
Vol.:(0123456789)

Operational Research (2022) 22:2605–2630
https://doi.org/10.1007/s12351-021-00622-9

1 3

ORIGINAL PAPER

Optimal resource allocation for multiclass services 
in peer‑to‑peer networks via successive approximation

Shiyong Li1 · Wei Sun1 · Huan Liu1

Received: 13 November 2019 / Revised: 30 November 2020 / Accepted: 9 January 2021 / 
Published online: 25 January 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Peer-to-peer (P2P) networks support a wide variety of network services including 
elastic services such as file-sharing and downloading and inelastic services such as 
real-time multiparty conferencing. Each peer who acquires a service will receive 
a certain level of satisfaction if the service is provided with a certain amount of 
resource. The utility function is used to describe the satisfaction of a peer when 
acquiring a service. In this paper we consider optimal resource allocation for elastic 
and inelastic services and formulate a utility maximization model which is an intrac-
table and difficult non-convex optimization problem. In order to resolve it, we apply 
the successive approximation method and approximate the non-convex problem to 
a serial of equivalent convex optimization problems. Then we develop a gradient-
based resource allocation scheme to achieve the optimal solutions of the approxima-
tions. After a serial of approximations, the proposed scheme can finally converge to 
an optimal solution of the primal utility maximization model for resource allocation 
which satisfies the Karush–Kuhn–Tucker conditions.
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1 Introduction

Nowadays, peer-to-peer (P2P) networks have become an important network archi-
tecture supporting file sharing and video distribution over the Internet. P2Ps are 
different from traditional client/server data networks, where the performance 
mainly depends on a small number of powerful servers. In P2Ps the role of each 
peer is treated as the same. Each peer can not only serve as a server to provide 
network services for other peers, but also serve as a client to obtain services from 
others, thus avoiding the impact of server failure in the traditional networks. 
They can generate multiple routes between service providers and customers, thus 
improving the network throughput and routing optimization Wang et al. (2019). 
In recent years, many research scholars have carried out studies on P2Ps and 
applied them into various scenarios, e.g., distributed storage Yan et  al. (2017), 
edge-cloud computing Song et  al. (2020), multipath industrial networks Song 
et al. (2020), and vehicular networks Wang et al. (2018).

P2Ps can support a wide variety of network services such as file-sharing and 
video conferencing, e.g., Tencent meeting, Zoom, and are known to cause much 
network traffic over the Internet through various P2P protocols, e.g., BitTor-
rent, EDonkey, VoIP. In fact, each peer has a certain level of satisfaction when 
it requests a network service, which can be described as a form of utility func-
tion. Based on the shapes of utility functions, network services can be classified 
into two categories (Lee et  al. 2005; Hande et  al. 2007; Li et  al. 2015, 2019). 
One type is the traditional data services, such as file download and upload, which 
are not very sensitive to the bandwidth requirements. These services are elas-
tic in their bandwidth requirement intervals. Usually a concave utility function 
is used to describe peer’s satisfaction for acquiring an elastic service. The other 
type is related to delay or bandwidth sensitive multimedia services, such as real-
time streaming video service. These services are known as to be inelastic in their 
bandwidth requirement intervals. They usually have high requirements for band-
width resource so as to guarantee certain level of QoS. The utility function for an 
inelastic service is often nonconcave, e.g., sigmoidal or general.

In recent years, many scholars have investigated the resource allocation for 
both elastic and inelastic services in P2Ps and presented some interesting resource 
allocation schemes. Firstly, resource allocation for elastic services mainly con-
centrates on resource pricing strategies, e.g., Eger and Killat (2007a, b), Kumar 
et al. (2011), Koutsopoulos and Iosifidis (2010), Li and Sun (2016) and Li et al. 
(2019). In this type of research, a resource pricing scheme is proposed to bal-
ance the resource requests and provisions, thus service providers adjust their 
bandwidth allocation according to the difference between the prices provided by 
service requesters and the prices charged by service providers, and finally achieve 
a weighted fairness among service requesters. Since the utility functions of elas-
tic services are usually concave, then the resource allocation problem for elas-
tic services is a convex optimization problem, which can be solved through the 
first order Lagrangian method. Besides resource pricing mechanisms, reputation-
based methods are also used to encourage cooperation amongst selfish peers so as 
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to promote each peer to provide resource for others and achieve efficient resource 
allocation, e.g., Satsiou and Tassiulas (2010), Gupta et al. (2016) and Goswami 
et al. (2017).

P2Ps also provide a variety of inelastic services such as VoIP and real-time con-
ferencing (e.g., Tencent meeting), however, the resource allocation problem of ine-
lastic services is much more difficult than that of elastic services because the utility 
functions of inelastic services are often non-concave. Thus, how to achieve effec-
tive resource allocation for inelastic services becomes very important, which is also 
a crucial challenge and difficult problem. For example, P2P multiparty conferenc-
ing applications are considered in Chen et  al. (2012), where a problem of utility 
maximization for resource allocation is formulated. In order to solve the nonstrictly 
concave optimization problem, a primal-dual distributed algorithm is presented and 
proven to converge to the global optimum under the proposed sufficient conditions. 
Resource allocation for inelastic services are also investigated in Li et  al. (2017), 
and a heuristic algorithm using particle swarm optimization (PSO) is proposed to 
solve the difficult nonconvex optimization problem. As for the scenario with both 
elastic and inelastic services, the utility maximization model for resource allocation 
is also an intricate and difficult problem.

