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Abstract

We consider the Minimum Weighted Tree Reconstruction (MWTR) problem and two
matheuristic methods to obtain optimal or near-optimal solutions: the Feasibility Pump
heuristic and the Local Branching heuristic. These matheuristics are based on a Mixed Integer
Programming (MIP) model used to find feasible solutions. We discuss the applicability and
effectiveness of the matheuristics to obtain solutions to the MWTR problem. The purpose of
the MWTR problem is to find a minimum weighted tree connecting a set of leaves in such a
way that the length of the path between each pair of leaves is greater than or equal to a given
distance between the considered pair of leaves. The Feasibility Pump matheuristic starts with
the Linear Programming solution, iteratively fixes the values of some variables and solves the
corresponding problem until a feasible solution is achieved. The Local Branching matheuris-
tic, in its turn, improves a feasible solution by using a local search. Computational results
using two different sets of instances, one from the phylogenetic area and another from the
telecommunications area, show that these matheuristics are quite effective in finding feasible
solutions and present small gap values. Each matheuristic can be used independently; how-
ever, the best results are obtained when used together. For instances of the problem having
up to 17 leaves, the feasible solution obtained by the Feasibility Pump heuristic is improved
by the Local Branching heuristic. Noticeably, when comparing with existing based models
processes that solve instances having up to 15 leaves, this achievement of the matheuristic
increases the size of solved instances.

Keywords: feasibility pump; local branching; mixed integer linear programming; matheuris-
tics; tree realization; topology discovery; routing topology inference; minimum evolution problem;
balanced minimum evolution problem.

1 Introduction

The Minimum Weighted Tree Reconstruction (MWTR) Problem is a combinatorial optimization
problem that consists in reconstructing a weighted tree T = (V,E). The tree reconstruction is
obtained by knowing only the pairwise distances dij between all nodes i, j from a set Vt, subset of
the set of nodes V of a graph. More precisely, given a n×n symmetric distance matrix D = [dij ]
and a set Vt of n leaves, terminal nodes, the goal of the problem is to simultaneously (i) find an
unrooted tree T = (V,E) spanning V = Vt ∪ Va, where Va is a subset of V with additional nodes
which are internal nodes, and which wlog we can assume to be of degree three, and Vt ∩ Va = ∅,
(ii) associate edge weights we, e ∈ E, such that the lenght of the unique path Pij between any

*Cite: Fajarda, O., Requejo, C. MIP model-based heuristics for the minimum weighted tree reconstruction
problem. Oper Res Int J 22, 2305–2342 (2022). https://doi.org/10.1007/s12351-020-00608-z
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two leaves i and j from Vt is at least dij , i.e.
∑

e∈Pij
we ≥ dij , and (iii) such that the total sum

of the edge weights
∑
{i,j}∈E wij is minimized.

The combinatorial problem associated with the MWTR problem is a tree realization problem
for a distance matrix as it aims to reconstruct a tree by knowing only pairwise distances, stored
in the input distance matrix. The tree realization problem is a specific version of the distance
realization problem, which, in turn, is a graph realization problem [11]. Versions of this combina-
torial problem were proved to be NP-complete [11, 15, 20]. Fiorini and Joret [22] and Catanzaro
et al. [7] discussed the NP-hardness of two related optimization problems, namely the Balanced
Minimum Evolution Problem (BMEP) [9, 22] and the Minimum Evolution Problem (MEP) [7],
which are well-known distance realization problems from the computational biology area.

The MWTR arises in several areas: in telecommunications (namely, in network tomography)
to discover the routing topology of a network [3, 11, 19, 27] as well as the logical underlying
network [11, 12, 19, 30]; in psychology [13, 14, 16, 26, 34] to represent cognitive processes or
proximity and similarity relations and in information security for the detection and recognition
of documents duplications [18, 26]. However, possibly the most well-known application of the
MWTR is, in computational biology, the reconstruction of phylogenetic trees [6, 21, 28].

Mixed Integer Programming (MIP) models for the MWTR appeared in [7, 8, 9, 25]. First,
in [8] the authors introduced MIP models to solve the MEP and studied possible cuts and lower
bounds for the optimal value of the problem. In [9] the authors presented a MIP model to exactly
solve instances of the BMEP and developed branching rules and families of valid inequalities
to further strengthen the model. In [7] the authors developed an exact solution approach for
the MEP based on a nontrivial combination of a parallel branch-and-price-and-cut scheme and a
non-isomorphic enumeration of all possible solutions to the problem. In the works [7, 8, 9], com-
putational experiments were performed on phylogenetic datasets. In [25] the authors presented
two compact MIP models to solve the problem, without requiring the development of specialized
algorithms. Computational experiments in [25] were performed on two different datasets, one
from the phylogenetic area already used in [7, 8, 9], and another from the telecommunications
area.

Finding a feasible solution to a MIP problem can be very hard and may involve large compu-
tational effort. To cope with this situation, several heuristics are designed to efficiently produce
feasible solutions of good quality. Several very efficient heuristics have been proposed in the
literature [29, 33] for distance tree realization problems.

Among the heuristic approaches used to obtain feasible solutions to MIP problems, one can
find the matheuristics that use MIP models. Fischetti et al. [23] proposed a very successful
matheuristic, that they called the Feasibility Pump (FP) intending to find feasible solutions
(if any exists) for generic MIP problems. The authors focused essentially on Mixed Binary
Programming (MBP) problems. The FP heuristic is improved, mostly for generic MIP problems,
by Achterberg and Berthold [1] and Bertacco et al. [2]. Another successful matheuristic is the
Local Branching (LB), proposed by Fischetti and Lodi [24], which is in the spirit of local search
heuristics. The neighborhood of a feasible solution is obtained by adding, to the original problem
model, constraints which Fischetti and Lodi [24] designated as Local Branching cuts. To the best
of our knowledge, matheuristics have not been used for the MWTR problem. Our contribution,
with this paper, is to evaluate the performance of these widely used matheuristics when applied
to the MWTR problem. Also, we discuss several details on the application of the matheuristics.

For the first matheuristic, following the proposal of Fischetti et al. [23], a Feasibility Pump
scheme is used. A mixed integer model for the MWTR problem together with a MIP solver is used
to obtain (fractional) linear relaxation solutions. These fractional solutions are rounded to find
a feasible solution (if any exists). For the second matheuristic, we consider the Local Branching
scheme proposed by Fischetti and Lodi [24] to solve MIP problems. This enumerative scheme
constructs a sequence of feasible solutions to the MWTR problem with improving (decreasing)
value of costs. This approach is considered a very effective improving method for large scale
problems. Again, we use a mixed integer model for the MWTR problem together with a MIP
solver to explore reduced feasible regions. These schemes are based on the MIP model Path-
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edges+ formulation presented in [25].
The article is organized as follows. In Section 2 we describe the MWTR problem and a

MIP model presented in [25] that will be used in the matheuristic schemes. In Section 3 we
present a Feasibility Pump heuristic for the MWTR problem. In Section 4 we present a Local
Branching heuristic for the MWTR problem. In Section 5 we present computational results for
both approaches. Finally, Section 6 concludes the article.

2 The Minimum Weighted Tree Reconstruction Problem

As already said, given a distance matrix, D = [dij ], that stores the pairwise distances dij between
the leaves i, j ∈ Vt, our aim is to obtain a tree T = (V,E) spanning the set of nodes V = Va ∪ Vt.
The set Vt is the set of leaves, terminal or external nodes, Va is the set of internal nodes and each
tree edge has an associated weight. The unique path Pij between leaves i and j has i and j as end
nodes and, in between, it has a sequence of internal nodes from the set Va. The distance between
any two leaves i and j ∈ Vt is given by the distance (obtained by summing the weights of the
edges) of the unique path Pij and is at least dij . In this work the tree structure and the weights
associated to each edge are unknown and the objective is, by only knowing the distance matrix
D, to determine the tree topology connecting the leaves and associate a weight to each edge, such
that the obtained unique path satisfies the distance stored in the distance matrix. That is, the
tree topology must be found and appropriate weights must be associated with the tree edges so as
to satisfy the unique path distance constraint between leaves that provides a weak realization of
the distance matrix D. More precisely, this weak realization is a weighted connected graph such
that the obtained distance dw

ij associated to every two leaves i and j is greater than or equal to
the given distance dij . Any tree topology can be considered. However, to reduce the number of
symmetric combinatorial solutions, the tree topologies to be considered are such that the internal
nodes of the tree, nodes in set Va, all have degree three [10]. This topology can be used because
any tree can be transformed into a tree where every internal node may have degree three by
adding ”dummy” nodes and edges, as described in [5]. We observe that this is a stronger demand
than the demand for being a binary tree (in which each node has at most two children), but at
the same time, it reduces the number of symmetric combinatorial solutions. When |Vt| = n, to
construct such an unrooted tree we must use n− 2 internal nodes with degree three and 2n− 3
edges. Without loss of generality, we consider Va such that |Va| = n− 2, let Va = {1, . . . , n− 2}
be the set of internal nodes, and renumber the n nodes in Vt such that Vt = {n− 1, . . . , 2n− 2}
be the set of leaves.

In Figure 1 we present in (a) a distance matrix D and in (b) and (c) two tree realizations
of D of total weight sum of 17. The tree realization on the right-hand side is the optimal tree
realization obtained by the model we present. All its internal nodes have degree three.

