Skip to main content
Log in

Joint pricing and inventory decision under a probabilistic selling strategy

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This study examines whether probabilistic selling could enhance inventory management considering market size uncertainty in a rather general setting. We propose to study the impact of probabilistic selling on the profit, price and order quantity within a newsvendor framework. By comparing probabilistic selling against traditional selling, we find that probabilistic selling could generally increase firm’s expected profit. Moreover, the firm will increase the price and the order quantity for the component product. The impact of various aspects, i.e. the demand variance, the unit cost and the degree of cannibalization, on the pricing and order decisions are investigated through numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anderson CK, Xie X (2014) Pricing and market segmentation using opaque selling mechanisms. Eur J Oper Res 233(1):263–272

    Article  Google Scholar 

  • Anderson CK, Ødegaard F, Wilson JG (2015) A newsvendor approach to inventory and pricing decisions in NYOP channels. J Revenue Pricing Manag 14(1):3–18

    Article  Google Scholar 

  • Cai G, Chen Y-J, Wu C, Hsiao L (2013) Probabilistic selling, channel structure, and supplier competition. Decis Sci 44(2):267–296

    Article  Google Scholar 

  • Chen R, Gal-Or E, Roma P (2014) Opaque distribution channels for competing service providers—posted price vs. name-your-own-price mechanisms. Oper Res 62(4):733–750

    Article  Google Scholar 

  • Fay S (2008) Selling an opaque product through an intermediary: the case of disguising one’s product. J Retail 84(1):59–75

    Article  Google Scholar 

  • Fay S, Xie J (2008) Probabilistic goods: a creative way of selling products and services. Mark Sci 27(4):674–690

    Article  Google Scholar 

  • Fay S, Xie J (2010) The economics of buyer uncertainty—advance selling vs. probabilistic selling. Mark Sci 29(6):1040–1057

    Article  Google Scholar 

  • Fay S, Xie J (2015) Timing of product allocation: using probabilistic selling to enhance inventory management. Manag Sci 61(2):474–484

    Article  Google Scholar 

  • Fay S, Xie J, Feng C (2015) The effect of probabilistic selling on the optimal product mix. J Retail 91(3):451–467

    Article  Google Scholar 

  • Huang T, Yu Y (2014) Sell probabilistic goods: a behavioral explanation for opaque selling. Mark Sci 33(5):743–759

    Article  Google Scholar 

  • Jerath K, Netessine S, Veeraraghavan SK (2010) Revenue management with strategic customers: last-minute selling and opaque selling. Manag Sci 56(3):430–448

    Article  Google Scholar 

  • Jiang Y (2007) Price discrimination with opaque products. J Revenue Pricing Manag 6(2):118–134

    Article  Google Scholar 

  • Lariviere M, Porteus E (2001) Selling to the newsvendor: an analysis of price-only contracts. Manuf Serv Oper Manag 3(4):293–305

    Article  Google Scholar 

  • Mao Z, Liu W, Feng B (2018) Opaque distribution channels for service providers with asymmetric capacities: posted-price mechanisms. Int J Prod Econ 215:112–120

    Article  Google Scholar 

  • Post D, Spann M (2012) Improving airline revenues with variable opaque products: “Blind Booking” at Germanwings. Interfaces 42(4):329–338

    Article  Google Scholar 

  • Rice DH, Fay SA, Xie J (2014) Probabilistic selling vs. markdown selling: price discrimination and management of demand uncertainty in retailing. Int J Res Mark 31:147–155

    Article  Google Scholar 

  • Wilson JG, MacDonald L, Anderson C (2011) A comparison of different demand models for joint inventory-pricing decisions. J Revenue Pricing Manag 10(6):528–544

    Article  Google Scholar 

  • Wu Z, Wu J (2015) Price discount and capacity planning under demand postponement with opaque selling. Decis Support Syst 76:24–34

    Article  Google Scholar 

  • Xiao Y, Chen J (2014) Evaluating the potential effects from probabilistic selling of similar products. Naval Res Logist 61:604–620

    Article  Google Scholar 

  • Xu X, Lian Z, Li X, Guo PA (2016) Hotelling queue model with probabilistic service. Oper Res Lett 44:592–597

    Article  Google Scholar 

  • Zhang Z, Joseph K, Subramaniam R (2015) Probabilistic selling in quality-differentiated markets. Manag Sci 61(8):1959–1977

    Article  Google Scholar 

  • Zhang Y, Hua G, Wang S, Zhang J, Fernandez V (2018) Managing demand uncertainty: probabilistic selling versus inventory substitution. Int J Prod Econ 196:56–67

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (71471062, 71431004, 71772063), the Shanghai Pujiang Program (17PJC023), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

As \( M \in \left[ {L,U} \right] \), the firm’s total order quantity k should satisfy \( \frac{{2\left( {v - p} \right)}}{t}L \le k \le \frac{{2\left( {v - p} \right)}}{t}U \), i.e., \( L \le \frac{kt}{{2\left( {v - p} \right)}} \le U \).