In this paper we consider resource allocation problem for P2Ps where both elastic 
and inelastic services are coexisting. We formulate the utility maximization (social 
welfare) model for resource allocation, i.e., the total satisfaction of all peers in 
the networks when they acquire these services. However, the utility maximization 
model is a non-convex problem which is hard to resolve. By applying the succes-
sive approximation method, we transform the non-convex problem into an equiv-
alent convex optimization problem and develop a gradient-based resource alloca-
tion scheme to achieve the optimal solution of the approximations. After a serial of 
approximations, the proposed scheme can finally converge to an optimal solution of 
the primal utility maximization model for resource allocation which also satisfies 
the Karush–Kuhn–Tucker (KKT) conditions.

The rest of this paper is summarized as follows: We review research work on 
resource allocation for elastic and inelastic service in P2P networks in Sect. 1. Then 
we introduce the utility maximization model for resource allocation of both elastic 
and inelastic services and formulate a serial of approximations in Sect. 2. In Sect. 3 
we develop a gradient-based resource allocation scheme to converge to the optimum 
of the primal resource allocation problem. Then we give some numerical examples 
to illustrate the performance of the proposed scheme in Sect. 4. Finally we conclude 
this paper in Sect. 5.

2  Related work

Realizing effective resource allocation in P2P networks has become an impor-
tant research field and received extensive attention in recent years. P2P networks 
can provide elastic services such as file sharing and downloading. For the resource 
allocation of this type of services, in order to reduce the “free-riding” due to the 
peers’ selfish nature, many scholars proposed incentive mechanisms to encourage 
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each peer to provide its own upload bandwidth for others, such as resource pricing, 
reputation-based schemes, and so on. Eger and Killat (2007a) presented a resource 
pricing scheme to achieve a fair bandwidth allocation among service requesters. 
They further expanded the scheme to achieve a weighted fairness among service 
requesters, such that service providers could adjust their service rates and offered 
prices (Eger and Killat 2007b). Later, Koutsopoulos and Iosifidis (2010) considered 
bandwidth allocation in a star topology P2P network where the peer access link to 
the backbone is the capacity bottleneck. They developed the problem of maximiz-
ing total network utility through controlling the bandwidth allocation for down-
load and upload of each peer, respectively. Then Kumar et  al. (2011) considered 
computing resources shared by users in P2Ps and proposed a resource pricing and 
allocation scheme. Pacifici et al. (2016) considered cache bandwidth allocation for 
P2P file-sharing networks which is formulated as a Markov decision process, and 
proposed three approximations to the optimal cache bandwidth allocation policy, so 
as to minimize inter-ISP traffic. Recently, Li and Sun (2016) and Li et  al. (2019) 
applied the first order Lagrangian method and low-pass filtering scheme to design 
a novel scheme of resource pricing and allocation. Antal and Vinkó (2016) investi-
gated max–min fair bandwidth allocation in BitTorrent communities and proposed 
an algorithm to realize max-min fairness bandwidth allocation in multi-swarm P2P 
content sharing community. Li et  al. (2020) considered fair bandwidth allocation 
of access links in P2P file-sharing networks and developed a coupled network-wide 
utility maximization model which aims at achieving several kinds of fairness among 
requesting peers.

Besides resource pricing schemes, reputation-based mechanisms are also used to 
promote cooperation between selfish peers and achieve reasonable resource alloca-
tion for peers. For example, Satsiou and Tassiulas (2010) assumed each peer could 
earn its reputation analogous to its contributions and presented a reputation-based 
resource allocation scheme. Later, Gupta et al. (2016) described a reputation-based 
probabilistic resource allocation mechanism for avoiding free riding in unstructured 
P2P networks. Kang and Wu (2015) proposed a credit-based incentive mechanism 
to encourage peers to cooperate with each other in a heterogeneous network consist-
ing of wired and wireless peers. The mechanism can provide differentiated service 
to peers with different credits through biased resource allocation. Goswami et  al. 
(2017) investigated a reputation-based resource allocation mechanism through two 
non-cooperative games in P2P networks and proved evolutionary stability of reputa-
tion-based resource allocation (Goswami et al. 2018).

P2P networks can also support inelastic services such as live streaming services. 
Therefore, to achieve reasonable resource allocation for inelastic services is also 
very important. Liang et al. (2011) investigated optimal bandwidth sharing in mul-
tiswarm multiparty P2P video-conferencing systems. Chen et al. (2012) considered 
resource allocation for P2P multiparty conferencing applications where quality of 
service (QoS) guarantee is a crucial challenge, and formulated the resource allo-
cation problem as utility maximization. Liu et al. (2015) considered resource allo-
cation in underprovisioned multioverlay peer-to-peer live video sharing services. 
They designed various objective functions for the upload bandwidth allocation prob-
lem and showed how optimal solutions could be computed using a bipartite flow 
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network. Rohmer et  al. (2015) investigated the problem of maximizing the P2P 
streaming system capacity by effectively alternating between different resource allo-
cation strategies, and combined different, even potentially conflicting, performance 
objectives when deciding which resource allocation strategy to use for the current 
time period. Mostafavi and Dehghan (2016) considered bandwidth sharing and allo-
cation in helper-assisted P2P streaming using non-cooperative game theory and dou-
ble auction, and proposed an algorithm to reach significant performance improve-
ments in terms of utility per selling helpers. They Mostafavi and Dehghan (2017) 
also considered resource allocation for HD live streaming and proposed a decen-
tralized, stochastic approximation helper selection mechanism which is adaptable to 
supply and demand pattern of various video channels. Recently, Li et al. (2017) also 
developed a utility maximization model for resource allocation of P2P inelastic ser-
vices. In order to resolve the intrinsically difficult nonconvex optimization, they pre-
sented a heuristic algorithm using PSO to achieve the optimal resource allocation.