The MIP model-based procedure describing the MWTR problem must have the ability to both
obtain a tree T and associate weights to the edges in the tree that provide a weak realization
of the distance matrix D [11]. To achieve this goal two models are used. Both models were
proposed in [25] and are described below for completeness as they are a fundamental part of the
proposed matheuristics. The first model is used to obtain a tree T that is a weak realization of
the distance matrix D and having the described properties. Next, the second model is used to
associate weights to the edges of the obtained tree. To derive the two models, the following two
sets of variables are a natural choice. For the first model let xij , i ∈ Va, j ∈ V , i < j, denote a
binary variable equal to 1 if edge {i, j} belongs to the solution. For the second model, let wij ≥ 0
denote a non-negative continuous variable representing the weight associated to edge {i, j}. In
order to derive an extended first model, we use two more sets of variables. In particular, the
binary variables p`

ij , for all i, j ∈ Vt, i < j and ` ∈ {2, 3, ..., (n − 1)}, specify the number of

edges of a path Pij between leaves i and j. These variables p`
ij indicate whether the path Pij

connecting leave i to leave j has (exactly) ` edges. Moreover, the binary flow variables fk`
ij , for

all i, j ∈ Va ∪ {k, `}, k, ` ∈ Vt, i 6= j and k < `, indicate whether the flow traverses the edge {i, j}
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A B C D E F
A 0 4 2 2 10 11
B 4 0 4 4 8 9
C 2 4 0 2 10 11
D 2 4 2 0 10 11
E 10 8 10 10 0 7
F 11 9 11 11 7 0

(a) Distance matrix D.
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(b) A tree realization of D. (c) A tree realization of D with all internal nodes with degree three.

Figure 1: A distance matrix D and two tree realizations.

belonging to the path connecting leave k to leave ` in the direction from node i to node j.
The following model has been presented in [25]. It reconstructs an unrooted tree and specifies

both the edges and the number of edges of the path between every pair of leaves for the MWTR
problem.

Path-edges+ formulation

min
∑
i∈Vt

∑
j∈Vt
j>i

dij

n−1∑
`=2

2−` p`
ij (1)

subject to∑
i∈Va

∑
j∈V
j>i

xij = 2n− 3 (2)

∑
i∈Va

xij = 1 ∀j ∈ Vt (3)

∑
j∈V
j>i

xij +
∑
j∈Va
j<i

xji = 3 ∀i ∈ Va (4)

xi,i+1 = 1 ∀i ∈ Va, i = 1, ..., (dn/2e − 1) (5)∑
j∈Vt

x1j = 2 (6)

∑
j∈Vt

x(n−2)j = 2 (7)

∑
j∈Vt

xij ≤ 2 ∀i ∈ Va (8)

∑
i∈Va

fk`
ki = 1 ∀k, ` ∈ Vt, k < ` (9)

∑
j∈{`}∪Va\{i}

fk`
ij −

∑
j∈{k}∪Va\{i}

fk`
ji = 0 ∀i ∈ Va, k, ` ∈ Vt, k < ` (10)

∑
i∈Va

fk`
i` = 1 ∀k, ` ∈ Vt, k < ` (11)

∑
h∈{`}∪Va\{i}

fk`
jh − fk`

ij ≥ 0 ∀i ∈ Va ∪ {k}, j ∈ Va, k, ` ∈ Vt, k < ` (12)
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fk`
ij + fk`

ji ≤ xij ∀i, j ∈ V,∀k, ` ∈ Vt, i < j, k < ` (13)

n−1∑
`=2

p`
ij = 1 ∀i, j ∈ Vt, i < j (14)

2 +
∑
i∈Va

∑
j∈Va
j 6=i

fk`
ij =

n−1∑
i=2

i · pi
k` ∀k, ` ∈ Vt, k < ` (15)

2
∑
i∈Vt

∑
j∈Vt
j>i

n−1∑
`=2

2−` ` p`
ij = 2n− 3 (16)

n−1∑
`=2

∑
j∈Vt
j>i

2−`p`
ij +

n−1∑
`=2

∑
j∈Vt
j<i

2−`p`
ji = 1

2 ∀i ∈ Vt (17)

xij ∈ {0, 1} ∀i ∈ Va,∀j ∈ V, i < j (18)

p`
ij ∈ {0, 1} ∀` ∈ {2, 3, ..., n− 1},∀i, j ∈ Vt, i < j (19)

fk`
ij ∈ {0, 1} ∀i, j ∈ Va ∪ {k, `}∀k, ` ∈ Vt, i 6= j, k < ` (20)

The objective function (1) uses Pauplin’s method [32] to calculate the sum of all weights of
a minimum weighted tree realization of a distance matrix D = [dij ]. Using the variables p`

ij and
the strategy developed by Pauplin [32] it is possible to directly calculate the sum of all weights
of a tree (the weight of the tree) by using the expression in the objective function and without
having to explicitly assign its edge-weights wij . The edge-weights wij of a tree realization satisfy
the following relation [7, see Proposition 9]

2
∑
i∈Vt

∑
j∈Vt
j>i

dij

n−1∑
`=2

2−` p`
ij ≤

∑
i∈Va

∑
j∈V
j>i

wij

and are not used in the first model. However, they are a posteriori obtained by solving the
simple optimization problem of the second model (24). Pauplin’s method that avoids the explicit
determination of the edge-weights has been used with success in [7, 17, 25].

The description of the constraints (2)–(20) can be found in [25]. The two valid equalities (16)
and (17), presented in [7], are included to strengthen the model (improve the linear programming
relaxation) and because their inclusion improves the performance of the model.

In coding theory, equality (17) is known as Kraft’s equality [31]. In this context, the path-
length value between two nodes i and j can be compared to the value of the distance dij from
the tree realization problem. Notice that a sequence of n path-lengths represents a binary tree
with n leaves where each leaf represents a symbol in a Huffman code, which is an optimal path-
length sequence whose corresponding rooted binary tree determines a code. These path-length
sequences may be characterized (see [31]) through Kraft’s equality and in particular, they enforce
that these binary trees obey the property established by Kraft’s equality, which is a special case of
Kraft’s inequality [31]. Hence in the MWTR problem, we can use the property of the path-length
sequences in a rooted binary tree characterized by Kraft’s equality and the equality (17) can be
established to reinforce the path-length between two leaves by using the path variables.

The following valid inequalities presented in [9] can also be included:∑
j∈Vt
i<j

pn−1
ij +

∑
j∈Vt
j<i

pn−1
ji ≤ 2

∑
j∈Vt
i<j

p`
ij + 2

∑
j∈Vt
j<i

p`
ji ∀i ∈ Vt,∀` ∈ {2, 3, ..., n− 2} (21)

∑
i∈Vt

∑
j∈Vt
j>i

pn−1
ij ≤ 4 (22)

∑
j∈Vt
i<j

∑̀
q=2

2`−qpq
ij ≤ 2`−1 − 1 ∀i ∈ Vt,∀` ∈ {2, 3, ..., b

n

2 c}, n > 2`−1 + 1. (23)
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Inequalities (21) state that if a tree has a path of length n− 1 then it also has a path of length
n − 2, n − 3, . . . , 2. Inequality (22) indicates that a tree has at most four paths of length n − 1.
Inequalities (23) are a consequence of Kraft’s equality (17).

Feasible solutions of the previous MIP model correspond to unrooted trees together with a
path between each pair of leaves. The weights of the edges are not determined and still have to
be assigned to the tree edges. However, there is the guarantee that the distances will be satisfied
and the obtained optimal tree corresponds to the one having the minimum weighted tree. To
assign the weights to the tree edges the following simple linear program has to be solved.

min
∑
i∈Va

∑
j∈V
j>i

wij (24)

subject to∑
i∈Va

∑
j∈V
i<j

wij(fk`
ij + fk`

ji ) ≥ dk` ∀k, ` ∈ Vt, k < `

wij ≥ 0 ∀i, j ∈ V, i < j

With the flow variables fk`
ij , used here as constants, the path between each pair of leaves is exactly

identified. This information is used to associate weights to the edges such that the total sum of
the weights of the edges is minimized and the path-length between every pair of leaves dominates
(is greater than) the corresponding distance from the distance matrix D.

To facilitate the description of the matheuristics in the next two sections, let y = (x, f, p),
with x = (xij), f = (fk`

ij ), p = (p`
ij) with the appropriate index sets, denote the incidence vector of

the feasible solutions and P denote the set of feasible solutions of the MWTR problem described
by expressions (2)–(23). Therefore, compactly, Path-edges+ formulation is

min f(y)
subject to

y ∈ P

with f(y) denoting the objective function, described by expression (1). Let I be the index set
for vector y, hence P ⊆ {0, 1}I . Let PL ⊆ [0, 1]I denote the LP relaxation solution set of set P
described by expressions (2)-(17) and (21)-(23).

3 The Feasibility Pump heuristic for the MWTR problem

In this section, following the scheme proposed by Fischetti et al. [23], we describe the Feasibility
Pump heuristic (FP) adapted for the MWTR problem. As, in practice, it may be very time
consuming to achieve a feasible integer solution to the MWTR problem, we impose a time limit
and a maximum number of iterations. The basic idea of this matheuristic is to construct sequen-
tially two sets of points, through a relax-and-fix approach, until finding a feasible solution to the
problem. In the first set, the algorithm obtains points by solving a linear programming (LP)
relaxation, thus these points satisfy the linear constraints but may not satisfy the integrality
constraints. In the second set, the algorithm obtains points by rounding an LP feasible solution,
therefore these points satisfy the integrality constraints but may not satisfy the linear constraints.

