these
measures. Then any optimal transport from P̄ to P1, . . . , PN is non-mass splitting.

7

3 Main Results

In this paper, we study approximations of the discrete barycenter problem where the set S,
required to find an exact barycenter, is replaced by a much smaller set S0. This is motivated
by the unfavorable scaling of LP (barycenter) with respect to |S|, respectively |S0|; see
Section 2.2.

3.1 A strongly-polynomial 2-approximation

Recall that the set of possible support points of a discrete barycenter is

S :=

{
N∑
i=1

λixi : xi ∈ supp(Pi)

}
, (6)

which may consist of up to
N∏
i=1
|Pi| points. This is a much larger number than the size of the

union of supports of the measures

Sorg :=

N⋃
i=1

supp(Pi), (7)

which satisfies |Sorg| ≤
N∑
i=1
|Pi| with equality if and only if the supports are disjoint.

Note that the maximal size of Sorg only barely exceeds the bound given in Proposition 1.
First, we show that the approximation error from searching for an approximate barycenter
in Sorg, i.e., setting S0 = Sorg in LP (barycenter), can be bounded by a factor of two. This
bound is tight.

Theorem 1. Let P̄ be a barycenter and let P̄org be an approximate barycenter in Sorg. Then

φ(P̄org) ≤ 2 · φ(P̄)

and this bound can become tight, i.e., there is a set of measures P1, . . . , PN and a set of
weights λ1, . . . , λN for which φ(P̄org) = 2 · φ(P̄).

Proof. We denote the mass of a support point c of a barycenter P̄ by dc. By Proposition 2,
there is an optimal transport such that c transports its mass to exactly one support point
xi in each Pi for all i ≤ N . Due to optimality of P̄ , c is the weighted centroid c =

∑N
i=1 λixi

of these points. Recall the discussion after Corollary 1.

Each support point c contributes dc ·
∑N

i=1 λi‖c− xi‖2 to the corresponding value φ(P̄).

Let s ∈ Sorg =
⋃N
i=1 supp(Pi) be such that ‖s− c‖2 is minimal and note that

N∑
i=1

λi‖s− xi‖2 = sT s− 2cT s+
N∑
i=1

λix
T
i xi = (sT s− 2cT s+ cT c) +

+(cT c− 2cT c+

N∑
i=1

λix
T
i xi) =

N∑
i=1

λi(‖s− c‖2 + ‖c− xi‖2)

8

for any s. By choice of s and the fact that xi ∈ supp(Pi), we know ‖s− c‖2 ≤ ‖c− xi‖2 for
all i ≤ N , so we obtain

N∑
i=1

λi‖s− xi‖2 =

N∑
i=1

λi(‖s− c‖2 + ‖c− xi‖2) ≤ 2 ·
N∑
i=1

λi‖c− xi‖2.

Thus the transport from s, instead of from c itself, introduces an approximation error of 2,
i.e., each such s contributes at most 2 ·dc

∑N
i=1 λi‖c−xi‖2 to the value φ(P̄org). As this holds

for all weighted centroids c ∈ supp(P̄) and corresponding closest s ∈ Sorg, this shows the
existence of a measure P̄org ∈ P2

org(Rd) with approximation error 2 with respect to φ.

It remains to prove that the bound can be tight. We do so through a simple example. Let
P1, P2 be two measures with a single support point x11 ∈ supp(P1), x21 ∈ supp(P2), each of
mass 1. Then P̄ consists of the single support point c = λ1x11 + λ2x21 of mass 1 and thus

φ(P̄) = λ1 · ‖c− x11‖2 + λ2 · ‖c− x21‖2 = λ1 · ‖λ2(x21 − x11)‖2 + λ2 · ‖λ1(x11 − x21)‖2 =

= λ1λ2(λ2 + λ1)‖x21 − x11‖2 = λ1λ2‖x21 − x11‖2.

In contrast, the restriction of an approximate barycenter P̄org to possible support Sorg =
{x11, x21} would give φ(P̄org) = min{λ1, λ2}·‖x21−x11‖2. Note λ1 ·λ2 ≥ 1

2 min{λ1, λ2}, with
equality if and only if λ1 = λ2 = 1

2 . In this case, φ(P̄org) = 2 · φ(P̄). �

The difference between the support for an exact barycenter and for an approximation
in Sorg is highlighted in Figure 1: the first two rows show four handwritten digits scanned
into a 16× 16 grid. (See [27] for some information on this data set.) These are the measures
P1, . . . , P4. The varying shades of grey indicate different masses at the support points of the
grid (the darker, the larger the mass). The masses for each measure add up to 1. The bottom
row depicts an exact barycenter and a 2-approximation in the original 16 × 16 grid (for all
λi = 1

4). The support grid for the exact barycenter is four times finer, a (4·16−3)×(4·16−3) =
61× 61 grid.

We formally denote the choice of Sorg in LP (barycenter), as performed for Theorem 1, as
Algorithm 1. Note that the algorithm is stated to compute an optimal vertex of the feasible
region. (For a convenient wording, we will say that Algorithm 1 is used with a given different
support S0 as input when we require an optimal vertex, and not just any optimal solution,
of LP (barycenter).) The search for a vertex guarantees that the sparsity condition stated
in Corollary 1 is satisfied, so the returned measure is not only an approximate barycenter in
Sorg, but also sparse. However, it is possible that any corresponding optimal transport splits
mass (which would not happen for an exact barycenter). Here is an example of this type.

Example 1. Consider the two measures P1, P2 depicted at the top of Figure 2. The different
radii of the filled circles represent the different masses on the support points. Let λ1 = λ2 = 1

2

Measure P̄org ∈ P2
org(Rd) (second row, left) is an optimal barycenter approximation in

Sorg. It consists of only two support points, while P1 and P2 have three support points. Thus,
there exists a support point of P̄org that splits mass in any transport, including the unique
optimal one (second row, right): the top support point of P̄org transports its mass 1

2 in two
parts 1

4 to two support points of P1; the same happens in the bottom part with respect to
P2. Such a split of mass does not happen for an exact barycenter (third row). �

We would like to note that the 2-bound in Theorem 1 can only be tight in very special
cases. Let s ∈ Sorg be such that ‖s − c‖2 is minimal for a given weighted centroid c /∈ Sorg

9

(1.1) Measure P1 (1.2) Measure P2

(1.3) Measure P3 (1.4) Measure P4

(1.5) Barycenter P̄ (1.6) Approximate Barycenter P̄org

Fig. 1: Four measures P1, . . . , P4 supported on a 16 × 16 grid in the first two rows. The
bottom row shows a barycenter P̄ and an approximate barycenter P̄org. While the support
of P̄org lies in the original 16× 16 grid, the support for P̄ lies in a four times finer grid.

10

Algorithm 1 Sparse 2-approximate barycenter in the original support

Input

– Measures P1, . . . , PN ⊂ Rd, support Sorg =
⋃N
i=1 supp(Pi)

– λ1, . . . , λN > 0 with
∑N

i=1 λi = 1

Algorithm

Compute an approximate barycenter P̄org in Sorg as an optimal vertex (z, y) of

min
z,y

φ(P̄org) :=

N∑
i=1

λi

|Sorg|∑
j=1

|Pi|∑
k=1

‖xj − xik‖2yijk

s.t.

|Pi|∑
k=1

yijk = zj ∀i = 1, . . . , N, ∀j = 1, . . . , |Sorg|

|Sorg|∑
j=1

yijk = dik ∀i = 1, . . . , N, ∀k = 1, . . . , |Pi|

yijk ≥ 0 ∀i = 1, . . . , N, ∀j = 1, . . . , |Sorg|, ∀k = 1, . . . , |Pi|
zj ∈ R ∀j = 1, . . . , |Sorg|

and return z to represent P̄org and the corresponding optimal transport y.

transporting to xi1, . . . , xN1 with xi1 ∈ Pi . Then the approximation error 2 is not tight if
‖c− xi1‖2 6= ‖c− xj1‖2 for any i 6= j. This holds because then

N∑
i=1

λi‖s− xi1‖2 =
N∑
i=1

λi(‖c− xi1‖2 + ‖s− c‖2) < 2 ·
N∑
i=1

λi‖c− xi1‖2,

as there has to be an i ≤ N with ‖c − xi1‖2 > ‖s − c‖2. Further, it is easy to give ex-
amples where even an exact barycenter is actually contained in Sorg. For example, take
arbitrary measures P1, . . . , PN , compute their barycenter P̄ , and consider a new collection
P1, . . . , PN , PN+1 with PN+1 = P̄ . Then one has φ(P̄org) = φ(P̄).

Next, we prove that Algorithm 1 runs in strongly-polynomial time. Recall that LPs are
generally solvable in weakly-polynomial time, i.e., the number of arithmetic operations is
polynomial in the length of a bit representation of the input. This means polynomiality in
the number of variables and constraints, as well as in the logarithm of absolute values of
numbers in the input. In contrast, a strongly-polynomial running time restricts polynomiality
to only the number of variables and constraints.

Theorem 2. For all rational input, a 2-approximate barycenter can be computed in strongly-
polynomial time.