In this paper we consider resource allocation for multiclass services and intro-
duce a utility maximization model for resource allocation, which is also a non-con-
vex optimization problem. We apply successive approximation method to resolve 
the non-convex optimization, and approximate the primal problem into an equiva-
lent convex optimization problem. The approximate approach is very useful in deal-
ing with intricate difficult optimization problems (Rismanchian and Lee 2018). The 
successive approximation method is first introduced in Marks and Wright (1978). It 
has been applied into power control problems (Tran and Hong 2010; Vo et al. 2011), 
wireless random access problem (Vo et  al. 2012), bandwidth allocation problems 
in single-path networks (Vo et  al. 2013) and multipath networks (Vo et  al. 2014), 
and cloud resource allocation problem for enterprise applications migration (Li 
and Sun 2020). This method is generally composed of two parts: inner-iterations 
and outer-iterations, and requires inner-iterations to converge to the optimum of 
the approximation problem. We prove the convergence of the resource allocation 
scheme derived from successive approximation method within a certain number of 
inner-iterations and illustrate the performance with some numerical examples.

3  Resource allocation model

3.1  Services and utility functions

P2P networks support a wide variety of network services. Each peer who acquires 
a service will receive a certain level of satisfaction if the service is provided with 
a certain amount of resource. The utility function derived from economics is found 
useful to describe the satisfaction of a peer when acquiring a service. According 
to the different shapes of utility functions, they can be divided into two categories: 
elastic services and inelastic services (Lee et al. 2005; Hande et al. 2007; Li et al. 
2015). The former one mainly refers to traditional data services such as file upload-
ing and downloading services in P2P file-sharing networks. The utility functions for 
this type of services are generally concave. The latter one is mainly related to mul-
timedia video and audio services such as P2P multiparty conferencing services and 
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VoIP over P2P networks. This type of services are usually very sensitive to granted 
resources and the QoS will drop drastically if resources are below a certain thresh-
old. They usually have non-concave utility functions, such as sigmoidal functions. 
The shapes of utility functions of elastic and inelastic services are generally illus-
trated in Fig. 1. We adopt the utility functions proposed for resource allocation of 
services in IP networks (Lee et al. 2005; Hande et al. 2007; Li et al. 2015). If a peer 
acquires an elastic service s, it will have a concave utility as follows

and if it acquires an inelastic service r, then it will have a sigmoidal utility as follows

where y is the service rate, w is the willing-to-pay of the peer, a and b are parameters 
of the inelastic service. We find that for inelastic service r, there is a demarcation 
point y0 that divides the utility function into a convex part and a concave part, that 
is, d2Ur(y)∕dy2 > 0 if y < y0 , and d2Ur(y)∕dy2 < 0 if y > y0.

3.2  Model description

Consider a P2P network which is composed of a set of peers, a set S of elastic services 
and a set R of inelastic services. Each peer in the network acquires at least one service, 
elastic or inelastic. For example, a peer who is downloading files from other peers is 
also interested in taking part in a P2P multiparty conferencing. On the other hand each 
peer can also provide one or several services for others. Therefore, each peer acts as 
both a service customer and a service provider. In P2P networks, each peer uses its 
access link not only to obtain services from other peers, such as downloading files, but 
also to provide services for other peers, such as uploading files. Therefore, the upload 
bandwidth of a peer becomes a rare resource in the network, and other peers will com-
pete for the upload bandwidth so as to obtain services. Therefore, the P2P networks are 

(1)Us(y) = w log(y + 1)

(2)Ur(y) =
w

1 + e−a(y−b)
−

w

1 + eab

Fig. 1  Utility functions for 
elastic and inelastic services
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faced with the problem of how to allocate the peers’ upload bandwidth reasonably and 
effectively among service requesters, which is the main aim of this work.

Let the set P be peers acting as service providers that offer upload bandwidth to 
requesters. Also define the sets Cs and Cr of peers acting as service customers that 
request elastic services and inelastic services, respectively. Introduce xs

pc
 and xr

pc
 as the 

service rates offered by service provider p for customer c who requests elastic service s 
and inelastic service r, respectively. Then, each peer c ∈ Cs receives a total bandwidth 
ys
c
 offered by its providers Ps(c) when it requests elastic service s, and peer c ∈ Cr 

obtains a total bandwidth yr
c
 offered by its providers Pr(c) when it requests inelastic 

service r. Finally, the total bandwidth allocation of service provider p does not exceed 
its access link capacity Cp.

Then we formulate the resource allocation for multiclass services in P2P networks 
as the following optimization problem

Here, in the resource allocation problem P1, the objective is to maximize the aggre-
gated utility of obtained bandwidth ys

c
 and yr

c
 over all service customers under the 

constraints that each service provider offers no more than its own access link capac-
ity. As described by the equality of the resource allocation model, the aggregated 
bandwidth provision ys

c
 ( yr

c
 ) for elastic service s (inelastic service r) of service 

customer c is the sum of the rates xs
pc

 ( xr
pc

 ) that its service providers grant. Here, 
xsmin
pc

≥ 0 ( xrmin
pc

≥ 0 ) is the minimal resource requirement of customer c from 
provider p for elastic service s (inelastic service r). Similarly, xsmax

pc
 ( xrmax

pc
 ) is the 

maximal resource requirement of customer c from provider p for elastic service s 
(inelastic service r). Also, as described by the inequality in the optimization prob-
lem above, the bandwidth provision of provider p is constrained by its own upload 
capacity of access link, i.e. Cp.