The Feasibility Pump heuristic adapted for the MWTR problem is described in Algorithm 1.
We use a solver to obtain the LP solutions in line 1, in line 3, and iteratively in line 11.

In the first step, we obtain an LP solution to initialize the value of the variables (in line 4).
For that, we solve twice the LP relaxation D-MWTR (25) as follows. First, we obtain the optimal
LP solution. After, we fix to zero the topology variables xij with a value close to zero and then we
solve the corresponding LP relaxation. This initialization of variables is specific to the MWTR
problem.
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Algorithm 1 Feasibility Pump heuristic for the MWTR problem (FP)

Require: problem data: sets V = Va∪Vt; distance matrix D; number of leaves n = |Vt|; procedure
parameters: maxtime; maxiter.

1: solve the LP relaxation D-MWTR
2: fix to zero the variables xij such that xij < 0.1
3: solve (again) the LP relaxation D-MWTR (now with some variables fixed to zero)
4: let ŷ be the optimal solution of the problem solved in the previous step
5: if ŷ is integer then
6: return ŷ is a feasible integer solution of the MWTR problem
7: else
8: t ← 0
9: ỹt ← round(ŷ)

10: while time < maxtime and t < maxiter do
11: get ŷ, optimal solution of LP relaxation D-MWTR with ∆(y, ỹt) as objective function
12: let ∆(ŷ, ỹt) be its optimal value
13: if ∆(ŷ, ỹt) = 0 then
14: return ŷ is an integer feasible solution for the MWTR problem
15: else
16: t ← t+ 1
17: ỹt ← round(ŷ)
18: if ỹt = ỹt−1 then
19: fix to zero the components xij of ỹt such that x̂ij < 0.1, or 0.5 < x̂ij < 0.9
20: fix to one the remaining components xij of ỹt

21: end if
22: for all ` = 0, . . . , t− 2 do
23: if ỹt = ỹ` or ∆(y, ỹt) > 0.9 ∗∆(y, ỹt−2) then
24: for all i ∈ I do
25: ρi = random(−0.3, 0.7)
26: if |ŷi − ỹt

i |+ max{ρi, 0} > 0.5 then
27: flip variables f and p components of ỹt

28: end if
29: end for
30: end if
31: end for
32: end if
33: end while
34: end if
35: return the solution ŷ and the integer solution ỹt
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The second step is the rounding and fixing variables value step in line 9. The obtained
rounding vector ỹ is integer and, in general, ỹ is not a feasible solution. We fix the variables
value, temporarily, to this integer value.

In the third step, the aim is to obtain the closest feasible solution to vector ỹ. It is the so-
called pumping-cycle that runs from line 10 to line 33 until either a feasible integer solution is
found or the time limit, maxtime, or the maximum number of iterations, maxiter, is exceeded. In
these two last cases, we do not obtain an integer solution.

To obtain the closest feasible solution to vector ỹ, consider the distance function ∆(y, ỹ) :=∑
i∈S(1 − yi) +

∑
i∈S yi. Hence, given an integer ỹ, the closest vector y ∈ PL can be determined

by minimizing the value of the distance function ∆(y, ỹ) as follows

(D-MWTR): min ∆(y, ỹ) (25)

s.t. y ∈ PL.

Let ŷ be the optimal solution of the LP problem D-MWTR (25), and let ∆(ŷ, ỹ) be its optimal
value. The vector ŷ is the closest solution to the integer ỹ and two cases may occur, either
∆(ŷ, ỹ) = 0 or ∆(ŷ, ỹ) > 0. If ∆(ŷ, ỹ) = 0, then ŷ = ỹ is an integer feasible solution for the
MWTR problem. If ∆(ŷ, ỹ) > 0, then we obtain a new integer solution, ˜̂y, by rounding ŷ, and
two cases may occur, either ˜̂y 6= ỹ or ˜̂y = ỹ. The FP heuristic may experience stalling and cycle
problems and, in the specific case of the MWTR, we apply a perturbation mechanism [23].

When we obtain the same solution, ˜̂y = ỹ, a stalling problem occurs. To solve this problem
we apply a perturbation mechanism in lines 19 and 20, which switches some rounded to zero to
one and some rounded to one to zero. Here only components x are switched and the remaining
components f and p are not changed.

When we obtain a different vector, ˜̂y 6= ỹ, two other cases may occur. Either ˜̂y is different
from any previously obtained vector, this is the desirable case, or ˜̂y is equal to some previously
obtained vector thus a cycle occurs. When a cycle is detected the same sequence of LP solutions
and rounded vectors are obtained. In the first case, the iterative process continues by obtaining a
new solution closest to the new integer vector ˜̂y by solving the D-MWTR problem again. To avoid
cycling, we apply a perturbation mechanism in line 27 to the integer solution ỹ that consists of
modifying some randomly chosen components of the current integer solution ỹ. That is, for a given
parameter δ > 0, for all i ∈ I, we modify component ỹi of ỹ when |yi− ỹi|+max{ρi, 0} > δ with
ρi randomly selected in [−0.3, 0.7]. Notice that this perturbation mechanism gives the possibility
to modify the variables such that |yi − ỹi| = 0. In the line 27 only components f and p are
switched, the components x are not changed.

Additionally, the perturbation mechanism can also be performed when the value ∆(ŷ, ỹt) does
not decrease. This perturbation mechanism is performed in line 27 when the value ∆(ŷ, ỹt) does
not decrease for at least 10% in the last three iterations.

We remark that different sets of variables are selected to change in the perturbation mecha-
nisms applied to the MWTR problem. While in lines 19 and 20 only components x are changed,
in line 27 only components f and p are changed.

Iteratively, we perform the previous steps and update the pair (ŷ, ỹ). The FP heuristic algo-
rithm constructs two trajectories of solutions, hopefully convergent. One is formed by a sequence
of solutions satisfying constraints (2)-(17) and (21)-(23), solutions ŷ, thus the returned solution is
not necessarily integer. The other sequence is formed by integer solutions ỹt that may not satisfy
constraints (2)-(17) and (21)-(23).

4 The Local Branching for the MWTR problem

The Local Branching algorithm is an exact method that searches for better solutions in the
neighborhood of a feasible solution [24]. It turns into a matheuristic when we set a criterion to
stop it running before exhaustively searching in all the neighborhoods.
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Algorithm 2 Local Branching scheme for the MWTR problem (LB)

Require: problem data: sets V = Va∪Vt; distance matrix D; number of leaves n = |Vt|; procedure
parameters: k; maxtime; maxiter.

1: P 0 ← MWTR problem
2: get a feasible solution ỹ, the reference solution, to problem P 0

3: t ← 1
4: ỹt ← ỹ
5: while ((time < maxtime) and (t < maxiter)) do
6: assign the value of k or adjust (apply intensification mechanism)
7: P t ← introduce constraint Λ(y, ỹt) ≤ k in problem P t−1

8: solve problem P t and let ỹ be its optimal solution in neighborhood N (ỹt, k)
9: if f(ỹ) < f(ỹt) then

10: t ← t+ 1
11: ỹt ← ỹ
12: else
13: P t ← introduce constraint Λ(y, ỹt) ≥ k + 1 in problem P t−1

14: solve problem P t and let ỹ be its optimal solution in neighborhood N+(ỹt, k)
15: if f(ỹ) < f(ỹt) then
16: t ← t+ 1
17: ỹt ← ỹ
18: else
19: adjust the value of k (apply diversification mechanism)
20: end if
21: end if
22: end while
23: return integer solution ỹt

Algorithm 2 displays a brief description of the Local Branching scheme applied to the MWTR
problem. We use a solver in lines 8 and 14 to obtain a sequence of solutions ỹt in reduced solution
spaces and with a decreasing sequence of costs.

In line 2 of Algorithm 2 we obtain the first feasible integer solution ỹ (≡ ỹ1), which is taken as
a reference solution. We can use a feasible solution ỹ to the MWTR problem previously obtained.
Thus we can use the solution obtained by the FP heuristic.

An integer feasible solution of the MWTR problem corresponds to a spanning tree Tỹ with
cost f(ỹ) and leaves Vt. Define two sets, set S = {i ∈ I : ỹi = 1} and its complement set
S = {i ∈ I : ỹi = 0}. For a given positive integer parameter k′, the neighborhood of ỹ is the set
of feasible solutions of the MWTR problem satisfying the additional Local Branching constraint∑

i∈S(1−yi)+
∑

i∈S yi ≤ k′.This linear constraint limits to k′ the total number of binary variables
flipping their value with respect to the solution ỹ, either from 1 to 0 or from 0 to 1. For every
feasible solution to the MWTR problem, the cardinality of the set S is constant and equal to the
number of edges of the corresponding feasible tree Tỹ. Further, the number of variables changing
from 1 to 0 must be equal to the number of variables changing from 0 to 1. Thus the local
branching constraint may assume the asymmetric form:

Λ(y, ỹ) =
∑
i∈S

(1− yi) ≤ k (26)

with k = k′

2 . Define the neighborhood N (ỹ, k) of ỹ as the set of feasible solutions of the MWTR
problem satisfying the additional Local Branching constraint Λ(y, ỹ) ≤ k, and the neighborhood
N+(ỹ, k) of ỹ as the set of feasible solutions of the MWTR problem satisfying the additional
Local Branching constraint Λ(y, ỹ) ≥ k + 1. The choice of the size of the neighborhoods given
by the parameter k is a problem that depends on the size and structure of the instances used.
On one hand, the k must be large enough so that the neighborhood N (ỹ, k) contains better-
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valued solutions than ỹ and, on the other hand, the k should be small enough to ensure that
the neighborhood N (ỹ, k) is quickly explored. Note that neighborhood N (ỹ, k) of ỹ has solutions
similar to ỹ and neighborhoodN+(ỹ, k) contains solutions that differ from ỹ in more than 2×(k+1)
variables. When using as a heuristic, we explore the neighborhood N+(ỹ, k) only when a feasible
solution better valued than ỹ is not found in the neighborhood N (ỹ, k).