Proof. A proof of strong polynomiality for Algorithm 1 is based on exhibiting that LP
(barycenter) is of strongly-polynomial size, and that its parameters can be computed in
strongly-polynomial time. General LPs are known to be solvable in weakly-polynomial time.
However, it suffices to restrict the dependency of the running time only to the parameters

11

1
4

1
2

1
4

(2.1) Measure P1

1
4

1
2

1
4

(2.2) Measure P2

1
2

1
2

(2.3) Measure P̄org (2.4) Mass Split

1
4

1
2

1
4

(2.5) Barycenter P̄ (2.6) no Mass Split

Fig. 2: Two measures P1, P2 in the top row. An optimal approximate barycenter P̄org ∈
P2

org(R2) and the corresponding mass splitting transport in the second row. The exact
barycenter and a corresponding non-mass splitting transport in the third row.

that appear in the constraint matrix; the numbers in the objective function or the right-hand
side of the constraints do not matter [44].

First, note that the constraint matrix of LP (barycenter) for Sorg only consists of entries
in {−1, 0, 1}. For the claim of strongly-polynomial solvability, it only remains to prove that
the number of variables and constraints of the LP is strongly-polynomial in the size of the
input, and that the parameters that appear in the objective function and right-hand sides
can be computed from the original input in strongly-polynomial time.

Let I be an instance of the problem and let |I| be the number of bits to represent the
input. Any representation of the input I has to satisfy |I| ≥

∑N
i=1 |Pi|. As |S0| = |Sorg| ≤∑N

i=1 |Pi| ≤ |I|, LP (barycenter) indeed has a strongly-polynomial number of constraints
and variables.

The actual numbers that appear in the LP are of types λi, dik, or ‖xj − xik‖2. The λi
and dik appear directly in the input, and so do the vectors xj and xik. As we use rational
input, ‖xj − xik‖2 = (xj − xik)T (xj − xik) is a rational number derived by the sum over
products of pairs of coefficients in xj and xik. This implies that ‖xj−xik‖2 can be computed

12

in strongly-polynomial time (polynomial in log xj + log xik) and represented in a number
of bits that is strongly-polynomial in the number of bits of the original representation of
xj , xik. This proves the claim. �

3.2 Recovery of Non-Mass Split

Next, we design an algorithm that begins with a (sparse) 2-approximate barycenter computed
by Algorithm 1. The algorithm improves it to another measure supported on a subset of S
(instead of Sorg), for which there exists a non-mass splitting transport of lower cost, i.e.,
the approximation error can only become better. Algorithm 2 sums up the approach in
pseudocode. We here describe the algorithm in some detail; additional technical details are
given in the proof of Theorem 3 in Appendix A.

The algorithm greedily breaks up each support point (that splits mass) of the approxi-
mate barycenter into several non-mass splitting support points (Steps 1− 3). In the end, all
of the non-mass splitting support points are combined to a new measure (Step 4). The pre-
processing performed in Step 2 guarantees that the non-mass split property for each support
point in Step 3 transfers to a non-mass splitting transport for the new measure constructed
in Step 4. Figure 3 shows a run of the algorithm, which is discussed in more detail as Example
2 at the end of the section.

Step 1. First, the approximate barycenter P̄org and measures P1, . . . , PN are broken up
into disjoint parts; each part corresponds to a support point sl = xtl in the approximate
barycenter. By construction, each P li consists of those support points in Pi to which sl
transports mass. The mass of a support point in P li equals the mass it receives as transport
from sl. Then we assign new indices to the support points in P li and their masses for a
simpler notation, so we do not have to refer to the original z or y in the other steps.

Lexicographic Ordering. Step 2 and Step 3 are based on the construction of so-called
lexicographically maximal vectors. A vector a = (a1, . . . , an) is lexicographically larger than
a vector b = (b1, . . . , bn) if there is an index j ≤ n such that aj > bj , and ai ≥ bi for all
i < j. For example, the vector a = (2, 2, 0, 1) is lexicographically larger than b = (2, 1, 5, 10).
Lexicographic maximality with respect to a set states that there is no lexicographically larger
vector in the set. Note that the term gives rise to a total ordering.

The intuition for the construction of lexicographically maximal vectors is to resolve ties.
This is necessary in two different settings: in Step 2, as much mass as possible is greedily
shifted to support points of lower indices; in Step 3, a lexicographically decreasing sequence
of weighted centroids is created from each support point. Together, these two steps make sure
that all the weighted centroids that are merged to form P̄ ′ in Step 4 are distinct and only
transport to a single support point in each measure, implying the existence of a non-mass
splitting transport.

Step 2. Step 2 iteratively transforms (d1, . . . , dr) to be lexicographically larger and larger
while retaining an approximate barycenter supported in supp(P̄org) (that is, the cost of an
optimal transport does not increase). It does so via a greedy scheme, where mass is moved
to support points in supp(P̄org) with the lowest indices, until this is not possible anymore.
We call a (d1, . . . , dr) that is not altered by Step 2 (anymore) greedily lexicographically max-
imal. Note that such a vector need not be lexicographically maximal among all approximate
barycenters with the same support, but this is enough for our purposes.

The two loops for l and j establish an order for checking whether mass can be moved from
sl to sj while keeping optimality over supp(P̄org). The indices qi = arg maxq≤|P l

i |
(sj−sl)Txliq

selected in 2a) identify support points in the P li that lie the furthest in direction of sj − sl.

13

Algorithm 2 Recovery of non-mass split

Input

– Measures P1, . . . , PN ⊂ Rd

– (sparse) 2-approximate barycenter P̄org and an optimal transport (z, y) (from Alg. 1)
– λ1, . . . , λN > 0 with

∑N
i=1 λi = 1

Algorithm

1. (Break up P̄org and P1, . . . , PN into parts for each support point of P̄org)
Let supp(P̄org) = {s1, . . . , sr} = {xt1 , . . . , xtr} with corresponding masses d1 = zt1 , . . . , dr = ztr .
For each l ≤ r and i ≤ N , construct P l

i (a set of support points with masses) by the rule:

yitlk > 0 ⇒ add xik to supp(P l
i) with mass yitlk

Now assign indices for the P l
i to obtain a notation P l

i = {xli1, . . . , xli|P l
i |
} with corresponding masses

dli1, . . . , d
l
i|P l

i |
for all l ≤ r and i ≤ N .

2. (Make masses (d1, . . . , dr) greedily lexicographically maximal)
For l = r descending to l = 1

For j = 1 ascending to j = l − 1
a) For each i ≤ N , identify an index qi = arg maxq≤|P l

i |
(sj − sl)Txliq. Then compute

the weighted centroid c =
∑N

i=1 λix
l
iqi from the corresponding support points.

b) If ‖c− sj‖2 = ‖c− sl‖2 then
Identify the minimal mass dmin = min

i≤N
dliqi among the xliqi .

Set dl = dl − dmin and dliqi = dliqi − dmin for all i ≤ N .
For all i ≤ N , if dliqi = 0, remove xliqi from supp(P l

i) and reindex P l
i and dli1, . . . , d

l
i|P l

i |
.

For all i ≤ N , add xliqi to supp(P j
i) if it is not in it yet. In this case, |P j

i | increases

by one and we index the support point as xj
i|P j

i |
(with dj

i|P j
i |

= 0).

Let now pi be such that xjipi = xliqi for all i ≤ N .

Set dj = dj + dmin and djipi = djipi + dmin for all i ≤ N .
If dl > 0, go back to a).

3. (Spread out each support point to a set of weighted centroids)
For l = 1 ascending to l = r

Create an empty partial measure P̄ l.
a) For each i ≤ N , identify the index qi for a lexicographically maximal support point
xliqi in P l

i . Then compute the weighted centroid c =
∑N

i=1 λix
l
iqi .

b) Identify the minimal mass dmin = min
i≤N

dliqi among the xliqi .

Set dl = dl − dmin and dliqi = dliqi − dmin for all i ≤ N .
For all i ≤ N , if dliqi = 0, remove xliqi from supp(P l

i) and reindex P l
i and dli1, . . . , d

l
i|P l

i |
.

Add c to supp(P̄ l) with mass dmin.
If dl > 0, go back to a).

4. (Combine a new measure)
Combine the partial measures P̄ l to a measure P̄ ′ =

∑r
l=1 P̄

l. Return P̄ ′.

Note c satisfies ‖c− sl‖2 ≤ ‖c− sj‖2 (because of optimality of P̄org) and it is a maximizer of
‖c− sl‖2 −‖c− sj‖2 ≤ 0. If ‖c− sl‖2 = ‖c− sj‖2, which is checked in 2b), then mass can be
shifted from sl to sj to make (d1, . . . , dr) lexicographically larger, while keeping optimality.
The remainder of 2b) is a technical description of this shift of mass.

Step 3. Next, we perform a (greedy) routine to spread out the mass of each sl to several
support points. We do so by picking a set of lexicographically maximal support points xliqi
in each P li (i.e., we pick an xliqi with a largest first coordinate, and among those one with
a largest second coordinate, and so on). Then we move mass dmin to the weighted centroid

14

c =
∑N

i=1 λix
l
iqi

, where dmin is the minimal mass among the dlqi . We repeat this scheme

until the whole mass of sl has been spread out. The result is a partial measure P̄ l that has a
non-mass splitting transport by construction. Then we continue with the next support point.