3.3  Model analysis

In this part we give an analysis on the resource allocation problem P1 for multiclass 
services in P2P networks. Firstly we obtain the Lagrangian

(3)

�� ∶ max
∑

c∶c∈Cs

Us
c
(ys

c
) +

∑

c∶c∈Cr

Ur
c
(yr

c
)

subject to
∑

p∶p∈Ps(c)

xs
pc
= ys

c
,

∑

p∶p∈Pr(c)

xr
pc
= yr

c
,

∑

c∶c∈Cs(p)

xs
pc
+

∑

c∶c∈Cr(p)

xr
pc
≤ Cp,

over xsmin
pc

≤ xs
pc
≤ xsmax

pc
,

xrmin
pc

≤ xr
pc
≤ xrmax

pc
.
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where � is the price vector with elements �s
c
 and �r

c
 , which can be interpreted as the 

prices per unit bandwidth paid by customer c when acquiring elastic service s and 
inelastic service r, respectively; � is the price vector with element �p , which can be 
thought as the price per unit bandwidth charged by provider p when offering band-
width allocation for customers; � is the service rate matrix with elements xs

pc
 and xr

pc
 

for elastic service s and inelastic service r of customer c, respectively; � is the rate 
vector with elements ys

c
 for elastic service s and yr

c
 for inelastic service r of customer 

c.
We rewrite the Lagrangian (4) as following

We find the first part in (5) is separable in variables ys
c
 and yr

c
 , and the second part is 

separable in variables xs
pc

 and xr
pc

 . Thus the objective function of the dual problem is 
described as

where

(4)

LP1(�, �;�,�) =
∑

c∶c∈Cs

Us
c
(ys

c
) +

∑

c∶c∈Cr

Ur
c
(yr

c
)

+
∑

c∶c∈Cs

�s
c

(

∑

p∶p∈Ps(c)

xs
pc
− ys

c

)

+
∑

c∶c∈Cr

�r
c

(

∑

p∶p∈Pr(c)

xr
pc
− yr

c

)

+
∑

p∶p∈P

�p

(

Cp −
∑

c∶c∈Cs(p)

xs
pc
−

∑

c∶c∈Cr(p)

xr
pc

)

,

(5)

LP1(�, �;�,�) =
∑

c∶c∈Cs

(

Us
c
(ys

c
) − �s

c
ys
c

)

+
∑

c∶c∈Cr

(

Ur
c
(yr

c
) − �r

c
yr
c

)

+
∑

c∶c∈Cs

∑

p∶p∈Ps(c)

xs
pc

(

�s
c
− �p

)

+
∑

c∶c∈Cr

∑

p∶p∈Pr(c)

xr
pc

(

�r
c
− �p

)

+
∑

p∶p∈P

�pCp.

(6)

D(�,�) = max
�,�

LP1(�, �;�,�)

=
∑

c∶c∈Cs

P
s(�s

c
) +

∑

c∶c∈Cr

P
r(�r

c
)

+
∑

c∶c∈Cs

∑

p∶p∈Ps(c)

R
s
pc
(�s

c
,�p) +

∑

c∶c∈Cr

∑

p∶p∈Pr(c)

R
r
pc
(�r

c
,�p) +

∑

p∶p∈P

�pCp,

(7)P
s(�s

c
) = max

ys
c

Us
c
(ys

c
) − �s

c
ys
c
,

(8)P
r(�r

c
) = max

yr
c

Ur
c
(yr

c
) − �r

c
yr
c
,

(9)R
s
pc
(�s

c
,�p) = max

xsmin
pc

≤xs
pc
≤xsmax

pc

xs
pc
(�s

c
− �p),

(10)R
r
pc
(�r

c
,�p) = max

xrmin
pc

≤xr
pc
≤xrmax

pc

xr
pc
(�r

c
− �p).
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We give an economic interpretation for Eqs. (7)–(10) as follows. In (7), service cus-
tomer c acquires elastic service s with total bandwidth provision ys

c
 and wants to 

maximize its own utility Us
c
(ys

c
) . Meanwhile, it needs to pay a fee for its obtained 

bandwidth to support the elastic service. Recall that �s
c
 is the price per unit band-

width paid by customer c for service s, then �s
c
ys
c
 is regarded as the total fee paid 

by customer c. Therefore, the economic meaning of (7) is that each peer as service 
customer aims at achieving the objective of maximizing its own profit. The inter-
pretation for (8) is similar to that of (7). As for (9), �p is considered as the price per 
unit bandwidth charged by service provider p. The product xs

pc
�s
c
 is the fee paid by 

customer c to provider p for elastic service s, and xs
pc
�p is the expense demanded by 

provider p for its granting bandwidth xs
pc

 . Then, the economic meaning of (9) is that 
each peer as service provider wants to achieve the objective of maximizing its own 
revenue.

At the optimum of sub-problems (7)–(10), the KKT conditions are satisfied, which 
are listed as following

Then, we can obtain the dual problem of resource allocation model P1

The objective of the dual problem (14) is to minimize the total price charged by all 
service providers under the constraints that service customers are guaranteed with cer-
tain levels of satisfaction. In order to obtain the optimal price and bandwidth allocation, 
distributed algorithm should be developed to resolve the resource allocation model (3) 
and its dual problem (14). Traditional subgradient-based schemes can converge to the 
global optimum when only considering elastic services since their utility functions are 
all concave. However, these schemes do not work well when considering both elastic 
and inelastic services since the resource allocation problem becomes an intractable and 
difficult non-convex problem. They may produce suboptimal or even infeasible band-
width allocation for each peer.