Depending on the size of the neighborhood that is being explored, finding the exact solution
to the problem within that neighborhood can be very time-consuming. In case the time limit
is exceeded, the obtained solution ỹ may not be the optimal solution, since the neighborhood is
not fully explored, hence that neighborhood cannot be excluded. In that case, and depending
on the solution obtained so far, the size of the neighborhood to be explored can be modified to
either reduce or enlarge the region where the solution is sought. We observe that both the initial
value of the parameter k and the mechanisms for its successive changes are very important issues
for the success of the search. Also, they are specific to the problem and therefore require careful
tunning. The mechanisms [24] that modify the size of the neighborhood are used in lines 6 and 19
of Algorithm 2 and are described next.
Intensification mechanism. The intensification mechanism aims to reduce the size of the neighbor-
hood in an attempt to speed-up its exploration. The right hand side of the constraint Λ(y, ỹ) ≤ k
is reduced to bk

2c. This mechanism is applied to accelerate the neighborhood exploration when
no improved feasible solution is found.
Diversification mechanism. The diversification mechanism aims to enlarge the size of the neigh-
borhood. However, the exploration time is, consequently, also increased. First, a “soft” diver-
sification mechanism is applied, in which the right hand side of the constraint Λ(y, ỹ) ≤ k is
increased by dk

2e, i.e., the constraint Λ(y, ỹ) ≤ k + dk
2e is introduced. In case an improved solu-

tion is not found, a “strong” diversification mechanism is applied, in which the right hand side
of the constraint Λ(y, ỹ) ≤ k is increased with 2 × dk

2e, i.e., the constraint Λ(y, ỹ) ≤ k + 2dk
2e is

introduced. This exploration should be aborted as soon as the first solution is found.
When a time limit is exceeded and the obtained solution ỹ is not the optimal solution the

following cases may occur. (i) The obtained solution ỹ has an improved value. In this case, the
reference solution is updated, but the value of the parameter k is not modified. (ii) The obtained
solution ỹ does not have an improved value, f(ỹ) > f(ỹt). In this case, the intensification
mechanism is applied to reduce the neighborhood. If again an improved solution is not found,
apply a “weak” diversification mechanism. (iii) The obtained solution ỹ is infeasible. In this case,
the “strong” diversification mechanism is applied to enlarge the neighborhood.

5 Computational Experiments

In this section, we report on the results of the computational tests of the FP and of the LB
heuristics when applied to instances of the MWTR problem, whose size (in terms of leaves) varies
between 8 and 20, for a total of 245 instances.

The computational tests have been performed on an Intel(R) Core(TM) i7-3770 CPU 3.40
GHz processor and 16Gb of RAM. The matheuristics using the Path-edges+ formulation have
been implemented by using the Mosel language and solved with FICO Xpress 7.8 [1] (Xpress-IVE
1.24.06 64 bit, Xpress-Optimizer 27.01.02 and Xpress-Mosel 3.8.0) with its default parameters,
namely multi-threads. We have compared the performance of the matheuristics with the results
presented in [25] and obtained by the solver with the Path-edges+ formulation.

Two sets of data instances have been used, one set coming from a phylogenetics application,
and the other one from a networking application. The first set of instances [9] is available from
https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.1110.0455. From this set we have used
three phylogenetic distance matrices, matrices M391, Primate and M887, with t = 17, t = 12
and t = 18 taxa, respectively, and for each we have varied the number of leaves (taxa) between
8 and t, thus obtaining 26 instances. The data for the second set of instances were generated
using the network-level simulator NS-3 (Network Simulator NS-3, http://www.nsnam.org/). We
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have performed four simulations named S15, S20, SS15, SS20 with t = 15, t = 20, t = 12 and
t = 12 leaves, varying the number of leaves between 8 and t, thus obtaining 31 instances. We
have, also, generated matrices with random numbers, using the values of the matrices: M391,
Primate, M887, S15, and S20. For each matrix, D = (dij), we have generated ten random values
belonging to [dij , dij + a× dij ], where a ∈ {0.1; 0.15; 0.2; 1}. Then we have used the mean of the
ten numbers to construct a new matrix. The names of the new matrices start with A10, A15,
A20, and A100 when the value used for a is 0.1, 0.15, 0.20, and 1, respectively. Thus, we have
obtained 188 more instances, making a total of 245 instances.

The proposed matheuristics use the Path-edges+ formulation to obtain feasible solutions to
the MWTR problem. In [25] it is reported that Path-edges+ formulation performs better (ob-
tains good feasible solutions in less time) than other models presented in the literature. To
obtain a high-quality feasible solution in less time, several tests were performed by applying the
matheuristics to the model without the valid equalities and inequalities (21)-(23) or by using
only some combinations of the equalities and inequalities (21)-(23). On one hand, comparing
the results obtained with the FP heuristic by several combinations, we concluded that by using
some of these combinations we obtained a feasible solution in less time than the one that uses
the Path-edges+ formulation, but the quality of the obtained feasible solution was quite poor.
Since the performance of the LB heuristic depends highly on the first feasible solution used, the
Path-edges+ formulation is used in the FP heuristic to obtain the computational results. The
time gained when using some of these combinations did not compensate for the poor quality of
the solution obtained, since the time obtained in the FP heuristic would be spent executing the
LB heuristic procedure to improve the feasible solution obtained. To have an idea of the size of
the instances Table 1 displays the number of variables 1

2n
4 + 1

2n
3− 11

2 n
2 + 15

2 n−3 and constraints
3
2n

4 − 5n3 + 7n2 + 1
2n− 1 + dn

2 e for each value n of leaves of the instances considered.

Table 1: Number of variables and constraints of formulation Path-edges+ for each value of n.
n 8 9 10 11 12 13 14 15 16 17 18 19 20

number of variables 2009 3264 5022 7400 10527 14544 19604 25872 33525 42752 53754 66744 81947

number of contraints 4039 6772 10709 16164 23483 33052 45289 60652 79631 102756 130589 163732 202819

To quickly explore the feasible region, the appropriate size of the neighborhoods defined by
inequality (26) must be carefully chosen. After several computational experiments, we concluded
that the choice of the value k for the right-hand side of the Local Branching constraint depends
on the value of n, the size of the instance. When the value of n is small, the value of k can also
be small and the LB heuristic is still capable of finding an improved feasible solution within the
considered neighborhood. However, for larger values of n, to be able to find an improved feasible
solution in the considered neighborhood, the value of k must be larger. Nevertheless, since the
time spent to find a feasible solution increases substantially for large values of n and a time limit
is imposed, the value of k must be reduced in these cases. Thus, the values used for k were k = 3
for n < 12, k = 5 for 12 ≤ n ≤ 15 and k = 4 for n ≥ 16.

Figure 2 shows the average time (in seconds) and Figure 3 shows the average GAP (%) for
instances with the same number of leaves for the FP, the LB heuristic and the Path-edges+

formulation. Noticeably, we observe that the LB heuristic significantly improves the feasible
solution obtained by the FP heuristic for all the instances.

The computational results are summarized in Tables 2–5 in which the first column, labeled
M, refers to the name of the matrix instance used and the second column, labeled |Vt|, shows the
size of the instance. The third, the forth and the fifth columns concern the results relative to the
FP heuristic; the sixth to the ninth columns refer to the results relative to the LB heuristic, and
additionally, the tenth, the eleventh and the twelfth columns present the results relative to the
Path-edges+ formulation. The columns labeled T show the execution time, in seconds, used to
solve the instance and having a maximum runtime of 1200 seconds for the FP heuristic, a maxi-
mum runtime of 7000 seconds for the LB heuristic and the Path-edges+ formulation a maximum
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Figure 2: Average time (s) of the Path-edges+ formulation, the FP and the LB heuristic.

Figure 3: Average Gap (%) of the Path-edges+ formulation, the FP and the LB heuristic.

runtime of 7200 when n ≤ 15 and a maximum runtime of 8000 when n ≥ 16. Additionally, a
time limit was imposed for solving each subproblem of the LB heuristic. It is used a time limit of
1000 seconds when n < 14 and a time limit of 1400 seconds when n ≥ 14. The columns labeled
W present the optimum or the best value obtained for

∑
i∈Va

∑
j∈V
j>i

wij within the runtime limit

and for a maximum of 1000 iterations. We only report values when within the maximum runtime
imposed, the FP heuristic obtains a feasible solution, the LB heuristic obtains a better solution
than the one obtained by the FP heuristic and the Path-edges+ formulation obtains a feasible
solution. The column labeled TT shows the total execution time, that is, the sum of the execution
time of the FP heuristic plus the execution time of the LB heuristic. The columns labeled GAP
present the gap between the value W obtained by the corresponding matheuristic or model and
the best lower bound value known:

GAP = W −BLB
W

× 100

where W represents the best value obtained by the matheuristic or model within the runtime
imposed and BLB represents the best known lower bound value obtained with the solver using
the Path-edges+ formulation.