Step 4. Finally, we combine the partial measures P̄ l from Step 3 to a new measure. It
is at least as good an approximation of an exact barycenter as P̄org: Step 1 and 2 do not
change the cost of transport. In Step 3, for any chosen set of support points xliqi we put the
corresponding mass on their weighted centroid, which is best-possible (at least as good as
transport from sl).

We sum up the favorable properties of the algorithm in Theorem 3. In addition to the
existence of a non-mass splitting transport, and keeping a 2-approximation error, we are
able to bound the size of the support by the square of the bound in Proposition 1. We do
not prove that the returned measure is an approximate barycenter (which implies optimality
over the given support by definition). The associated non-mass splitting transport is trivial
to construct, but we do not prove that this transport is optimal. Due to this, we have to be
careful in the wording of the following statements (Theorems 3 and 4). A detailed proof is
given in Appendix A.

Theorem 3. Algorithm 2 returns a measure P̄ ′ supported on a subset of S with φ(P̄ ′) ≤
2 · φ(P̄) and there is a non-mass splitting transport realizing this bound. Further |P̄ ′| ≤
(
∑N

i=1 |Pi| −N + 1)2.

Let us discuss a small example for Steps 2− 4 of the algorithm.

Example 2. We revisit the measures P1 and P2 used for Example 1 and again let λ1 = λ2 = 1
2 .

They receive their mass transported from two fixed support points s1, s2 of mass d1 = 1
4 ,

d2 = 3
4 (second row, left). Note that s1, s2 /∈ Sorg, which may happen in later iterations of

Algorithm 3 (Section 3.3), where Algorithm 2 is used as a subroutine. (For this example,
this does not matter.)

The two central points, which receive their mass from s2, have a centroid c that is equally
far from s1 and s2 (second row, right). These two points would be selected in Step 2a) of
Algorithm 2 and their mass shifted from s2 to s1 in Step 2b). Then d1 = 3

4 , d2 = 1
4 (third

row, left).

In Step 3, the mass of s1 and s2 is spread out to a set of centroids that transport to just
a single support point in each measure. The result for s1 is depicted in the third row (right).
By lexicographically maximal choice of the points in the measures, the central support point
of mass 1

2 is constructed first, followed by the left one of mass 1
4 . s2 is not changed, because

it already is the centroid of a set of single support points in each measure (fourth row, left).

These partial measures are combined to form measure P̄ ′ in Step 4 (fourth row, right)
and the algorithm stops. We actually found an exact barycenter, which is not the case in
general. �

We close our discussion of Algorithm 2 by showing that it runs in strongly-polynomial
time. The quite technical proof is given in Appendix A.

Theorem 4. For all rational input, a measure can be computed in strongly-polynomial time
that is a 2-approximation of a barycenter and for which there is a non-mass splitting transport
realizing this bound.

15

1
4

1
2

1
4

(3.1) Measure P1

1
4

1
2

1
4

(3.2) Measure P2

s1 s2

(3.3) Transport from s1, s2

c
s1 s2

(3.4) A centroid c (Step 2a))

s1 s2

(3.5) Mass shift to s1 (Step 2b) (3.6) Spread of s1 (Step 3)

(3.7) No spread of s2 (Step 3)

1
4

1
2

1
4

(3.8) P̄ ′ (Step 4)

Fig. 3: Two measures P1, P2 in the top row and a run of Steps 2− 4 of Algorithm 2 for given
support points s1, s2 of mass d1 = 1

4 , d2 = 3
4 . Note s1, s2 /∈ Sorg, which may happen in later

iterations of Algorithm 3, where Algorithm 2 is used as a subroutine.

3.3 An Iterative Improvement

Finally, we combine Algorithms 1 and 2 to an iterative scheme, denoted as Algorithm 3.
The algorithm begins by computing an approximate barycenter in Sorg using Algorithm
1. Then Algorithm 2 is used to spread out its support points to find a new measure P̄ ′

of better approximation error and that allows for a non-mass splitting transport. We set
Sorg = supp(P̄ ′) and repeat Algorithm 1 to find an optimal approximate barycenter over
this new support (in other words, an optimal vertex of LP (barycenter) over the new support
is found). Then its support points are spread out again using Algorithm 2. This scheme is
repeated until there is no improvement anymore.

After a finite number of iterations, the algorithm terminates with a sparse 2-approximate
barycenter supported on a subset of S, and with a non-mass splitting optimal transport. This
is a provable approximation that possesses both favorable properties of an exact barycenter,
sparsity and non-mass split, at the same time.

16

Algorithm 3 Iterative improvement

Input

– Measures P1, . . . , PN ⊂ Rd
– λ1, . . . , λN > 0 with

∑N
i=1 λi = 1

Algorithm

1. Compute a (sparse) 2-approximate barycenter P̄org in Sorg (and an optimal transport)
using Algorithm 1.

2. Use P̄org (and its transport) as input for Algorithm 2 to find a measure P̄ ′.
If P̄ ′ 6= P̄org, set Sorg = supp(P̄ ′) and go back to 1. Else return P̄ ′.

Theorem 5. Algorithm 3 returns an approximate barycenter P̄ ′ supported on a subset of
S for which φ(P̄ ′) ≤ 2 · φ(P̄), where P̄ is a barycenter, and there is a non-mass splitting
optimal transport realizing this bound. Further |P̄ ′| ≤

∑N
i=1 |Pi| −N + 1.

We prove Theorem 5 in Appendix B. Let us take a closer look at the approximation error
of Algorithm 3. We distinguish three different measures: P̄ is an exact barycenter, P̄org is an
approximate barycenter in P2

org(Rd) , and P̄ ′ is the solution of Algorithm 3. By optimality
of P̄ and P̄org with respect to φ in their respective support, we have

φ(P̄) ≤ φ(P̄ ′) ≤ φ(P̄org).

We are particularly interested in the gap between φ(P̄) and φ(P̄ ′). Theorem 1 states φ(P̄org) ≤
2 ·φ(P̄). Thus the whole sequence of inequalities is bounded by a total approximation factor
of 2. This implies that if αφ(P̄ ′) = φ(P̄org) for some α ≥ 1, then φ(P̄ ′) ≤ 2

αφ(P̄). Informally,
Algorithm 3 already begins with a provable 2-approximation and any improvement towards
P̄ ′ allows for the statement of a better approximation guarantee.

In practice, one obtains a strictly better approximation factor than 2 for essentially all
real-world problems using Algorithm 3. But there exist worst-case examples, such as the
following, that show the bound is tight.

Example 3. Consider the example depicted in Figure 4. Four measures P1, ..., P4 are shown
in the top row, P2 and P3 are depicted in the center. Note P2 = P3. Each of the measures
consists of two support points of mass 1

2 . Let ε > 1. P1 is supported on coordinates (−ε, 0)
and (ε, 1), P2 and P3 are supported on (0, 0) and (0, 1), and P4 is supported on (−ε, 1) and
(ε, 0), where ε > 1. For increasing ε, the horizontal distance of the support points of P1 and
P4 to those of P2, P3 increases proportionally (second row).

Let λi = 1
4 for i = 1, . . . , 4. Independently of ε, an approximate barycenter P̄org in Sorg

is identical to P2 = P3, (third row, left). A corresponding optimal transport sends the mass
to the support points in the same ‘layer’ (third row, middle). Note that the support points
are already the (weighted) centroids of the points they transport to, and that the transport
is non-mass splitting. Because of this, Algorithm 3 stops without any change to P̄org at the
end of the first iteration.

The cost of transport for P̄org is φ(P̄org) = 1
4 · 2ε

2 = 1
2ε

2. (Recall λi = 1
4 for all i.) An

exact barycenter P̄ (third row, right) and a corresponding optimal transport (fourth row)
are strictly better. The coordinates for the two support points are (−1

2ε,
3
4) and (1

2ε,
1
4). The

17

cost of transport is φ(P̄) = 1
4 · (

3
4 + ε2) = 3

16 + 1
4ε

2. For ε→∞,

φ(P̄org)

φ(P̄)
=

1
2ε

2

3
16 + 1

4ε
2
→ 2.

Thus the error bound goes to 2. �

In Section 4 we conclude the paper with a discussion of the theoretical scaling of our
algorithms and some observations on practical computations. In our implementation, we use
some tweaks for a speed-up of Algorithm 3. First, we perform Step 3 of Algorithm 2 as the
exact computation of a barycenter P̄ l when the number Nl of support points to which a
given sl transports is low. This leads to a better approximation bound for P̄ ′ at the end of
each iteration of Algorithm 3 and a lower number of iterations overall. Further, this leads to
a smaller support for the LPs in the second iteration and beyond.

Recall Nl is bounded below by N , as the support point transports mass to at least one
support point in each measure. We tried different values for Nl for the cutoff to an exact
barycenter computation P̄ l. There is a tradeoff between each run of Algorithm 2 taking
longer and a reduction in the total number of iterations. We observed good results for Nl

between 2 ·N and 4 ·N when N � |Sorg| (common for grid-structured data) and Nl between
N + logN and N + 4 logN when N � |Sorg| (common for data in general position). For
these values, each run of Algorithm 2, respectively Step 2 of Algorithm 3, takes slightly
longer, but the running time remains negligible compared to Step 1 in each iteration. For
the computations in Section 4, we chose cutoffs of 2 · N and N + logN . We observed a
noticable positive impact, dropping the total running time of Algorithm 3 by about 20% on
average.