(11)∇xLP1(�
∗, �∗;�∗,�∗) = 0, and ∇yLP1(�

∗, �∗;�∗,�∗) = 0

(12)�s∗
c

(

∑

p∶p∈Ps(c)

xs∗
pc
− ys∗

c

)

= 0, and �r∗
c

(

∑

p∶p∈Pr(c)

xr∗
pc
− yr∗

c

)

= 0

(13)�∗
p

(

Cp −
∑

c∶c∈Cs(p)

xs∗
pc
−

∑

c∶c∈Cr(p)

xr∗
pc

)

= 0

(14)
min D(�,�)

over �s
c
≥ 0,�r

c
≥ 0,�p ≥ 0.
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3.4  Approximation problem

In this part we will approximate the utility maximization problem to an equivalent 
convex optimization problem by applying the successive approximation method. The 
resource allocation problem P1 equals to the following problem

Lemma 1 The primal problem P1 and its extended problem P2 share the 
same optimal or suboptimal solutions. Furthermore, if (�∗, �∗,�∗,�∗) is a 
KKT point of P1, then (�∗, �∗,�∗∕V∗,�∗∕V∗) is the KKT point of P2 where 
V∗ =

∑

c∶c∈Cs U
s
c
(ys∗

c
) +

∑

c∶c∈Cr U
r
c
(yr∗

c
).

Proof The first part is obvious since the objective of P2 is a monotonically increas-
ing logarithm function. For the second part, we can obtain the Lagrangian of prob-
lem P2 as follows   ◻

Then the KKT point of P2 satisfies the following equations

(15)

�� ∶ max log

(

∑

c∶c∈Cs

Us
c
(ys

c
) +

∑

c∶c∈Cr

Ur
c
(yr

c
)

)

subject to
∑

p∶p∈Ps(c)

xs
pc
= ys

c
,

∑

p∶p∈Pr(c)

xr
pc
= yr

c
,

∑

c∶c∈Cs(p)

xs
pc
+

∑

c∶c∈Cr(p)

xr
pc
≤ Cp,

over xsmin
pc

≤ xs
pc
≤ xsmax

pc
,

xrmin
pc

≤ xr
pc
≤ xrmax

pc
.

(16)

LP2(�, �;� ,�) = log

(

∑

c∶c∈Cs

Us
c
(ys

c
) +

∑

c∶c∈Cr

Ur
c
(yr

c
)

)

+
∑

c∶c∈Cs

� s
c

(

∑

p∶p∈Ps(c)

xs
pc
− ys

c

)

+
∑

c∶c∈Cr

� r
c

(

∑

p∶p∈Pr(c)

xr
pc
− yr

c

)

+
∑

p∶p∈P

�p

(

Cp −
∑

c∶c∈Cs(p)

xs
pc
−

∑

c∶c∈Cr(p)

xr
pc

)

.

(17)∇xLP2(�
∗, �∗;�∗,�∗) = 0 and ∇yLP2(�

∗, �∗;�∗,�∗) = 0

(18)� s∗
c

(

∑

p∶p∈Ps(c)

xs∗
pc
− y∗s

c

)

= 0 and � r∗
c

(

∑

p∶p∈Pr(c)

xr∗
pc
− yr∗

c

)

= 0

(19)�∗
p

(

Cp −
∑

c∶c∈Cs(p)

xs∗
pc
−

∑

c∶c∈Cr(p)

xr∗
pc

)

= 0
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Then the second statement can be easily verified by comparing the KKT conditions 
of P1 and P2 pair-by-pair. Thus this result can be obtained.

Now the problem P2 is still a nonconvex optimization problem. Then, based on 
the transformations for an optimization problem (p.4.2.4 in Boyd and Vandenberghe 
2004), we transform the equivalent problem P2 into the following epigraph-form 
problem.

We find that the aforementioned model P3 is still a nonconvex optimization 
problem, since the first constraint is still nonconvex. In order to obtain a convex 
approximate problem, we derive an inequality to replace the nonconvex constraint 
with a convex one. Following Jensen’s inequality, we introduce an important result 
as follows.

Lemma 2 For any vector � = (�s
c
, c ∈ Cs;�r

c
, c ∈ Cr) where 𝜉s

c
> 0 , 𝜉r

c
> 0 and 

∑

c∈Cs �sc +
∑

c∈Cr �rc = 1, the following inequality holds

The equality (21) holds if and only if

Then we obtain the following approximation problem based on Lemma 2

(20)

�� ∶ max �

subject to � ≤ log

(

∑

c∶c∈Cs

Us
c
(ys

c
) +

∑

c∶c∈Cr

Ur
c
(yr

c
)

)

,

∑

p∶p∈Ps(c)

xs
pc
= ys

c
,

∑

p∶p∈Pr(c)

xr
pc
= yr

c
,

∑

c∶c∈Cs(p)

xs
pc
+

∑

c∶c∈Cr(p)

xr
pc
≤ Cp,

over xsmin
pc

≤ xs
pc
≤ xsmax

pc
,

xrmin
pc

≤ xr
pc
≤ xrmax

pc
.

(21)

log

(

∑

c∶c∈Cs

Us
c
(ys

c
) +

∑

c∶c∈Cr

Ur
c
(yr

c
)

)

≥
∑

c∶c∈Cs

�s
c
log

(

Us
c
(ys

c
)

�s
c

)

+
∑

c∶c∈Cr

�r
c
log

(

Ur
c
(yr

c
)

�r
c

)

.