Tables 2 and 3 refer to results concerning data from the phylogenetics application reporting
the computational results obtained for 130 instances and Tables 4 and 5 refer to results concern-
ing data from the networking application reporting the computational results obtained for 115
networking instances.

For the phylogenetic data, the computational time that the FP heuristic uses to obtain a
feasible solution is less than 200 seconds in 100 out of 130 instances, this is, in approximately
76.9% of the instances. The FP heuristic finds a feasible solution within the runtime imposed
for all instances, except for matrix A15M391 with n = 17. Therefore, we did not run the LB
heuristic for matrix A15M91 with n = 17.
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Table 2: Computational results for data from the phylogenetics application.

FP heuristic LB heuristic Path-edges+

M |Vt| T (s) W GAP (%) T (s) TT (s) W GAP (%) T (s) W GAP (%)
M

3
9
1

8 0.41 0.0765 8.8 13.46 13.87 0.0705 1.0 6.60 0.0698 0.0
9 0.86 0.1014 6.2 56.93 57.79 0.0951 0.0 20.33 0.0951 0.0
10 12.04 0.1233 13.4 262.47 274.51 0.1068 0.0 735.92 0.1068 0.0
11 10.06 0.1533 12.8 1073.05 1083.11 0.1337 0.0 2690.60 0.1337 0.0
12 22.17 0.1619 18.3 6908.38 6930.55 0.1378 4.1 7200.00 0.1378 4.1
13 193.66 0.1809 21.5 7000.00 7193.66 0.1557 8.8 7200.00 0.1523 6.8
14 77.45 0.1901 22.7 7000.00 7077.45 0.1684 12.8 7200.00 0.1562 6.0
15 104.04 0.1926 22.0 3000.06 3104.10 0.1926 22.0 7200.00 0.1647 8.8
16 403.84 0.2121 27.6 7000.00 7403.84 0.1863 17.6 8000.00 – –
17 453.53 0.2237 30.2 7000.00 7453.53 0.1994 21.7 8000.00 – –

P
ri
m
a
te

8 0.36 0.1667 23.2 9.44 9.80 0.128 0.0 2.39 0.128 0.0
9 0.77 0.1970 34.2 76.60 77.37 0.1348 3.9 17.96 0.1296 0.0
10 2.42 0.2154 39.7 362.14 364.56 0.1326 2.1 126.75 0.1298 0.0
11 26.24 0.2903 41.4 713.78 740.02 0.1700 0.0 1391.36 0.1700 0.0
12 12.87 0.3143 37.7 6202.03 6214.90 0.2058 4.8 7200.00 0.2058 4.8

M
8
8
7

8 0.31 0.214 17.6 20.06 20.37 0.1763 0.0 6.07 0.1763 0.0
9 1.12 0.2182 14.8 86.97 88.09 0.1860 0.0 24.27 0.1860 0.0
10 3.98 0.2327 11.5 266.12 270.10 0.2078 0.9 239.37 0.2059 0.0
11 7.55 0.2567 16.8 1493.73 1501.28 0.2147 0.6 1975.92 0.2135 0.0
12 20.17 0.2754 28.5 6000.17 6020.34 0.2179 9.7 7200.00 0.2179 9.7
13 17.21 0.2842 24.0 7000.00 7017.21 0.2376 9.1 7200.00 0.2380 9.2
14 125.41 0.3151 27.5 7000.00 7125.41 0.2784 18.0 7200.00 0.2548 10.2
15 235.01 0.3247 16.4 4501.68 4736.69 0.3050 11.0 7200.00 0.3040 10.7
16 137.14 0.3445 31.7 7000.00 7137.14 0.2891 18.6 8000.00 – –
17 673.42 0.3432 30.6 7000.00 7.673.42 0.3102 23.2 8000.00 – –
18 746.71 0.3728 34.7 7000.00 7746.71 0.3440 29.2 8000.00 – –

A
1
0
M

3
9
1

8 0.61 0.0829 11.5 17.11 17.72 0.0735 0.1 14.87 0.0734 0.0
9 1.15 0.1111 10.2 55.43 56.58 0.0998 0.0 9.89 0.0998 0.0
10 2.81 0.1265 11.1 288.58 291.39 0.1124 0.0 197.67 0.1124 0.0
11 6.93 0.1628 13.4 1368.09 1375.02 0.1410 0.0 1197.99 0.1410 0.0
12 9.22 0.1579 12.7 5445.05 5454.27 0.1454 5.2 7200.00 0.1461 5.6
13 27.05 0.1826 18.2 6414.28 6441.33 0.1586 5.8 7200.00 0.1595 6.3
14 72.17 0.2008 21.8 7000.00 7072.17 0.1808 13.1 7200.00 0.1670 5.9
15 464.77 0.2023 20.3 6002.45 6467.22 0.1786 9.7 7200.00 0.1838 12.2
16 359.96 0.2212 27.0 7000.00 7359.96 0.1980 18.4 8000.00 – –
17 426.72 0.2272 27.9 7000.00 7426.72 0.2060 20.5 8000.00 – –

A
1
0
P
ri

8 0.25 0.1541 12.3 22.14 22.39 0.1351 0.0 1.89 0.1351 0.0
9 0.83 0.1958 30.3 78.36 79.19 0.1397 2.4 12.93 0.1364 0.0
10 2.68 0.2482 45.2 280.02 282.7 0.1404 3.1 138.33 0.1361 0.0
11 3.87 0.2741 34.5 1163.34 1167.21 0.1794 0.0 574.74 0.1794 0.0
12 7.44 0.2632 21.7 4751.00 4758.44 0.2162 4.6 7200.00 0.2162 4.6

A
1
0
M

8
8
7

8 0.33 0.2078 10.6 24.12 24.45 0.1858 0.0 9.45 0.1858 0.0
9 3.25 0.2270 13.1 62.79 66.04 0.1972 0.0 9.23 0.1972 0.0
10 9.02 0.2361 8.7 224.59 233.61 0.2156 0.0 276.40 0.2156 0.0
11 6.55 0.2834 20.9 1352.80 1359.35 0.2243 0.0 2253.32 0.2243 0.0
12 10.72 0.2631 21.4 4893.51 4904.23 0.2243 7.8 7200.00 0.2290 9.7
13 62.03 0.3005 26.7 3999.60 4061.63 0.2537 13.1 7200.00 0.2454 10.2
14 318.93 0.3345 32.9 7000.00 7318.93 0.2755 18.5 7200.00 0.2668 15.9
15 273.53 0.3510 27.2 6001.81 6275.34 0.3208 20.4 7200.00 0.2857 10.6
16 442.87 0.3842 35.7 7000.00 7442.87 0.3304 25.2 8000.00 0.2872 13.9
17 429.41 0.4107 39.1 7000.00 7429.41 0.3374 25.9 8000.00 – –
18 326.20 0.3265 21.8 7000.00 7326.20 – – 8000.00 – –

A
1
5
M

3
9
1

8 0.37 0.0851 11.6 15.71 16.08 0.0755 0.4 16.43 0.0752 0.0
9 1.23 0.1213 15.8 69.97 71.20 0.1021 0.0 13.37 0.1021 0.0
10 2.34 0.1305 11.6 448.89 451.23 0.1153 0.0 211.55 0.1153 0.0
11 4.79 0.1645 12.9 1134.28 1139.07 0.1447 1.0 2032.65 0.1433 0.0
12 34.12 0.1736 17.7 6973.20 7007.32 0.1481 3.5 7200.00 0.1492 4.2
13 28.16 0.2013 23.9 6314.64 6342.80 0.1647 7.0 7200.00 0.1642 6.8
14 82.48 0.1999 22.1 4200.82 4283.30 0.1999 22.1 7200.00 0.1713 9.1
15 112.52 0.2102 23.0 2999.48 3112.00 0.2102 23.0 7200.00 0.1799 10.0
16 401.19 0.2282 27.5 6136.33 6537.52 0.2101 21.2 8000.00 – –
17 1200.00 – – – – – – 8000.00 – –

A
1
5
P
ri

8 0.33 0.1775 21.9 21.67 220.00 0.1386 0.0 2.21 0.1386 0.0
9 0.91 0.2095 33.3 139.35 140.26 0.1397 0.0 12.68 0.1397 0.0
10 2.62 0.2302 39.5 288.90 291.52 0.1439 3.2 185.83 0.1393 0.0
11 4.77 0.2763 33.4 921.07 925.84 0.1841 0.0 322.87 0.1841 0.0
12 10.01 0.3348 36.9 6557.32 6567.33 0.2214 4.6 7200.00 0.2214 4.6

A
1
5
M

8
8
7

8 0.30 0.2081 8.5 15.15 15.45 0.1951 2.4 11.61 0.1905 0.0
9 0.95 0.2257 10.5 35.96 36.91 0.2035 0.7 9.70 0.2020 0.0
10 4.01 0.2637 16.4 368.27 372.28 0.2237 1.4 128.84 0.2205 0.0
11 5.85 0.2840 19.1 796.55 802.40 0.2297 0.0 1881.22 0.2297 0.0
12 15.69 0.2966 28.7 6332.15 6347.84 0.2345 9.8 7200.00 – –
13 24.52 0.3199 30.1 7000.00 7024.52 0.2584 13.5 7200.00 0.2527 11.5
14 68.05 0.3249 27.3 7000.00 7068.05 0.3021 21.8 7200.00 0.2714 12.9
15 68.58 0.3509 29.7 3000.63 3069.21 0.3509 29.7 7200.00 0.3050 19.1
16 248.62 0.3741 32.3 7000.00 7248.62 0.3156 19.8 8000.00 – –
17 507.87 0.4128 38.0 7000.00 7507.87 0.3625 29.4 8000.00 – –
18 1200.00 0.4166 37.2 7000.00 8000.00 0.3518 25.7 8000.00 – –

The LB heuristic obtains the same value as Path-edges+ formulation in 46 out of the 129
instances, corresponding to approximately 35.7%. Contrarily, for the instances not completely
solved by the Path-edges+ formulation, using the LB heuristic we obtain better values in 35 out
of the 67 instances, corresponding to approximately 52.2%. These better values were obtained
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Table 3: Computational results for data from the phylogenetics application (continuation).