Second, we explicitly construct the associated transport devised in Algorithm 2 and use
it for a warm-start of the subsequent Step 1 of Algorithm 3. The LPs of Step 1 are solved
through a primal simplex method. By construction, the transport from the previous iteration
is not only a feasible vertex of the new primal LP, but already close to the new optimum.
(It is a set of weighted centroids transporting to their respective support points, after all.)
Thus, the subsequent primal LP can be warm-started and finding the exact optimum over
the new support is much faster than solving the LP from scratch. This is a crucial part of the
implementation, as the LPs in later iterations can have millions of variables and otherwise
would be slow to solve. With this tweak, the setup of the LP in iteration 2 remains as a
bottleneck. The LPs in later iterations can be set up through an update of the previous one.
Because of the warm-start, the actual solution time of the LPs is negligible in comparison
to the setup time.

4 Sample Computations and Scaling

We implemented Algorithms 1, 2, and 3 in the Julia language using Clp as linear pro-
gramming solver. Julia is a modern programming language for high-performance numerical
computing that provides a competitive tradeoff between efficient, but cumbersome low-level
languages (C, C++) and easy-to-use, but typically slow high-level languages (Python, Mat-
lab) [6, 29]. A primal simplex method is called in Clp for the availability to warm-start
iterations. The algorithms were run on a standard laptop (Win 10, 32GB memory, i7-6820).

Our sample computations are on two representative types of data: the MNIST database
of handwritten digits (widely-used for benchmarking) [27] for grid-structured data, as well
as the firehouse example from [2] (and randomly generated larger instances) for data in

18

1
2

1
2

(4.1) Measure P1

1
2

1
2

(4.2) Measures P2, P3

1
2

1
2

(4.3) Measure P4

(4.4) all Measures, ε→∞

1
2

1
2

(4.5) Measure P̄org (4.6) Transport for P̄org

1
2

1
2

(4.7) Barycenter P̄

(4.8) Transport for P̄ , ε→∞

Fig. 4: Four measures P1, ..., P4 (depicted for ε = 1) in the first row. Note P2 = P3. For
increasing ε, the horizontal distance of the support of P1 and P4 to P2 = P3 increases
(second row). An approximate barycenter P̄org in Sorg, corresponding transport, and an
exact barycenter P̄ (all depicted for ε = 1) in the third row. The transport for P̄ in the

fourth row. Algorithm 3 returns P̄org. For ε→∞,
φ(P̄org)

φ(P̄)
→ 2, i.e., the error goes to 2.

19

general position, i.e., where S would be exponentially-sized. Together, these two settings
cover most applications in practice: grid-structured data is common in machine learning and
there is a wealth of algorithms for this setting. Data in general position typically arises when
geographical locations are involved, like in many applications of operations research. The
algorithms in this paper work on any data, and for any choice of λ. In contrast, working
with data in general position, differing masses on the support points, or a non-uniform weight
vector makes most of the algorithms in the literature impractical. Our goal is to identify for
which data the practical performance of our algorithms is the most favorable. As we will see,
it is data without an underlying grid-structure, with a small support and a large number
of measures, that forms a best-case scenario. (We also treat the less favorable, but common
grid setting in detail, for the sake of completeness.) We start with some sample runs for both
types of data and then turn to the theoretical and practical scaling of computations.

4.1 Sample runs of Algorithm 3 and Observations

We begin by performing a sample run of Algorithm 3 in a grid setting, using the four digits
representing number six in a 16 × 16 grid depicted in Figure 5. They have a barycenter
depicted at the bottom of the figure (for all λi = 1

4).
Figure 6 shows the stages of a run of Algorithm 3 for this input. Each row shows one

of the iterations. The approximate barycenter in the original support is already a 1.142–
approximation of the exact barycenter (top left), i.e., φ(P̄org) ≤ 1.142 · φ(P̄), which we
denote as an additive 14.2%-error in the figure. The first split-up using Algorithm 2 (Steps 2
to 4) gives an improvement to a 4.3%-error (top right). This is further improved to a 2.0%-
error (in Step 1 of Iteration 2) by computing an optimum over the support of the previous
approximation (bottom left). Now the algorithm terminates, because all of the support points
of this approximate barycenter are already the weighted centroids of the support points to
which they transport mass, and there is no mass split. Algorithm 3 completes in about 10
seconds on average for a set of four measures (9.6 seconds for the above example). In contrast,
the computation of an exact barycenter takes roughly 120 seconds.

Next, we perform a sample run for data in general position. Here we begin with the input
for the computations in [2]. There are 8 measures with the same 9 support points of varying
masses. Figure 7 shows two of the measures. Circles of larger radius indicate higher mass.

Figure 8 shows the first P̄org and the result of the first run of Algorithm 2. The approx-
imate barycenter in the original support is a 1.102–approximation of the exact barycenter,
i.e., there is a 10.2%-error. This is improved to a 1.9%-error in the split-up using Algorithm
2. The second iteration of Algorithm 3 does not improve the solution anymore and the
algorithm terminates.

This run completes in less than a second. In contrast, the computation of an exact
barycenter for such a small problem size already is surprisingly hard: despite all measures
having the same support, the set S is of exponential size. The LP for an exact computation
has 939510 variables and 103032 constraints and takes roughly 500 seconds to solve [2].
Observations. Both of these sample runs are representative in a couple of ways. The ap-
proximation error for P̄org and the first improvement to P̄ ′ using Algorithm 2 are already
much better than the guaranteed bound of 2. In the computations in Section 4.2, we have
not encountered a run with an approximation error worse than 20% for the initial P̄org or
8.7% for the initial improvement to P̄ ′. The improvement between P̄org and P̄ ′ in the first
iteration is significant. However, the additional iterations of Algorithm 3 only perform minor
improvements on the approximation factor. In fact, the example in Figure 6 shows one of
the largest improvements after the first iteration observed in all our computations.

20

(5.1) Measure P1 (5.2) Measure P2

(5.3) Measure P3 (5.4) Measure P4

(5.5) Barycenter P̄

Fig. 5: Four measures P1, . . . , P4, scans of handwritten digits six, supported on a 16 × 16
grid. The barycenter P̄ at the bottom.

21

(6.1) Iteration 1, Step 1, Error 14.2% (6.2) Iteration 1, Step 2, Error 4.3%

(6.3) Iteration 2, Step 1, Error 2.0% (6.4) Iteration 2, Step 2, termination

Fig. 6: A sample run of Algorithm 3 for the measures in Figure 5. It already terminates after
2 iterations.

Only two parts contribute significantly to the total running time of Algorithm 3: the first
run of Algorithm 1 and the setup of the LP for Step 1 in the second iteration. Together,
these accounted for more than 80% of the total running time. Only the first LP is run in
full; the later LPs can be warm-started. Further, the setup of LPs in iterations 3 or later is a
simple update from the previous iteration. The split-up of mass in Algorithm 2 is negligible
in running time.

An initial run of Algorithm 1 is unavoidable in all situations, but is efficient through
the use of support set Sorg. The setup of the second LP can be computationally expensive,
because Sorg is replaced by the larger supp(P̄ ′). However, we observed that in practice |P̄ ′|
does not only satisfy the guaranteed bound |P̄ ′| ≤ (

∑N
i=1 |Pi| − N + 1)2 (Theorem 3), but

remains close to
∑N

i=1 |Pi| −N + 1, the bound for |Porg| (Theorem 5).

The main benefit of a full run of Algorithm 3 is the recovery of the combination of a
sparse support and a non-mass splitting transport. If these are not crucial properties for an
application, we recommend performing just a single iteration of Algorithm 3, i.e., a single
run of Algorithms 1 and 2, for faster computations.

22

(7.1) Measure P1 (7.2) Measure P2 (7.3) Barycenter P̄

Fig. 7: Two (of eight) measures from a data set where the support points do not lie on a
grid. All measures have the same support points with varying masses. The barycenter P̄ to
the right.

(8.1) P̄org, Error 10.2% (8.2) first P̄ ′, Error 1.9%

Fig. 8: Measures P̄org and P̄ ′ from the first iteration of Algorithm 3 for the data depicted in
Figure 7. The algorithm already terminates after the first iteration.

23

4.2 Scaling of Algorithm 1 and runs for Algorithm 3

Finally, we study the scaling of Algorithm 1 and the practical running time of our algorithms.
Algorithm 1 is the main pillar of the two viable approaches in this paper for practical
computations: either a single run of Algorithm 1 and 2 or a full run of Algorithm 3, if the
problem size allows. It is the only LP without a warm-start. Algorithm 1 is based on an
LP formulation using Sorg as the set of possible support points. Before we turn to more
computations, let us take a closer look at the number of variables and constraints in this LP
to set up proper expectations. Using |Psum| =

∑N
i=1 |Pi|, this LP has

|Sorg|+ |Sorg| · |Psum| variables and N · |Sorg|+ |Psum| constraints.

Two types of scaling are of interest: scaling the number N of measures and scaling |Sorg|. Note
N · |Sorg| ≥ |Psum|, so the number of constraints scales linearly in N and |Sorg|. Further, note
that the number of constraints is always lower than the number of variables (|Psum| ≥ N),
and often dramatically so (|Psum| � N).