(22)

�s
c
=

Us
c
(ys

c
)

∑

c∶c∈Cs Us
c
(ys

c
) +

∑

c∶c∈Cr Ur
c
(yr

c
)
, �r

c
=

Ur
c
(yr

c
)

∑

c∶c∈Cs Us
c
(ys

c
) +

∑

c∶c∈Cr Ur
c
(yr

c
)
.
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Then, we consider the canonical form for optimization problem, and deduce the fol-
lowing equivalent approximation problem

where Us
c
(ys

c
, �s

c
) = �s

c
log

(

Us
c
(ys

c
)

�s
c

)

 , Ur
c
(yr

c
, �r

c
) = �r

c
log

(

Ur
c
(yr

c
)

�r
c

)

 . Now the approxima-
tion problem P5 indeed includes a series of approximations when we choose differ-
ent values of � . Given an initial value of � , the solution to P5 is a suboptimal solu-
tion to P1. After substituting this suboptimal solution, a new value � is deduced by 
the update rule (22). With this new value � , the corresponding new P5 is solved. 
After a sequence of approximations, the solution to P5 will finally converge to the 
global solution to P1. We will provide a resource allocation scheme for convergence 
to the stationary point of P5, which satisfies the KKT conditions for an optimization 
problem. At the stationary point the problem P5 is equivalent to P1, thus the point is 
exactly the optimal resource allocation of P1.

It is not difficult to find that the extended utility Us
c
(ys

c
, �s

c
) for elastic service s is 

still a concave function since Us
c
(ys

c
) is concave. For inelastic service r, we analyze the 

extended utility function Ur
c
(yr

c
, �r

c
) , and obtain the following result.

Lemma 3 The extended utility functions Ur
c
(yr

c
, �r

c
) are continuously differentiable 

and strictly concave for inelastic services.

Proof We prove the result by verifying the second derivative of Ur
c
(yr

c
, �r

c
) with 

respect to variable yr
c
 .   ◻

(23)

�� ∶ max �

subject to � ≤
∑

c∶c∈Cs

�s
c
log

(

Us
c
(ys

c
)

�s
c

)

+
∑

c∶c∈Cr

�r
c
log

(

Ur
c
(yr

c
)

�r
c

)

,

∑

p∶p∈Ps(c)

xs
pc
= ys

c
,

∑

p∶p∈Pr(c)

xr
pc
= yr

c
,

∑

c∶c∈Cs(p)

xs
pc
+

∑

c∶c∈Cr(p)

xr
pc
≤ Cp,

over xsmin
pc

≤ xs
pc
≤ xsmax

pc
,

xrmin
pc

≤ xr
pc
≤ xrmax

pc
.

(24)

�� ∶ max
∑

c∶c∈Cs

U
s
c
(ys

c
, �s

c
) +

∑

c∶c∈Cr

U
r
c
(yr

c
, �r

c
)

subject to
∑

p∶p∈Ps(c)

xs
pc
= ys

c
,

∑

p∶p∈Pr(c)

xr
pc
= yr

c
,

∑

c∶c∈Cs(p)

xs
pc
+

∑

c∶c∈Cr(p)

xr
pc
≤ Cp,

over xsmin
pc

≤ xs
pc
≤ xsmax

pc
,

xrmin
pc

≤ xr
pc
≤ xrmax

pc
,

(25)
d2Ur

c
(yr

c
, �r

c
)

dyr2
c

=
�r2
c

Ur2
c
(yr

c
)

(

Ur
c
(yr

c
)
d2Ur

c
(yr

c
)

dyr2
c

−

(

dUr
c
(yr

c
)

dyr
c

)2
)

.
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Thus, utility functions U(yr
c
, �r

c
) are strictly concave if the second derivatives are neg-

ative, that is, Ur
c
(yr

c
)d2Ur

c
(yr

c
)∕dyr2

c
−
(

dUr
c
(yr

c
)∕dyr

c

)2
< 0.

For elastic service with utility function (1), we can obtain

For inelastic service with utility function (2), we obtain

Thus the result is obtained.
Now the objective of approximation problem P5 is strictly concave with respect 

to variables ys
c
 and yr

c
 , but is not strictly concave with respect to variables xs

pc
 and xr

pc
 . 

Meanwhile, the constraint conditions are linear, thus the constraint set of this opti-
mization problem is convex. Thus, based on the convex optimization theory Bertse-
kas et al. (2003), we can obtain the following result.

Theorem 1 For the approximation problem P5 of resource allocation for multiclass 
services in P2P networks, there exists unique optimal resource allocation ys∗

c
 and yr∗

c
 

for customer c when requesting elastic service s and inelastic service r. However, 
the optimal resource provision xs∗

pc
 and xr∗

pc
 from provider p to customer c is not nec-

essarily unique.

4  Resource allocation scheme

4.1  Algorithm description

In order to obtain the optimum of approximation problem P5, we firstly introduce 
the Lagrangian of problem P5

We apply the gradient projection method to solve approximate problem P5 and 
present the following resource allocation algorithm to achieve the optimum. The 
algorithm only depends on locally available information of each service provider 
that supports elastic and/or inelastic services.

Us
c
(ys

c
)
d2Us

c
(ys

c
)

dys2
c

−

(

dUs
c
(ys

c
)

dys
c

)2

= −
w2

(ys
c
+ 1)2

(log(ys
c
+ 1) + 1) < 0.

Ur
c
(yr

c
)
d2Ur

c
(yr

c
)

dyr2
c

−

(

dUr
c
(yr

c
)

dyr
c

)2

= −
a2w2e−a(y

r
c
−b)

(1 + e−a(y
r
c
−b))4

e−2a(y
r
c
−b) + eab

1 + eab
< 0.