FP heuristic LB heuristic Path-edges+

M |Vt| T (s) W GAP (%) T (s) TT (s) W GAP (%) T (s) W GAP (%)

A
2
0
M

3
9
1

8 0.55 0.0908 15.2 23.06 23.61 0.0770 0.0 11.59 0.0770 0.0
9 1.09 0.1193 12.5 139.81 140.90 0.1048 0.4 10.39 0.1044 0.0
10 5.05 0.1387 14.9 313.92 318.97 0.1181 0.0 274.01 0.1181 0.0
11 7.80 0.1667 12.0 1672.18 1679.98 0.1467 0.0 1793.47 0.1467 0.0
12 13.85 0.1735 16.6 7000.00 7013.85 0.1514 4.4 7200.00 0.1515 4.4
13 63.21 0.2013 22.1 6113.15 6176.36 0.1715 8.6 7200.00 0.1686 7.0
14 131.56 0.2072 19.7 7000.00 7131.56 0.1914 13.1 7200.00 0.1716 7.2
15 159.84 0.2233 25.8 3000.88 3160.72 0.2233 25.8 7200.00 0.1883 12.0
16 249.02 0.2369 28.5 7000.00 7249.02 0.2080 28.5 8000.00 – –
17 485.08 0.2487 31.1 7000.00 7485.08 0.2299 25.5 8000.00 – –

A
2
0
P
ri

8 0.33 0.2119 32.9 22.53 22.86 0.1461 2.7 0.92 0.1422 0.0
9 2.79 0.1905 24.9 118.05 120.84 0.1431 0.0 9.08 0.1431 0.0
10 5.63 0.2126 32.9 279.21 284.84 0.1474 3.2 119.22 0.1427 0.0
11 8.08 0.2824 33.1 793.28 801.36 0.1889 0.0 569.43 0.1889 0.0
12 8.44 0.3469 37.6 6753.36 6761.80 0.2265 4.5 7200.00 0.2265 4.5

A
2
0
M

8
8
7

8 0.53 0.2284 14.5 16.66 17.19 0.1998 2.3 11.89 0.1953 0.0
9 1.34 0.2493 17.1 34.54 35.88 0.2067 0.0 9.02 0.2067 0.0
10 6.13 0.2705 16.7 176.44 182.57 0.2253 0.0 120.14 0.2253 0.0
11 14.74 0.2815 16.4 1371.93 1386.67 0.2352 0.0 2079.15 0.2352 0.0
12 23.90 0.3000 27.8 3501.27 3525.17 0.2400 9.8 7200.00 – –
13 35.87 0.3124 26.4 4999.56 5035.43 0.2593 11.3 7200.00 0.2639 12.9
14 57.53 0.3363 27.7 5601.28 5658.81 0.2955 17.7 7200.00 0.2728 10.9
15 64.55 0.3628 28.9 4500.37 4564.92 0.3107 17.0 7200.00 0.3110 17.0
16 241.58 0.3954 34.5 7000.00 7241.58 0.3390 23.6 8000.00 – –
17 255.33 0.4375 40.2 7000.00 7255.33 0.3756 30.4 8000.00 – –
18 884.15 0.4255 37.1 7000.00 7884.15 0.3799 29.6 8000.00 – –

A
1
0
0
M

3
9
1

8 0.41 0.1230 15.1 10.22 10.63 0.1044 0.0 9.64 0.1044 0.0
9 1.09 0.1721 16.9 53.45 54.54 0.1430 0.0 13.60 0.1430 0.0
10 5.84 0.1850 11.4 432.61 438.45 0.1640 0.0 279.43 0.1640 0.0
11 7.07 0.2254 9.0 891.78 898.85 0.2058 0.3 3594.00 0.2052 0.0
12 12.29 0.2456 19.1 7000.00 7012.29 0.2106 5.7 7200.00 0.2097 5.3
13 42.28 0.2792 23.4 7000.00 7042.28 0.2304 7.1 7200.00 0.2358 9.2
14 151.32 0.2743 20.5 7000.00 7151.32 0.2550 14.4 7200.00 0.2369 7.9
15 526.22 0.3075 26.2 2999.68 3525.90 0.3075 25.2 7200.00 0.2616 13.2
16 284.37 0.3263 29.4 7000.00 7284.37 0.2818 18.3 8000.00 – –
17 399.88 0.3227 28.3 4034.53 4434.41 0.2747 15.8 8000.00 – –

A
1
0
0
P
ri

8 0.33 0.2907 31.5 11.9 12.23 0.2048 2.8 1.93 0.1991 0.0
9 1.51 0.3454 41.1 94.24 95.75 0.2053 0.9 9.77 0.2035 0.0
10 2.82 0.3642 46.0 347.08 349.90 0.2034 3.3 94.63 0.1966 0.0
11 4.23 0.3741 29.0 1435.08 1439.31 0.2655 0.0 1008.31 0.2655 0.0
12 18.24 0.4084 27.6 4991.84 5010.08 0.3166 6.6 7200.00 0.3166 6.6

A
1
0
0
M

8
8
7

8 0.59 0.3190 14.9 11.56 12.15 0.2714 0.0 2.75 0.2714 0.0
9 1.15 0.3262 13.2 35.52 36.67 0.2833 0.0 8.08 0.2833 0.0
10 2.53 0.3611 15.1 138.28 140.81 0.3064 0.0 144.63 0.3064 0.0
11 5.66 0.4070 21.9 760.88 766.54 0.3177 0.0 3532.92 0.3177 0.0
12 18.02 0.4312 31.5 6893.39 6911.41 0.3265 9.6 7200.00 0.3265 9.6
13 71.48 0.4541 31.4 7000.00 7071.48 0.3579 12.9 7200.00 0.3604 13.5
14 224.58 0.4650 28.6 7000.00 7224.58 0.4028 17.6 7200.00 0.3759 11.7
15 484.61 0.5172 30.8 4500.50 4985.11 0.4451 19.6 7200.00 0.4460 19.8
16 136.14 0.4917 28.4 7000.00 7136.14 0.4235 16.9 8000.00 – –
17 304.20 0.5796 39.0 7000.00 7304.20 0.4747 25.5 8000.00 – –
18 462.54 0.5615 35.3 7000.00 7462.54 – – 8000.00 – –
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for some of the instances with 12 ≤ n ≤ 15, the ones with high size, using less than 7200 seconds
and for which the Path-edges+ formulation is not able to complete the search within the time
limit of 7200 seconds and for instances with 16 ≤ n ≤ 18, using less than 8000 seconds, and for
which the Path-edges+ formulation is only able to find a feasible solution within the time limit
of 8000 for the matrix A10M887 with n = 16. Therefore we remark that the LB heuristic makes
it possible to significantly improve the values for instances with high size. Also, in 52 out of 130
instances, corresponding to 40% of the instances, the FP heuristic followed by the LB heuristic
took less time to obtain the same or a better solution than the Path-edges+ formulation. The
instances A10M887 with n = 18 and A100M887 with n = 18 are the only instances where the LB
heuristic does not obtain an improved solution within the time limit imposed.

Table 4: Computational results for data from the networking application.