The dominating factor in the number of variables is |Sorg| · |Psum|. If the support sets of
the Pi are disjoint, then |Sorg| = |Psum| and |Sorg| · |Psum| = |Sorg|2 = |Psum|2; the number
of variables scales quadratically in |Sorg|. For the sake of a simple analysis, we assume all
measures have the same number of support points |Pmax|. Then |Psum| = N · |Pmax| and the
scaling of the number of variables is quadratic in N .

Scaling for grid-structured data First, we consider scaling for (two-dimensional) grid-
structured data. Let K denote the number of grid points in each direction. The grid has K2

points, which is an upper bound on |Pmax| and on |Sorg|. Thus the number of variables is
bounded by K2+K2 ·(N ·K2) and the number of constraints is bounded by N ·K2+N ·K2 =
2(N ·K2). Note that the bound on the number of variables is roughly K4 ·N .

While the actual sizes of |Pmax| and |Sorg| are usually significantly smaller than K2, they
typically remain a linear fraction of K2 (for MNIST digits between 1

5 and 1
3), and so these

bounds immediately imply two types of consequences. First, the scaling with the number N
of measures is linear. Second, doubling the density K of the underlying grids will multiply
the number of variables by 16.

Let us turn to some computations. In Table 1, we report on average errors and completion
times for a large set of runs of Algorithm 3. For each of these runs, we used random samples
of 16 × 16 digits as the measures. Each row is based on the data from a total of 100 runs,
10 for each digit 0, 1, . . . , 9. The table lists the initial error and time for the computation of
an approximate barycenter P̄org in Sorg (Algorithm 1), the error for the first P̄ ′ (Algorithm
2), the error, time, and number of iterations for a full run of Algorithm 3, and the time for
an exact barycenter computation.

We have been able to run Algorithm 3 for up to 40 measures in less than ten minutes,
and Algorithm 1 for up to 100 measures in less than twenty minutes. The big difference is
the setup of the LP for the second iteration. In contrast, we have not been able to perform
the computation of an exact barycenter for more than 8 measures (within a fixed time limit
of four hours), even using some refinements to an exact barycenter computation [10]. This is
the reason for the ”n/a” entries in the table, where an approximation error is not available
because of the lack of an exact solution. For increasing number of measures, the difference
between the running times of Algorithm 3 and an exact computation becomes dramatic,
even though grid-structured data, in fact, is a scenario where the exact LP does not scale
exponentially (recall an exact barycenter is contained in an N -times finer grid).

24

first P̄org first P̄ ′ full run of Alg. 3 exact

no. of measures error time (s) error error time (s) iterations time (s)

4 14.8% 4.2 3.8% 3.1% 9.9 2.2 120

5 15.2% 5.7 4.4% 4.1% 16.4 2.8 204

6 15.5% 8.5 4.5% 3.9% 22.3 2.7 540

7 15.1% 12.1 4.6% 4.2% 29.8 3.1 1602

8 16.2% 16.3 5.2% 4.8% 36.7 3.1 4330

9 n/a 23.0 n/a n/a 45.2 3.4 –

12 n/a 39.1 n/a n/a 74.8 3.3 –

16 n/a 58.4 n/a n/a 99.3 3.7 –

20 n/a 90.3 n/a n/a 169.2 4.5 –

40 n/a 298.7 n/a n/a 557.3 5.0 –

70 n/a 681.5 n/a – – – –

100 n/a 1198.2 n/a – – – –

Table 1: Average numbers (error, time) for an initial approximation P̄org, first P̄ ′, full runs
of Algorithm 3, and an exact computation in a grid setting. The numbers in each row were
derived from 100 random samples of 16× 16 digits from the MNIST data set.

The first row shows numbers on random samples of four measures, as in the example
depicted in Figures 5 and 6. We observed a termination of Algorithm 3 after an average of
2.2 iterations. This low number of iterations is not surprising because of the low initial error
and our practical implementation of Step 3 of Algorithm 2; see Section 3.3. The same effects
extend to larger computations, where the approximation error of the initial P̄org is already
low, most of the further improvement already happens towards the first P̄ ′, and less than
5 iterations were necessary on average. The times include setup of the problems. We did
not observe a clear pattern with respect to the errors for the first P̄org and P̄ ′ or the final
approximation, but the average number of iterations of Algorithm 3 increases slightly with
the number of measures.

Computations in denser grids quickly become impossible for the algorithms in this paper,
due to the quadratic scaling of the underlying LP with respect to |Sorg|. Recall that doubling
the density K of a grid multiplies the number of variables by 16. Figure 9 shows the results
of Algorithm 1 for four measures in a 32×32 grid and a 64×64 grid. The computations took
about 5 minutes, respectively 92 minutes. The 64× 64 example exceeds 10 million variables
and is only solvable because of the extremely low number of constraints.

For grid-structured data, there are many algorithms in the literature that are much
faster options to tackle larger problem instances [9, 18, 19, 38]. In Table 2, we compare
approximation errors and computational speed for the first P̄org and P̄ ′ to the widely-used,
regularization-based algorithm from [19]. The algorithm uses Sinkhorn distances to simplify
the objective function and leads to dense approximations Q̄ over Sorg. Recall that P̄org is
already an exact, sparse solution over Sorg, and is further refined to P̄ ′. Thus, the approx-
imation error for Q̄ always has to be worse than for P̄org, and the gap becomes signficant
when compared to P̄ ′.

For regularization-based algorithms, there are several parameters that allow for a tradeoff
of computational speed and quality of result. We used the recommended settings for MNIST
data from [19]. Table 2 shows exact approximation errors for the small instances for which

25

first P̄org first P̄ ′ regularization-based Q̄

no. of measures error time (s) error error time (s) error gap φ(Q̄)/φ(P̄)

4 14.8% 4.2 3.8% 22.4% 6.8 1.179

6 15.5% 8.5 4.5% 21.9% 10.2 1.167

8 16.2% 16.3 5.2% 23.6% 13.7 1.175

12 n/a 39.1 n/a n/a 20.4 1.182

16 n/a 58.4 n/a n/a 27.7 1.188

20 n/a 90.3 n/a n/a 33.0 1.179

40 n/a 298.7 n/a n/a 67.9 1.191

70 n/a 681.5 n/a n/a 115.5 1.185

100 n/a 1198.2 n/a n/a 164.9 1.182

Table 2: A comparison (error, time) of an initial approximation P̄org and first P̄ ′ to the result
Q̄ of a widely-used regularization-based approximation algorithm ([19]). The error gap shows
the ratio φ(Q̄)/φ(P̄) of objective function values for Q̄ and P̄ ′.

an exact barycenter computation was possible (up to 8 measures), as well as the ratio φ(Q̄)/
φ(P̄) between cost of transport for Q̄ and P̄ for all instances. Our computations revealed a
ratio of about 1.18, respectively a gap of 18%, throughout. In view of computational speed,
however, the regularization-based algorithm scales dramatically better with the number of
measures than our approach, as expected. We observe a near-linear increase of running time,
which sharply contrasts with a linear scaling of the size of the LP for Algorithm 1.

Of course, one has to be careful in this comparison. In addition to the better approx-
imation error, the additional computational cost of the algorithms in this paper leads to
several favorable properties that are hard to measure quantitatively: the guarantee of a 2-
approximation, sparsity, non-mass split, numerical stability, and support in S and not only
in Sorg. For grid-structured data, the tradeoff to obtain these properties may often not be
worth the additional time in practice. However, our algorithms run without specification of
a fixed support set for the solution, and thus have the ability to work for any data. Next,
we turn to a best-case type of data for our algorithms, where we are able to scale our com-
putations to thousands of measures. Notably, it is data in general position, for which many
algorithms in the literature do not work at all.

Scaling for data in general position Applications in operations research often are based
on a small set of geographical locations that do not exhibit an obvious structure. In this
section, we consider data sets as depicted in Figure 7 - a set of N measures that all have the
same, small support of size |Pmax|. This configuration leads to a best-case scenario in that
|Sorg| = |Pmax|, i.e., the union of original supports is the same as any of the supports. This
has an extremely positive effect on the size of the LP for Algorithm 1, respectively the first
iteration of Algorithm 3: the number of variables is |Pmax|+N · |Pmax|2 and the number of
constraints is 2(N · |Pmax|). In comparison, if the support points of the Pi did not overlap,
one would have N · |Pmax|+ (N · |Pmax|)2 variables and N · |Pmax|+N2 · |Pmax|2 constraints.
The advantage is a factor of about N in the number of both variables and constraints. Note,
however, that the same does not transfer to the LPs in later iterations of Algorithm 3, where
supp(P̄ ′) is used as the new support, and is only guaranteed to satisfy the bound in Theorem
3.

26

(9.1) P̄org, 32× 32 digits (9.2) P̄org, 64× 64 digits

Fig. 9: Approximate barycenters P̄org for a run of Algorithm 1 for 4 digits in 32 × 32 and
64× 64 grids. These computations already took several minutes, respectively more than an
hour. Computations in denser grids quickly become impossible due to the quadratic scaling
of the underlying LP with respect to |Sorg|.

In Table 3, we report on average errors and completion times for runs of Algorithm 1 and
Algorithm 3. The numbers in each row were derived from 100 runs for the given number of
measures, all consisting of the same |Pmax| = 9 support points in general position, randomly
generated for each run. (We discuss the effect of scaling to larger |Pmax| below; here we
exhibit a best-case scenario.) The measures were constructed through a random assignment
of varying masses to the support. We also chose the weights λi randomly. Figure 10 (top)
shows some approximate barycenters computed in this setting.