(26)

LP5(�, �;�,�;�) =
∑

c∶c∈Cs

U
s
c
(ys

c
, �s

c
) +

∑

c∶c∈Cr

U
r
c
(yr

c
, �r

c
)

+
∑

c∶c∈Cs

�s
c

(

∑

p∶p∈Ps(c)

xs
pc
− ys

c

)

+
∑

c∶c∈Cr

�r
c

(

∑

p∶p∈Pr(c)

xr
pc
− yr

c

)

+
∑

p∶p∈P

�p

(

Cp −
∑

c∶c∈Cs(p)

xs
pc
−

∑

c∶c∈Cr(p)

xr
pc

)

.
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Each service provider p updates its resource allocation for customer c who requests 
elastic service s with the following rule

And each service provider p updates its resource allocation for customer c who 
requests inelastic service r with the following rule

where 𝜅(t) > 0 is the step size; 𝜃 > 0 is the parameter for low-pass filtering; a = (b)d
c
 

means a = min{d, max{b, c}} . Here, the augmented variables x̃s
pc
(t) and x̃r

pc
(t) are 

the optimal estimation of resource allocation xs
pc
(t) and xr

pc
(t) , respectively, which 

can be assisted to remove the possible oscillation without changing the optimal solu-
tions xs∗

pc
 and xr∗

pc
.

Each service provider p updates its price �p(t) with the following rule

where 𝜐(t) > 0 is the step size; a = (b)+
c
 means a = b if c > 0 and a = max{0, b} if 

c = 0.

(27)xs
pc
(t + 1) =

(

(1 − �)xs
pc
(t) + �x̃s

pc
(t) + ��(t)xs

pc
(t)(�s

c
(t) − �p(t))

)xsmax
pc

xsmin
pc

,

(28)x̃s
pc
(t + 1) = (1 − �)̃xs

pc
(t) + �xs

pc
(t),

(29)�s
c
(t) =

�Us
c
(ys

c
(t), �s

c
)

�ys
c
(t)

,

(30)ys
c
(t) =

∑

p∶p∈Ps(c)

xs
pc
(t).

(31)xr
pc
(t + 1) =

(

(1 − �)xr
pc
(t) + �x̃r

pc
(t) + ��(t)xr

pc
(t)(�r

c
(t) − �p(t))

)xrmax
pc

xrmin
pc

,

(32)x̃r
pc
(t + 1) = (1 − �)̃xr

pc
(t) + �xr

pc
(t),

(33)�r
c
(t) =

�Ur
c
(yr

c
(t), �r

c
)

�yr
c
(t)

,

(34)yr
c
(t) =

∑

p∶p∈Pr(c)

xr
pc
(t),

(35)�p(t + 1) =

(

�p(t) + �(t)
zp(t) − Cp

Cp

)+

�p(t)

,

(36)zp(t) =
∑

c∶c∈Cs(p)

xs
pc
(t) +

∑

c∶c∈Cr(p)

xr
pc
(t),
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Note that the approximation problem P5 indeed includes a series of approxima-
tions, where each one is identified by a value � . If we select an appropriate value � , 
we can achieve the optimum of the corresponding approximation problem by apply-
ing the resource allocation scheme above. In order to guarantee that the approxima-
tions of problem P5 finally become exact where the equality (21) always holds, each 
customer c updates its parameter �s

c
 for elastic service s with the following rule

and parameter �r
c
 for inelastic service r with the following rule

In the proposed resource allocation scheme above, if customer c requests elastic 
service s from provider p, it computes the price �s

c
(t) paid for provider p according to 

(29). And provider p calculates its charged price �p(t) according to (35), and updates 
its resource allocation xs

pc
(t) for customer c with the rule of (27). We observe that 

resource allocation scheme (27) is a gradient-based fluid model which depends on 
the difference between the price �s

c
(t) paid by customer c and the price �p(t) charged 

by provider p. Meanwhile, if customer c requests inelastic service r from provider p, 
resource allocation scheme (31)–(34) will be executed to realize the optimum. On 
the other hand, provider p observes the aggregated load zp(t) from (36), and updates 
its charged price �p(t) according to (35). Thus the update rules for resource alloca-
tion and price are both a scaled gradient-based algorithm, which has been proven 
to be efficiently convergent to the optimum when choosing appropriate step sizes. 
However, each customer needs to learn the total utility values of all customers so as 
to update �s

c
 with the law of (37) and �r

c
 with the law of (38). Therefore, after each 

iteration each customer c communicates its utility value to all other customers in the 
network. In a new iteration the initial value is the stationary value of the previous 
iteration.

Therefore, the resource allocation algorithm can be described by the following 
pseudocode:

(37)�s
c
=

Us
c
(ys

c
(t))

∑

c∶c∈Cs Us
c
(ys

c
(t)) +

∑

c∶c∈Cr Ur
c
(yr

c
(t))

,

(38)�r
c
=

Ur
c
(yr

c
(t))

∑

c∶c∈Cs Us
c
(ys

c
(t)) +

∑

c∶c∈Cr Ur
c
(yr

c
(t))

.
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The algorithm presents a modification of the successive approximation method 
where the number of inner-iterations is limited to a certain value T. In the proposed 
resource allocation scheme, the value in the last inner-iteration of the previous outer-
iteration is the initial value in the next outer-iteration (Step 4). To solve the new 
approximate optimization, � is computed according to the resource allocation in the 
last iteration of the previous outer-iteration (Step 5). In next part we will investigate 
the performance of the proposed resource allocation scheme.

4.2  Performance analysis

In this part we first obtain the following result by applying convex optimization 
approach.