FP heuristic LB heuristic Path-edges+

M |Vt| T (s) W GAP (%) T (s) TT (s) W GAP (%) T (s) W GAP (%)

S
1
5

8 0.87 0.5103 26.0 12.51 13.38 0.3778 0.0 9.78 0.3778 0.0
9 0.94 0.6896 43.0 45.40 46.34 0.3932 0.0 13.51 0.3932 0.0
10 2.21 0.7145 40.0 333.79 336.00 0.4286 0.0 173.63 0.4286 0.0
11 16.64 0.9018 30.6 700.35 716.99 0.6260 0.0 1658.17 0.6260 0.0
12 34.89 1.2111 40.4 4287.08 4321.97 0.7220 0.1 7200.00 0.7220 0.1
13 33.65 1.4488 49.3 5999.47 6033.12 0.7474 1.8 7200.00 0.7474 1.8
14 324.75 1.6359 55.4 7000.00 7324.75 0.8239 11.4 7200.00 0.8742 16.5
15 122.24 1.6105 45.7 7000.00 7122.24 1.1941 26.7 7200.00 1.0420 16.0

S
2
0

8 0.44 0.5275 13.5 16.72 17.16 0.4564 0.0 8.21 0.4564 0.0
9 0.78 0.6188 16.4 78.05 78.83 0.5174 0.0 32.42 0.5174 0.0
10 4.98 0.7564 24.2 246.53 251.51 0.5736 0.0 453.74 0.5736 0.0
11 5.12 0.9646 36.9 1194.12 1199.24 0.6193 1.7 1668.14 0.6090 0.0
12 15.20 0.9903 37.3 4745.40 4760.60 0.6347 2.2 7200.00 0.6244 0.6
13 15.05 0.8735 17.1 3999.40 4014.45 0.7515 3.6 7200.00 0.7301 0.8
14 531.09 1.2439 37.5 7000.00 7531.09 0.8781 11.5 7200.00 0.7967 2.5
15 199.66 1.3002 32.5 7000.00 7199.66 1.1071 20.5 7200.00 0.9140 3.7
16 121.24 1.3148 32.9 6419.19 6540.43 1.1574 23.8 8000.00 1.0011 11.9
17 258.48 1.6955 42.8 7000.00 7258.48 1.4280 32.0 8000.00 – –
18 1167.63 1.6959 40.0 7000.00 8000.00 1.4539 30.1 8000.00 – –
19 1035.78 1.9243 46.4 7000.00 8000.00 – – 8000.00 – –
20 1127.90 1.9348 45.1 7000.00 8000.00 – – 8000.00 – –

A
1
0
S
1
5

8 0.52 0.5282 24.5 29.77 30.29 0.4189 4.8 5.74 0.3987 0.0
9 1.03 0.6521 36.4 56.61 57.64 0.4150 0.0 9.86 0.4150 0.0
10 3.15 0.6368 28.9 205.55 208.70 0.4528 0.0 170.62 0.4528 0.0
11 5.96 0.9739 32.1 1238.49 1244.45 0.6612 0.0 895.27 0.6612 0.0
12 17.35 1.2981 41.6 5530.32 5547.67 0.7634 0.6 7200.00 0.7634 0.6
13 21.64 1.3191 41.5 6400.75 6422.39 0.8002 3.5 7200.00 0.7891 2.1
14 98.69 1.5418 48.2 5600.16 5698.85 1.2005 33.5 7200.00 0.8276 3.5
15 116.70 1.7335 46.5 2800.59 2917.29 1.5422 39.9 7200.00 1.1003 15.7

A
1
0
S
2
0

8 0.31 0.4934 2.6 22.57 22.88 0.4814 0.1 11.54 0.4807 0.0
9 0.73 0.6208 12.1 49.83 50.56 0.5460 0.1 12.90 0.5454 0.0
10 4.12 0.7748 21.9 736.18 740.30 0.6048 0.0 206.08 0.6048 0.0
11 6.18 0.9102 29.4 1054.94 1061.12 0.6435 0.1 3055.13 0.6429 0.0
12 42.26 1.0354 37.9 6938.02 6980.28 0.6603 2.7 7200.00 0.6596 2.6
13 30.20 1.1687 35.8 7000.00 7030.20 0.7811 4.0 7200.00 0.7821 4.1
14 86.55 1.3491 39.6 7000.00 7086.55 0.9182 11.3 7200.00 0.8830 7.7
15 97.83 1.5686 41.7 6000.47 6098.30 1.2649 27.7 7200.00 0.9413 2.8
16 397.65 1.7692 47.7 7000.00 7397.65 1.3286 30.3 8000.00 – –
17 174.72 1.6816 39.5 7000.00 7174.72 1.5008 32.2 8000.00 – –
18 400.47 1.9230 44.5 7000.00 7400.47 – – 8000.00 – –
19 1200.00 – – – – – – 8000.00 – –
20 1200.00 – – – – – – 8000.00 – –

A
1
5
S
1
5

8 0.55 0.6086 32.8 29.64 30.19 0.4102 0.2 3.79 0.4092 0.0
9 1.54 0.6710 36.5 69.70 71.24 0.4260 0.0 10.37 0.4260 0.0
10 2.20 0.6635 30.0 384.48 386.68 0.4646 0.0 119.43 0.4646 0.0
11 5.13 0.9557 29.0 587.64 592.77 0.6788 0.0 902.20 0.6788 0.0
12 18.38 1.0718 27.5 4821.25 4839.63 0.7841 0.9 7200.00 0.7841 0.9
13 35.65 1.3749 42.9 7000.00 7035.65 0.8528 8.0 7200.00 0.8105 3.2
14 57.74 1.5761 48.7 7000.00 7057.74 1.0515 23.1 7200.00 0.9138 11.5
15 154.92 1.8676 50.0 6000.55 6155.47 1.5214 38.6 7200.00 1.0738 13.0

A
1
5
S
2
0

8 0.41 0.5697 13.5 9.95 10.36 0.4928 0.0 7.96 0.4928 0.0
9 1.39 0.7036 20.5 67.17 68.56 0.5593 0.0 11.75 0.5593 0.0
10 6.37 0.8080 23.2 217.65 224.02 0.6215 0.2 179.48 0.6204 0.0
11 7.21 1.0445 36.8 738.29 745.50 0.6608 0.2 1804.07 0.6598 0.0
12 28.14 1.0764 37.6 6794.65 6822.79 0.6771 0.8 7200.00 0.6771 0.8
13 31.33 1.1518 32.9 5999.35 6030.68 0.8122 4.8 7200.00 0.7917 2.4
14 42.68 1.1830 29.9 7000.00 7042.68 0.9105 8.9 7200.00 0.8884 6.7
15 417.66 1.6028 38.9 6001.44 6419.10 1.4244 31.2 7200.00 1.0100 3.0
16 145.24 1.4633 35.2 7000.00 7145.24 1.3178 28.1 8000.00 – –
17 520.93 1.8673 44.3 6749.68 7270.61 1.5765 34.0 8000.00 – –
18 1200.00 – – – – – – 8000.00 – –
19 1200.00 – – – – – – 8000.00 – –
20 1200.00 – – – – – – 8000.00 – –

For the networking application data, the computational times used by the FP heuristic are
very small and most of the instances use less than 200 seconds. Only 24 out of 115 instances use
more than 200 seconds to obtain a feasible solution. The FP heuristic finds a feasible solution
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Table 5: Computational results for data from the networking application (continuation).

FP heuristic LB heuristic Path-edges+

M |Vt| T (s) W GAP (%) T (s) TT (s) W GAP (%) T (s) W GAP (%)

A
2
0
S
1
5

8 0.53 0.6021 30.3 25.76 26.29 0.4197 0.0 7.71 0.4197 0.0
9 0.62 0.7094 38.4 52.90 53.52 0.4369 0.0 8.52 0.4369 0.0
10 2.82 0.6806 30.0 305.56 308.38 0.4766 0.0 158.62 0.4766 0.0
11 2.61 0.8724 20.2 1594.18 1596.79 0.6964 0.0 909.73 0.6964 0.0
12 22.85 1.3066 39.9 6245.47 6268.32 0.8048 2.5 7200.00 0.8048 2.5
13 12.87 1.1160 28.4 7000.00 7012.87 0.8315 3.8 7200.00 0.8307 3.7
14 201.43 1.6262 51.0 7000.00 7201.43 0.9661 17.5 7200.00 1.0304 22.6
15 77.09 2.0582 53.3 7000.00 7077.09 1.5668 38.7 7200.00 1.2272 21.7

A
2
0
S
2
0

8 0.47 0.5883 14.2 23.28 23.75 0.5049 0.0 13.00 0.5049 0.0
9 1.44 0.7646 25.0 66.44 67.88 0.5733 0.0 11.45 0.5733 0.0
10 21.89 0.8726 27.1 603.35 625.24 0.6359 0.0 178.03 0.6359 0.0
11 9.52 0.9222 26.6 968.82 978.34 0.6871 1.5 944.07 0.6768 0.0
12 7.89 1.0314 33.3 6672.18 6680.07 0.6947 1.0 7200.00 0.6947 1.0
13 28.89 1.1722 32.8 4999.51 5028.40 0.8350 5.7 7200.00 0.8120 3.0
14 62.65 1.3819 38.6 7000.00 7062.65 0.9934 14.5 7200.00 0.8989 5.5
15 126.83 1.4517 31.6 6002.27 6129.10 1.2953 23.3 7200.00 0.9988 0.5
16 165.80 1.7468 44.5 7000.00 7165.80 1.5153 36.0 8000.00 – –
17 253.39 1.8681 43.0 7000.00 7253.39 1.6227 34.4 8000.00 – –
18 685.26 2.1629 48.4 7000.00 7685.26 – – 8000.00 – –
19 915.00 1.9522 42.0 7000.00 7915.00 – – 8000.00 – –
20 820.69 2.1985 46.8 7000.00 7820.69 – – 8000.00 – –