The combination of data in general position, which makes a discretization of the underly-
ing space unavailable, and a non-uniform weight vector makes for an impractical setting for
algorithms in the literature; see Section 1.1. This is why our comparisons are restricted to an
exact, LP-based solution. However, exact computations in this setting are extremely hard due
to the (always) exponential scaling of S and the corresponding LPs. (Here, |S| = |Pmax|N .)
The largest number of measures for which we successfully found an exact solution is 12 (in
a bit less than 3.5 hours). Because of this, approximation errors are not available for more
than 12 measures. At the same time, the LP for Algorithm 1 for such an instance still is
of trivial size: it has 12 · 92 variables and 2(12 · 9) constraints. The speed-up over an exact
computation for a set of 8 measures (the example in Section 4.2) is a factor of more than 600.
This factor escalates quickly - for 12 measures our algorithm is already faster by a factor of
more than 4000.

We have been able to run Algorithm 1 for up to 20000 measures in about 15 minutes.
Instances up to 1000 measures solve in less than 20 seconds. One of the main reasons for
these low running times is the extremely low number of constraints. The same scalability of
Algorithm 3 cannot be expected, as the size of the support for LPs in later iterations is equal
to |P̄ ′|, which is between linear and quadratic in N · |Pmax| (Corollary 5, Theorem 3). We
were able to run it for up to 500 measures in a bit more than 12 minutes. Scaling further,
one quickly reaches a point where the LP for the second iteration cannot be constructed
anymore. (For 1000 measures, it would have close to 100 million variables.)

27

(10.1) 9 support points, 48 measures (10.2) 9 support points, 96 measures

(10.3) 13 support points, 36 measures (10.4) 17 support points, 36 measures

Fig. 10: Approximate barycenters P̄ ′ at the end of the first iteration of Algorithm 3 for
different support sets and number of measures. Full runs of Algorithm 3 completed in less
than 30 seconds.

28

first P̄org first P̄ ′ full run of Alg. 3 exact

no. of measures error time (s) error error time (s) iterations time (s)

8 10.1% 0.7 2.0% 1.6% 0.9 1.4 505

12 9.8% 1.1 2.4% 1.9% 3.0 1.8 12400

50 n/a 2.3 n/a n/a 8.0 2.2 –

100 n/a 3.5 n/a n/a 26.6 2.3 –

200 n/a 5.3 n/a n/a 112.8 2.9 –

500 n/a 7.9 n/a n/a 730.4 3.5 –

1000 n/a 18.5 n/a – – – –

5000 n/a 92.0 n/a – – – –

10000 n/a 229.2 n/a – – – –

20000 n/a 963.4 n/a – – – –

Table 3: Average numbers (error, time) for an initial approximation P̄org, first P̄ ′, and full
runs of Algorithm 3, and an exact computation for data in general position. The numbers in
each row were derived from 100 runs on a set of measures with 9 support points of randomly
chosen masses.

The times reported in Table 3 include the setup of the problems. Again, we observe that
P̄org is significantly improved in the first step towards P̄ ′, and that further iterations do not
change it noticably anymore. The average number of iterations increases slowly with the
number of measures. The increase is slower than in the grid-structured setting. Informally,
less repetition in the weighted centroids for different combinations of support points means
that later iterations of Algorithm 3 are less likely to further improve the solution.

Unlike for grid-structured data, a scaling of |Pmax| for Algorithm 1 is easier in this setting.
Figure 10 (bottom) show two examples with a larger support. Recall that the number of
variables for Algorithm 1 is quadratic in |Pmax|. Doubling the number of support points
increases the number of variables in the problem by factor 4, the same effect as increasing
the number of measures by factor 4. The number of constraints is doubled (and remains
extremely low in comparison to the number of variables). An instance with 2500 measures
of 18 support points exhibits a similar running time to an instance with 10000 measures of
9 support points (line 9 in Table 3).

Summing up, the combination of few, overlapping support points in general position
and a large number of measures is a best-case scenario for the combination of a single
run of Algorithms 1 and 2. Applications in operations research, such as facility location
problems, often fall into this category. In this setting, exact computations are impossible
for any reasonable problem size. Algorithms in the literature are not designed to work (or
work well) for such data. In this situation, we recommend use of the presented methods
for computational speed. In all other situations, the favorable properties of the output - like
sparsity, non-mass split, and a guaranteed error bound - have to be crucial to the application
to be worth the significant additional computational cost over popular heuristics.

Acknowledgments

The author would like to thank Ethan Anderes for the support with implementations in the Julia language,

and Jacob Miller for the helpful discussions. The author gratefully acknowledges support through the Col-

laboration Grant for Mathematicians Polyhedral Theory in Data Analytics of the Simons Foundation.

29

Bibliography

[1] Agueh M, Carlier G (2011) Barycenters in the Wasserstein space. SIAM Journal on
Mathematical Analysis 43 (2):904–924

[2] Anderes E, Borgwardt S, Miller J (2016) Discrete Wasserstein Barycenters: Optimal
Transport for Discrete Data. Mathematical Methods of Operations Research 84 (2):389–
409

[3] Auricchio G, Bassetti F, Gualandi S, Veneroni S (2019) Computing Wasserstein
Barycenters via Linear Programming. In: Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research, pp 355–363

[4] Beiglböck M, Henry-Labordere P, Penkner F (2013) Model-independent bounds for
option prices – a mass transport approach. Finance and Stochastics 17 (3):477–501

[5] Benamou JD, Carlier G, Cuturi M, Nenna L, Peyré G (2015) Iterative Bregman Projec-
tions for Regularized Transportation Problems. SIAM Journal on Scientific Computing
37(2):A1111–A1138

[6] Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to nu-
merical computing. SIAM Review 59(11):65–98

[7] Bigot J, Klein T (2017) Characterization of barycenters in the Wasserstein space by
averaging optimal transport maps. ESAIM: Probability and Statistics 22:35–57

[8] Boissard E, Gouic TL, Loubes JM (2015) Distribution’s template estimate with Wasser-
stein metrics. Bernoulli 21 (2):740–759

[9] Bonneel N, Rabin J, Peyré G, Pfister H (2015) Sliced and Radon Wasserstein Barycen-
ters of Measures. Journal of Mathematical Imaging and Vision 51(1):22–45

[10] Borgwardt S, Patterson S (2020) Improved Linear Programs for Discrete Barycenters.
INFORMS Journal on Optimization 2(1):14–33

[11] Buttazzo G, Pascale LD, Gori-Giorgi P (2012) Optimal-transport formulation of elec-
tronic density-functional theory. Physical Review A 85:062502

[12] Carlier G, Ekeland I (2010) Matching for teams. Economic Theory 42(2):397–418

[13] Carlier G, Oberman A, Oudet E (2015) Numerical methods for matching for teams
and Wasserstein barycenters. ESAIM: Mathematical Modelling and Numerical Analysis
49(6):1621–1642

[14] Carlier G, Duval V, Peyré G, Schmitzer B (2017) Convergence of Entropic Schemes
for Optimal Transport and Gradient Flows. SIAM Journal on Mathematical Analysis
49(2):1385–1418

[15] Chiaporri PA, McCann R, Nesheim L (2010) Hedonic price equilibiria, stable match-
ing and optimal transport; equivalence, topology and uniqueness. Economic Theory 42
(2):317–354

[16] Claici S, Chien E, Solomon J (2018) Stochastic Wasserstein Barycenters. Proceedings
of the 35th International Conference on Machine Learning (PMLR) 80:999–1008

[17] Cotar C, Friesecke G, Klüppelberg C (2013) Density functional theory and optimal
transportation with Coulomb cost. Communications on Pure and Applied Mathematics
66(4):548–599

[18] Cuturi M (2013) Sinkhorn Distances: Lightspeed Computation of Optimal Transport.
In: Advances in Neural Information Processing Systems, vol 26, pp 2292–2300

[19] Cuturi M, Doucet A (2014) Fast Computation of Wasserstein Barycenters. In: Proceed-
ings of the 31st International Conference on Machine Learning (ICML-14), pp 685–693

[20] del Barrio E, Cuesta-Albertos J, Matrán C, Mayo-́Iscar A (2019) Robust clustering tools
based on optimal transportation. Statistics and Computing 29(1):139–160

[21] Essid M, Solomon J (2017) Quadratically Regularized Optimal Transport on Graphs.
SIAM Journal on Scientific Computing 40:A1961–A1986

[22] Frogner C, Mirzazadeh F, Solomon J (2019) Learning Embeddings into Entropic Wasser-
stein Spaces. eprint arXiv:190503329

[23] Gadat S, Gavra I, Risser L (2018) How to Calculate the Barycenter of a Weighted
Graph. Mathematics of Operations Research 43(4):1085–1118

[24] Galichon A, Henry-Labordere P, Touzi N (2014) A stochastic control approach to non-
arbitrage bounds given marginals, with an application to lookback options. Annals of
Applied Probability 24(1):312–336

[25] Jain A, Zhong Y, Dubuisson-Jolly MP (1998) Deformable template models: A review.
Signal Processing 71(2):109–129