Suppose that there exists a pair \( \left( {p^{*} , k^{*} } \right) \) such that it is a maximizer of \( \pi \left( {p,k} \right) \) and \( \frac{{k^{*} t}}{{2\left( {v - p^{*} } \right)}} = L \). Then \( \frac{{\partial \pi \left( {p,k} \right)}}{\partial k}|_{{\left\{ {p = p^{*} ,k = k^{*} } \right\}}} = p\left( {1 - F\left( L \right)} \right) - c = p - c > 0 \). This is a contradiction with the optimality of \( \left( {p^{*} , k^{*} } \right) \). Thus \( \frac{{k^{*} t}}{{2\left( {v - p^{*} } \right)}} = L \) is impossible. Similarly, if \( \frac{{k^{*} t}}{{2\left( {v - p^{*} } \right)}} = U \), then \( \frac{{\partial \pi \left( {p,k} \right)}}{\partial k}|_{{\left\{ {p = p^{*} ,k = k^{*} } \right\}}} = - c < 0 \), which contradicts the optimality of \( \left( {p^{*} , k^{*} } \right) \). □

Proof of Lemma 2

Note that \( T\left( z \right) = \frac{1}{{1 - \frac{{z\left( {1 - F\left( z \right)} \right)}}{{1 - {{\Theta }}\left( z \right)}}}} = \frac{{1 -\Theta \left( z \right)}}{{\mathop \int \nolimits_{0}^{z} mf\left( m \right)dm}} \). To prove the lemma, we need to show that

$$ T^{{\prime }} \left( z \right) = \frac{{\left( {1 - F\left( z \right)} \right)\mathop \int \nolimits_{0}^{z} mf\left( m \right)dm - \left( {1 -\Theta \left( z \right)} \right)zf\left( z \right)}}{{\left( {\mathop \int \nolimits_{0}^{z} mf\left( m \right)dm} \right)^{2} }} < 0. $$

As \( 1 -\Theta \left( z \right) = \mathop \int\nolimits_{0}^{z} mf\left( m \right)dm + z\left( {1 - F\left( z \right)} \right) \), the above inequality is equivalent to the following

$$ H\left( z \right) = \frac{{T^{{\prime }} \left( z \right) \cdot \left( {\mathop \int \nolimits_{0}^{z} mf\left( m \right)dm} \right)^{2} }}{1 - F\left( z \right)} = \left( {1 - g\left( z \right)} \right)\mathop \int\nolimits_{0}^{z} mf\left( m \right)dm - z^{2} f\left( z \right) < 0. $$

Because \( H\left( z \right)|_{z = L} = - L^{2} f\left( L \right) \le 0 \), to prove the lemma, it is sufficient to study the behavior \( H\left( z \right) \) of for \( z \in \left( {L,U} \right) \). Differentiating \( H\left( z \right) \) we have

$$ \begin{aligned} H^{{\prime }} \left( z \right) & = - g^{{\prime }} \left( z \right)\mathop \int\nolimits_{0}^{z} mf\left( m \right)dm + \left( {1 - g\left( z \right)} \right)zf\left( z \right) - 2zf\left( z \right) - z^{2} f^{{\prime }} \left( z \right) \\ & = - g^{{\prime }} \left( z \right)\mathop \int\nolimits_{0}^{z} mf\left( m \right)dm - z\left( {1 - F\left( z \right)} \right)g^{{\prime }} \left( z \right) \\ & = - \left( {1 -\Theta \left( z \right)} \right)g^{{\prime }} \left( z \right). \\ \end{aligned} $$

Note that \( g^{{\prime }} \left( z \right) \ge 0 \), we consider two cases based on the value of L. If \( L > 0 \), then \( H\left( L \right) < 0 \) and \( H^{{\prime }} \left( z \right) \le 0 \) for any \( z \in \left( {L,U} \right) \), hence \( H\left( z \right) < 0 \) for any \( z \in \left( {L,U} \right) \). If \( L = 0 \), then \( H\left( 0 \right) = 0 \) and \( g^{{\prime }} \left( {0^{ + } } \right) > 0 \), which implies that \( H^{{\prime }} \left( z \right) < 0 \) for any \( z \in \left( {L,U} \right) \), i.e., \( H\left( z \right) < 0 \) for any \( z \in \left( {L,U} \right) \). Therefore, \( T^{{\prime }} \left( z \right) < 0 \) for any \( z \in \left( {L,U} \right) \). □

Proof of Corollary 1

The total demand for traditional goods is

$$ D = \frac{{2\left( {v - p} \right)}}{t} \cdot M $$

when the selling prices are set as p under traditional selling strategy.

According to Lemma 1, the optimal decisions should satisfy the following

$$ \frac{{2\left( {v - p^{*} } \right)}}{t}L < k^{*} < \frac{{2\left( {v - p^{*} } \right)}}{t}U. $$

Since L and U are the lowest and highest possible market size, respectively. There will be leftover units when the realization of M is lower than \( \frac{{k^{*} t}}{{2\left( {v - p^{*} } \right)}} \). In other words, there is a positive probability there will be leftover units when the firm adopts traditional selling strategy.

Moreover, according to Proposition 2, the firm will increase the regular price of the component product \( (p^{*} ) \) and order quantity \( (k^{*} ) \) when adopting probabilistic selling. The demand for traditional goods will decrease, the probability of having leftover units will definitely increase with larger order quantity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Jin, S. Joint pricing and inventory decision under a probabilistic selling strategy. Oper Res Int J 22, 1209–1233 (2022). https://doi.org/10.1007/s12351-020-00599-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-020-00599-x

Keywords

Navigation