A
1
0
0
S
1
5

8 0.37 0.7342 20.0 19.72 20.09 0.5937 1.1 8.56 0.5873 0.0
9 1.00 0.9982 38.7 68.25 69.25 0.6116 0.0 9.63 0.6116 0.0
10 4.13 1.0909 38.7 405.85 409.98 0.6685 0.0 142.88 0.6685 0.0
11 5.16 1.5028 34.9 1037.53 1042.69 1.0214 4.2 700.94 0.9782 0.0
12 81.42 1.8071 39.7 4423.61 4505.03 1.1363 4.1 7200.00 1.1363 4.1
13 72.93 2.0986 47.4 7000.00 7072.93 1.2298 10.3 7200.00 1.1860 7.0
14 142.18 2.5720 56.8 7000.00 7142.18 1.4485 23.2 7200.00 1.3554 18.0
15 89.61 2.5570 46.0 6566.83 6656.44 2.1839 36.8 7200.00 1.6641 17.0

A
1
0
0
S
2
0

8 0.47 0.9234 24.3 12.28 12.75 0.7062 1.0 8.53 0.6990 0.0
9 0.94 1.0606 24.8 51.17 52.11 0.7972 0.0 12.36 0.7972 0.0
10 2.92 1.2049 26.5 287.18 290.10 0.8927 0.8 137.65 0.8853 0.0
11 7.25 1.3079 27.5 585.28 592.53 0.9477 0.0 1042.36 0.9477 0.0
12 23.56 1.3210 29.6 7000.00 7023.56 0.9756 4.7 7200.00 0.9756 4.7
13 25.37 1.6664 35.9 7000.00 7025.37 1.1514 7.3 7200.00 1.1311 5.8
14 46.40 1.9935 41.7 7000.00 7046.40 1.4268 18.5 7200.00 1.2801 9.2
15 146.13 2.2779 42.3 6002.14 6148.27 1.4971 12.2 7200.00 1.4284 8.0
16 354.18 2.2987 42.8 7000.00 7354.18 1.7614 25.3 8000.00 – –
17 259.15 2.6641 46.0 7000.00 7259.15 2.2377 35.7 8000.00 – –
18 410.94 2.6754 43.8 7000.00 7410.94 – – 8000.00 – –
19 654.56 2.7688 44.7 7000.00 7654.56 – – 8000.00 – –
20 1200.00 – – – – – – 8000.00 – –

S
S
1
5

8 0.47 0.5617 28.8 33.34 33.81 0.3997 0.0 4.51 0.3997 0.0
9 1.67 0.6899 39.8 45.30 46.99 0.4154 0.0 8.50 0.4154 0.0
10 2.08 0.6367 29.1 238.66 240.74 0.4517 0.0 103.65 0.4517 0.0
11 14.74 0.9298 29.9 1031.54 1046.28 0.6518 0.0 762.98 0.6518 0.0
12 12.62 1.2374 39.8 5610.45 5623.07 0.7478 0.4 7200.00 0.7478 0.4

S
S
2
0

8 0.70 0.5223 11.7 46.74 47.44 0.4614 0.1 7.67 0.4610 0.0
9 0.73 0.5625 7.2 41.39 42.12 0.5227 0.1 12.21 0.5220 0.0
10 4.07 0.7328 21.1 455.65 459.72 0.5784 0.0 280.8 0.5784 0.0
11 16.60 0.9079 32.4 563.50 580.10 0.6136 0.0 1108.13 0.6136 0.0
12 34.94 0.8805 28.9 6445.89 6480.83 0.6287 0.4 7200.00 0.6287 0.4
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within the runtime imposed for all instances, except for matrix A10S20 with 19 ≤ n ≤ 20, matrix
A15S20 with 18 ≤ n ≤ 20 and matrix A100S20 with n = 20, and, therefore, we did not run the
LB heuristic for those matrices.

The LB heuristic obtains the same solution value as the one obtained by the Path-edges+

formulation in 44 out of the 109 instances, corresponding to approximately 40.4% of the instances.
It is worth noting that the LB heuristic obtains a better solution value for 13 out of the 53
instances that were not completely solved by the Path-edges+ formulation, for approximately
24.5% instances. In 28 out of 115 instances, corresponding to 24.3%, the FP heuristic followed
by the LB heuristic took less time to obtain the same or a better solution than the Path-edges+

formulation. The LB heuristic obtains a better feasible solution than the one obtained by the
FP heuristic, for all instances with n ≤ 17 and for matrix S20 with n = 18. Comparatively, the
Path-edges+ formulation, only, obtains feasible solutions for instances with n ≤ 15.

We noticed that if we increase the runtime limit to 2500 seconds, the FP heuristic obtains
a feasible solution for all the instances. Thus, we run the FP heuristic with the runtime limit
of 7200 seconds for several instances with n ≥ 20 and verified that this matheuristic obtains a
feasible solution for instances up to n = 23.

The next two tables, Tables 6 and 7, display the average computational time in seconds (in
Table 6) and the average GAP in % (in Table 7), respectively, for the instances with the same
number of leaves as well as their corresponding standard deviation values, for the FP heuristic,
the LB heuristic and the Path-edges+ formulation.

Table 6: Average and Standard Deviation (SD) values for the computational time (in seconds)
of the FP heuristic, LB heuristic and Path-edges+ formulation.

n FP heuristic LB heuristic Path-edges+

8
Average 0.45 19.89 7.68

SD 0.14 8.43 4.21

9
Average 1.22 67.78 12.73

SD 0.59 28.09 5.41

10
Average 4.85 329.55 206.57

SD 4.10 128.06 130.81

11
Average 8.38 1045.80 1568.49

SD 5.20 320.01 855.68

12
Average 21.36 5915.44 7200.00

SD 15.15 1032.85 0.00

13
Average 43.65 6261.99 7200.00

SD 39.60 1002.03 0.00

14
Average 145.18 6720.11 7200.00

SD 123.38 732.14 0.00

15
Average 202.12 5044.09 7200.00

SD 149.83 1573.13 0.00

16
Average 272.59 6903.70 8000.00

SD 114.15 259.69 0.00

17
Average 385.87 6770.30 –

SD 139.26 790.23 –

18
Average 657.36 7000.00 –

SD 266.77 0.00 –

1
Average 856.52 – –

SD 179.99 – –

18
Average 910.35 – –

SD 126.79 – –

The average computational time of the FP heuristic ranges from 0.45 to 910.35 seconds and
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Table 7: Average and Standard Deviation (SD) values for the GAP (%) of the FP heuristic, LB
heuristic and Path-edges+ formulation.

n FP heuristic LB heuristic Path-edges+

8
Average 18.23 0.70 0.00

SD 8.31 1.23 0.00

9
Average 23.44 0.31 0.00

SD 11.87 0.87 0.00

10
Average 24.99 0.67 0.00

SD 11.35 1.19 0.00

11
Average 25.66 0.36 0.00

SD 9.12 0.90 0.00

12
Average 30.27 4.26 4.22

SD 8.62 3.08 3.23

13
Average 30.59 7.50 6.37

SD 9.28 3.46 3.78

14
Average 34.91 17.13 9.87

SD 12.08 5.73 5.31

15
Average 33.94 24.95 11.74

SD 10.80 9.03 6.01

16
Average 33.71 22.79 11.93

SD 6.57 5.49 3.36

17
Average 37.14 27.59 –

SD 6.25 5.94 –

18
Average 38.10 28.64 –

SD 7.67 2.00 –

19
Average 44.39 – –

SD 2.23 – –

20
Average 45.95 – –

SD 1.21 – –

the average GAP ranges from 18.23 to 45.95%. The average time of the LB heuristic ranges from
19.89 to 7000 seconds and the average GAP ranges from 0.31 to 28.64%. It is worth noting that
for n < 12 the average GAP of the LB heuristic is less than 1%. The FP heuristic finds a feasible
solution very quickly and the LB heuristic finds good solutions.

Finally, we remark that, besides the FP heuristic discussed, we also implemented and tested
the Objective Feasibility Pump (OFP) and the Reweighted OFP (ROFP) presented in [4]. Among
the two, the ROFP obtained better results. However, when the number of leaves of the instances
increase, both were unable to find an integer feasible solution within the imposed time limit for
more instances than our implementation of the FP.

6 Conclusions

We have described matheuristic procedures to find feasible solutions to the MWTR problem,
namely, the FP (Feasibility Pump) and the LB (Local Branching) heuristics. The FP heuristic is
a constructive matheuristic that relies upon a relax-and-fix strategy [23] to obtain a good feasible
solution to the problem. The LB heuristic uses a local branch strategy [24] to improve a feasible
solution. Our computational results show that the FP heuristic is fast in obtaining feasible
solutions for the MWTR problem, and the LB heuristic can be used to improve the obtained
feasible solution. Although both matheuristics can be used independently, the best strategy is to
use them together, starting from the FP heuristic and using the LB heuristic after.

We report computational results for instances with the size n of leaves varying between 5
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and 20. The best approach to obtain solutions to the problem is the MILP model Path-edges+

formulation. However, we can use it to obtain solutions to the problem instances having a
maximum of n = 15 leaves. The matheuristics are simple heuristics based on a MIP model and
can significantly improve a previously obtained solution. Although they are time-consuming, they
are both able to improve several feasible solutions and able to obtain feasible solutions to instances
unsolved with the MIP model. In the literature and by using a MIP model-based procedure one
can find feasible solutions to the problem instances having, at most, n = 15 leaves. By using
the proposed matheuristics we can obtain feasible solutions to the problem instances having until
n = 17 leaves, which is an increase in the size of the instances that can be solved using MIP
model-based procedures.

When using MIP model-based procedures, the FP and the LB heuristics are a good choice in
obtaining feasible solutions for the MWTR problem and can be used together for better quality
solutions and with very competitive computational times.
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