[26] Kroshnin A, Dvinskikh D, Dvurechensky P, Gasnikov A, Tupitsa N, Uribe C (2019)
On the Complexity of Approximating Wasserstein Barycenter. In: Proceedings of the
36th International Conference on Machine Learning, Proceedings of Machine Learning
Research, vol 97, pp 3530–3540

[27] LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11):2278–2324

[28] Lloyd SP (1982) Least squares quantization in pcm. IEEE Transactions on Information
Theory 28(2):129–137

[29] Lubin M, Dunning I (2015) Computing in Operations Research Using Julia. INFORMS
Journal on Computing 27(2):238–248

[30] Luise G, Rudi A, Pontil M, Ciliberto C (2018) Differential Properties of Sinkhorn Ap-
proximation for Learning with Wasserstein Distance. Advances in Neural Information
Processing Systems (NIPS) 31 pp 5859–5870

[31] Luise G, Salzo S, Pontil M, Ciliberto C (2019) Sinkhorn Barycenters with Free Support
via Frank-Wolfe Algorithm. eprint arXiv:190513194

[32] MacQueen JB (1967) Some methods of classification and analysis of multivariate obser-
vations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, pp 281–297

[33] Mileyko Y, Mukherjee S, Harer J (2011) Probability measures on the space of persistence
diagrams. Inverse Problems 27(12)

[34] Miller J (2016) Transportation Networks and Matroids: Algorithms through Circuits
and Polyhedrality. PhD thesis, University of California Davis

[35] Munch E, Turner K, Bendich P, Mukherjee S, Mattingly J, Harer J (2015) Probabilistic
Frechet means for time varying persistence diagrams. Electronic Journal of Statistics
9:1173–1204

[36] Panaretos VM, Zemel Y (2019) Statistical Aspects of Wasserstein Distances. Annual
Review of Statistics and Its Application 6(1):405–431

[37] Pass B (2014) Multi-marginal optimal transport and multi-agent matching problems:
Uniqueness and structure of solutions. Discrete and Continuous Dynamical Systems A
34 (4):1623–1639

[38] Peyré G, Cuturi M (2019) Computational optimal transport. Foundations and Trends
in Machine Learning 11(5-6):355–607

[39] Rabin J, Peyré G, Delon J, Bernot M (2012) Wasserstein Barycenter and its Application
to Texture Mixing. Scale Space and Variatonal Methods in Computer Vision Lecture
Notes in Computer Science 6667:435–446

31

[40] Solomon J, Rustamov R, Guibas L, Butscher A (2014) Earth Mover’s Distances on
Discrete Surfaces. ACM Transactions on Graphics 33(4):67:1–67:12

[41] Solomon J, de Goes F, Peyré G, Cuturi M, Butscher A, Nguyen A, Du T, Guibas
L (2015) Convolutional Wasserstein Distances: Efficient Optimal Transportation on
Geometric Domains. ACM Transactions on Graphics 34(4):66:1–66:11

[42] Srivastava S, Li C, Dunson DB (2018) Scalable Bayes via Barycenter in Wasserstein
Space. Journal of Machine Learning Research 19:1–35

[43] Staib M, Claici S, Solomon J, Jegelka S (2017) Parallel Streaming Wasserstein Barycen-
ters. Advances in Neural Information Processing Systems (NIPS) 30 pp 2644–2655

[44] Tardos E (1986) A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Operations Research 34(2):250–256

[45] Trouvé A, Younes L (2005) Local Geometry of Deformable Templates. SIAM Journal
on Mathematical Analysis 37 (1):17–59

[46] Turner K, Mileyko Y, Mukherjee S, Harer J (2014) Frechet means for distributions of
persistence diagrams. Discrete and Computational Geometry 52(1):44–70

[47] Villani C (2003) Topics in Optimal Transportation. American Mathematical Society
[48] Villani C (2009) Optimal transport: old and new. Springer
[49] Yang L, Li J, Sun D, Toh KC (2019) A Fast Globally Linearly Convergent Algorithm

for the Computation of Wasserstein Barycenters. eprint arXiv:180904249
[50] Ye J, Wu P, Wang JZ, Li J (2017) Fast Discrete Distribution Clustering Using

Wasserstein Barycenter With Sparse Support. IEEE Transactions on Signal Process-
ing 65(9):2317–2332

[51] Zemel Y, Panaretos V (2019) Fréchet Means and Procrustes Analysis in Wasserstein
Space. Bernoulli 25(2):932–976

Appendix

A - Proofs of Theorems 3 and 4

We begin by proving Theorem 3.

Theorem 3 Algorithm 2 returns a measure P̄ ′ supported on a subset of S with φ(P̄ ′) ≤
2 · φ(P̄) and there is a non-mass splitting transport realizing this bound. Further |P̄ ′| ≤
(
∑N

i=1 |Pi| −N + 1)2.

Proof. First, note that the P li constructed in Step 1 satisfy supp(P li) ⊂ supp(Pi). Thus
supp(P̄ l) ⊂ S, and consequently supp(P̄ ′) ⊂ S. Further, P̄ ′ =

∑r
l=1 P̄

l is a measure. This
holds because

∑r
l=1 dl =

∑r
l=1 ztl = 1, because Step 2 does not affect this sum, and because

the total mass in P̄ l equals dl by construction. Thus, P̄ ′ is a measure supported in S.
Second, we prove correctness of Step 2. We will show that a greedily lexicographically

maximal (d1, . . . , dr) is created while retaining an approximate barycenter in supp(Porg). In
particular, we have to show that the objective function value φ(P̄org) does not change during
the shift of mass. For a simple wording, let P̄lex be the measure corresponding to (d1, . . . , dr)
after Step 2. We will prove φ(P̄org) = φ(P̄lex).

Let xliqi ∈ P
l
i for i ≤ N and c =

∑N
i=1 λix

l
iqi

, as in Step 2a). Then ‖c− sl‖ ≤ ‖c− sj‖ for
all j 6= l. To see this, recall

N∑
i=1

λi‖s− xliqi‖
2 =

N∑
i=1

λi(‖s− c‖2 + ‖c− xliqi‖
2),

32

as demonstrated in the proof of Theorem 1. If ‖c− sl‖ > ‖c− sj‖ for some j 6= l, P̄org would
not have been optimal.

By qi = arg maxq≤|P l
i |

(sj − sl)Txliq in Step 2a), we pick the xliqi such that their weighted

centroid c =
∑N

i=1 λix
l
iqi

maximizes the difference ‖c−sl‖2−‖c−sj‖2 ≤ 0. Only if ‖c−sl‖2 =

‖c− sj‖2, mass is shifted from sl to sj . But then the approximation error does not change,
because

N∑
i=1

λi‖sj − xliqi‖
2 =

N∑
i=1

λi(‖sj − c‖2 + ‖c− xliqi‖
2) =

N∑
i=1

λi‖sl − xliqi‖
2.

Thus, the objective function value does not change during Step 2; we have φ(P̄org) = φ(P̄lex).
By definition of the running indices l and j, mass can only be moved from support points

of higher index l to support points of lower index i. For each pair of l and j, we repeat
this shift of mass until there is no weighted centroid with ‖c − sl‖ = ‖c − sj‖ anymore.
Due to decreasing l in the outer loop and increasing j in the inner loop, (d1, . . . , dr) is
transformed to be greedily lexicographically maximal and the corresponding measure remains
an approximate barycenter.

Next, we prove correctness of Steps 3 and 4. We show that φ(P̄org) ≥ φ(P̄ ′). Further, we
show that for each constructed partial measure P̄ l there is a non-mass splitting transport to
the P li , and that they combine to a P̄ ′ that allows for a non-mass splitting transport that is
at least as good as an optimal transport for P̄org. Finally, we show |P̄ ′| ≤ (

∑N
i=1 |Pi|−N+1)2.

Recall that in Step 3, the mass of each sl is spread out to a set of weighted centroids
to obtain P̄ l. Independently of how the xliqi are picked from the P li for all for all i ≤ N ,

their weighted centroid c =
∑N

i=1 λix
l
iqi

satisfies
∑N

i=1 λi‖c − xliqi‖
2 ≤

∑N
i=1 λi‖sl − xliqi‖

2.

By construction of P̄ ′ from the P̄ l (Step 4), this already implies φ(P̄ ′) ≤ φ(P̄org). The
algorithm started with a 2-approximation, and thus it is guaranteed to return a P̄ ′ with
φ(P̄ ′) ≤ 2 · φ(P̄).

The existence of a non-mass splitting transport from P̄ ′ to P1, . . . , PN , and the fact
that this transport realizes the above bound, is a consequence of two reasons. First, each
P̄ l itself allows for a non-mass splitting transport to the P li by lexicographically maximal
choice of the xliqi in Step 3a): due to this choice, the first constructed weighted centroid c is
lexicographically maximal among all (possible) weighted centroids that can be constructed
from any xliq in the P li . Further, by reducing the mass at each used support point by dmin

in Step 3b), at least one of the dliqi becomes 0. The corresponding support point is removed

from P li (followed by some reindexing) and thus cannot be used for the construction of a
weighted centroid in further iterations. Thus, the second centroid constructed in the inner
loop is lexicographically strictly smaller than the first one. The same holds for all subsequent
ones.

Second, any two partial measures P̄ l1 , P̄ l2 from Step 3 satisfy supp(P̄ l1)∩ supp(P̄ l2) = ∅
for l1 6= l2, because of the earlier preprocessing in Step 2: weighted centroids that would be
equally distant from both sl1 and sl2 cannot exist, because this would have caused a shift of
mass to the lower index in Step 2 to create a lexicographically larger (d1, . . . , dr). Summing
up, P̄ ′ consists of a set of distinct support points, for which it is trivial to give a non-mass
splitting transport to the Pi that is at least as good as an optimal transport for P̄org: this
transport just sends the whole mass of each support point in P̄ ′ to the support points in the
Pi that were used for its construction.

The removal of at least one support point from a P li in Step 3b) implies that there are at
most

∑N
i=1 |P li | −N + 1 runs of 3a) and 3b) to construct a P l: the ’go back to a)’ statement

33

is applied while dl > 0; this is the case while there still is a support point in a P li with
mass on it. In the final run of Steps 3a) and 3b) for each P l, all the P li have precisely one
support point with the same mass left. This gives the claimed bound, and in particular
|P l| ≤

∑N
i=1 |P li | −N + 1.

Due to |P li | ≤ |Pi| and |P̄org| ≤
∑N

i=1 |Pi| −N + 1, we obtain

|P̄ ′| =
|P̄org|∑
l=1

|P̄ l| ≤
|P̄org|∑
l=1

(
N∑
i=1

|P li | −N + 1) ≤
|P̄org|∑
l=1

(
N∑
i=1

|Pi| −N + 1) ≤ (
N∑
i=1

|Pi| −N + 1)2.

Thus P̄ ′ satisfies all claimed properties. �

Next, we prove that Algorithm 2 runs in strongly-polynomial time.

Theorem 4 For all rational input, a measure can be computed in strongly-polynomial time
that is a 2-approximation of a barycenter and for which there is a non-mass splitting transport
realizing this bound.

Proof. We consider the running time of each part of the algorithm. For readability, we say
‘polynomial’ in this proof in place of ‘strongly-polynomial’. We use ‘linear’ and ‘quadratic’
to refer to the bit size I of the input. Note that N , the |Pi|, and the dimension d are all
bounded above by |I|.

In Step 1, the input for the subsequent steps is created. By sparsity of P̄org, r ≤∑N
i=1 |Pi| − N + 1. For each of the r support points sl, N images P li with |P li | ≤ |Pi|

are created. In the application of the stated rule, each yitlk has to be processed (at most)
once. For each yitlk, a single comparison and a fixed number of elementary operations suffices
to update the support point and mass in P li . In total, data structures of polynomial size are
created in polynomial time.

Step 2 is the preprocessing of (d1, . . . , dr) to be greedily lexicographically maximal. For
each pair of support points sl, sj with j < l, we perform the inner part of the loop. Finding
qi in 2a) can be done by considering all xliq ∈ P li exactly once and comparing the inner

products (sj − sl)Txliq. This is possible in linear time. c is created through the scaling and
the sum of N rational d-dimensional vectors.

Step 2b) begins with the computation of c − sj and c − sl, then computes ‖c − sj‖2 =
(c− sj)T (c− sj) and ‖c− sl‖2 = (c− sl)T (c− sl), and then compares the two values. This is
possible in quadratic time. Picking the minimal mass among the xliqi is possible in linear time,

and so is updating the masses, performing the set operations on P li and P ji , and reindexing.
In this update, |P li | is reduced by at least one, so the ’go back to a)’ statement is followed
at most |P li | times. Summing up, Step 2 runs in polynomial time.

Step 3 performs the spread-out of the r support points. Picking a lexicographically max-
imal support point xliqi in 3a) can be done by considering all support points in P li once. One
saves the current best support point and compares each other support point with respect to
their lexicographic order. For identifying the lexicographic order of a pair of d-dimensional
support points, (at most) all d of their coefficients have to be compared to each other. This
is possible in linear time. Again, c is created through the scaling and the sum of N rational
d-dimensional vectors.

In 3b), we pick the minimal mass among the xliqi used for the construction of c, which
can be done in linear time. The same holds for the update of masses, the set operations on
P li , and the reindexing. By this update, the size of one of the |P li | is reduced by at least one,
so the ’go back to a)’ statement is followed not more than

∑N
i=1 |P li | times; more precisely,

34

there are at most |P li | −N + 1 runs of 3a) and 3b) for each l. Summing up, the construction
of each P̄ l runs in polynomial time, and so does the construction of all the P̄ l.

In Step 4, the partial measures P̄ l are combined to obtain P̄ ′. This is the construction
of a measure with the appropriate mass put on at most |P̄ ′| ≤ (

∑N
i=1 |Pi| −N + 1)2 support

points. Each of these support points is just a copy of a support point in one of the P̄ l. Thus,
all steps run in polynomial time, which proves the claim. �

B - Proof of Theorem 5

Theorem 5 Algorithm 3 returns an approximate barycenter P̄ ′ supported on a subset of S
for which φ(P̄ ′) ≤ 2·φ(P̄), where P̄ is a barycenter, and there is a non-mass splitting optimal
transport realizing this bound. Further |P̄ ′| ≤

∑N
i=1 |Pi| −N + 1.

Proof. First, recall that the output P̄ ′ of Algorithm 2 (Step 2) always satisfies supp(P̄ ′) ⊂ S.
Further, Algorithm 2 always returns a measure that has a corresponding non-mass splitting
transport. As P̄org from Algorithm 1 (Step 1) is not changed in the final run of Algorithm
2, the returned non-mass splitting transport is optimal. Further, recall that all approximate
barycenters P̄org computed in Step 1 have a support that satisfies |P̄org| ≤

∑N
i=1 |Pi|−N +1.

This transfers to the sparsity of P̄ ′ returned by Algorithm 3.
It remains to prove termination of Algorithm 3 and the error bound. We will do so by

showing that φ(P̄ ′) < φ(P̄org) if P̄ ′ 6= P̄org for P̄org, P̄
′ from the same iteration. This leads

to a strictly decreasing sequence of values φ(P̄ ′) as long as the algorithm keeps running.
The first approximate barycenter in this sequence already is a 2-approximation and it can
only become better. This immediately gives φ(P̄ ′) ≤ 2 · φ(P̄). At the end of each Step 2, we
update Sorg = supp(P̄ ′) ⊂ S before going back to Step 1, where an exact optimum over this
new support, a subset of S, is computed. Because of this, and the fact that there are only
finitely many subsets of S, the sequence of values φ(P̄ ′) is finite.

Now, it only remains to prove that φ(P̄ ′) < φ(P̄org) if P̄ ′ 6= P̄org. We begin by considering
Step 3 of Algorithm 2. Assume P li consists of a single support point xli1 for all i ≤ N . Then
the unique barycenter P̄ l of the P li is the weighted centroid c =

∑N
i=1 λix

l
i1 and the cost of

transport from P̄ l to all the P li is φ(P̄ l) = dl ·
∑N

i=1 λi‖c− xli1‖2. For all s 6= c, in particular
for s = sl, we get

φ(P̄ l) = dl ·
N∑
i=1

λi‖c− xli1‖2 < dl ·
N∑
i=1

λi‖s− xli1‖2.

If some of the P li consist of more than one support point, Step 3 selects a set of exactly
one support point xliq from each measure P li , forms a weighted centroid c with corresponding

mass dc = dmin, and adds it to supp(P̄ l). Then this scheme is repeated for the remaining
support points and remaining mass. This means that P̄ l is constructed as a set of weighted
centroids c of support points xliq to which these centroids c transport. Each of them satisfies

dc ·
∑N

i=1 λi‖c− xliq‖2 ≤ dc ·
∑N

i=1 λi‖sl − xliq‖2. By summing over all c that are constructed,
one obtains

φ(P̄ l) ≤
N∑
i=1

λi

|P l
i |∑

q=1

dliq · ‖sl − xliq‖2.

Informally, it is at least as costly to transport to the measures P li from the support point
sl as from the set of weighted centroids (with appropriate masses) constituting P̄ l. Equality

35

in the above can only hold if the single support point sl itself already is the weighted centroid
of single-support point measures P l1, . . . , P

l
N . But this means that Step 3 of Algorithm 2 just

copies sl with mass dl to P̄ l. The algorithm stops when P̄ ′ = P̄org. By φ(P̄ ′) =
∑r

l=1 φ(P̄ l),

this means all sl have to satisfy φ(P̄ l) =
∑N

i=1 λi
∑|P l

i |
q=1 d

l
iq · ‖sl − xliq‖2. So all sl are already

the weighted centroids of their single-support measures P li .
Further, note that when a shift of mass from sl to sj with j < l happens in Step 2 of

Algorithm 2, then Step 3 is guaranteed to find a strictly better transport than before: there
exists a set of support points that, before the shift, receive transport from sl, but have a
weighted centroid c 6= sl. Such a set of support points would be moved from P li to P ji (and
at least one of the support points was not associated to sj before). Then sj is guaranteed to
split mass and, in the following Step 3, the cost of transport is strictly improved; see above.

Thus φ(P̄ ′) < φ(P̄org) if P̄ ′ 6= P̄org and Algorithm 3 terminates with P̄ ′ = P̄org in the
final iteration. �

36

	An LP-based, Strongly-Polynomial 2-Approximation Algorithm for Sparse Wasserstein Barycenters