Lemma 4 The KKT point of approximation problem P5 is also the KKT point of 
extended problem P2, that is, if (�∗, �∗;�∗,�∗;�∗) is a KKT point of problem P5, then 
(�∗, �∗;�∗,�∗) is also a KKT point of problem P2.

Proof From the Lagrangian (26), we can obtain the KKT conditions of P5

(39)∇xLP5(�
∗, �∗;�∗,�∗;�∗) = 0 and ∇yLP5(�

∗, �∗;�∗,�∗;�∗) = 0

(40)�s∗
c

(

∑

p∶p∈Ps(c)

xs∗
pc
− ys∗

c

)

= 0 and �r∗
c

(

∑

p∶p∈Pr(c)

xr∗
pc
− yr∗

c

)

= 0
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  ◻

We can verify that the point (�∗, �∗;�∗,�∗) also satisfies the Eqs. 
(17)–(19) which just are the KKT conditions of problem P2 after substitut-
ing �s∗

c
= Us

c
(ys∗

c
)∕V∗ and �r∗

c
= Ur

c
(yr∗

c
)∕V∗ into the equations above, where 

V∗ =
∑

c∶c∈Cs U
s
c
(ys∗

c
) +

∑

c∶c∈Cr U
r
c
(yr∗

c
) . Then this result is obtained.

We study the convergence of the proposed resource allocation scheme, and obtain 
the following theorem.

Theorem 2 If the step sizes are sufficient small, then the proposed resource alloca-
tion scheme finally converges to a stationary point that satisfies the KKT conditions 
of primal problem P1.

Proof Define �(k)(0) to be the initial point of outer-iteration k, and �(k)∗ to be the sta-
tionary point of outer-iteration k. We first prove that �(k)∗ is obtainable in each outer-
iteration k. Given a value � , the approximation problem P5 is strictly concave with 
respect to variables ys

c
(t) and yr

c
(t) , thus it has a unique optimum solution �∗ . How-

ever, the optimal resource allocation xs∗
pc

 and xr∗
pc

 from provider p to customer c for 
elastic service s and inelastic service r is not necessarily unique. With the assump-
tions on the small step sizes 𝜅(t) > 0 and 𝜐(t) > 0 , the proposed resource allocation 
scheme which is a gradient-based algorithm can converge to one of the optimums 
given �s(k)

c
 and �r(k)

c
 in each k outer-iteration Bertsekas et al. (2003). Furthermore, we 

apply low-pass filtering method in the proposed resource allocation scheme, which 
can remove the possible oscillation due to non-uniqueness of optimum. Thus the 
optimum �(k)∗ as well as �(k)∗ is obtainable.   ◻

Now we prove the convergence of the proposed resource allocation scheme. Denote 
the objective of P2 as F(�) ≜ G(�) = log

�
∑

c∶c∈Cs U
s
c
(ys

c
) +

∑

c∶c∈Cr U
r
c
(yr

c
)
�

 where 
ys
c
=
∑

p∶p∈Ps(c) x
s
pc

 and yr
c
=
∑

p∶p∈Pr(c) x
r
pc

 . The solution of P5 indeed increases mono-
tonically G(�) in each outer-iteration.

The second equality is deduced by substituting �(k)(0) = �(k−1)∗ 
and �s(k)

c
= Us

c
(ys(k−1)∗

c
)∕V (k−1)∗ , �r(k)

c
= Ur

c
(yr(k−1)∗

c
)∕V (k−1)∗ , where 

V (k−1)∗ =
∑

c∶c∈Cs U
s
c
(ys(k−1)∗

c
) +

∑

c∶c∈Cr U
r
c
(yr(k−1)∗

c
) , into the right-hand size. The 

first inequality is obtained since �(k)∗ is the optimum of P5 given a value �(k) . The 
second inequality is satisfied from (21). Meanwhile, G(�) is a continuous func-
tion, then G(�) is bounded as � is bounded (recall that � is bounded). Furthermore, 

(41)�p

(

C∗
p
−

∑

c∶c∈Cs(p)

xs∗
pc
−

∑

c∶c∈Cr(p)

xr∗
pc

)

= 0

(42)

F(�(k−1)∗) = G(�(k−1)∗) =
∑

c∶c∈Cs

U
s
c
(ys(k)

c
(0), �s(k)

c
) +

∑

c∶c∈Cr

U
r
c
(yr(k)

c
(0), �r(k)

c
)

≤
∑

c∶c∈Cs

U
s
c
(ys(k)∗

c
, �s(k)

c
) +

∑

c∶c∈Cr

U
r
c
(yr(k)∗

c
, �r(k)

c
)

≤ G(�(k)∗) = F(�(k)∗).
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the sequence {G(�(k)∗), k = 1, 2,…} monotonically increases, thus it can converge 
from convex optimization (Bertsekas et  al. 2003, Prop.A.3). Then the sequence 
{
∑

c∶c∈Cs U
s
c
(ys(k)∗

c
) +

∑

c∶c∈Cr U
r
c
(yr(k)∗

c
), k = 1, 2,…} also converges.

From Lemma  4 we have known that the stationary point of the approximation 
problem P5 is also the KKT point of P2. On the other hand, based on Lemma 1, 
we have obtained the KKT conditions of P2 are equivalent to those of P1. Thus 
the proposed resource allocation scheme can eventually converge to the stationary 
point which satisfies the KKT conditions of primal problem P1. Then, this theorem 
is completed.

Recall that the utility maximization model of resource allocation for multiclass 
services in P2Ps is a non-convex optimization problem, since the utility functions 
for inelastic services are sigmoidal, then the final stationary points satisfying the 
KKT conditions may be suboptimal solutions to the primal problem. By substitut-
ing these KKT points into the utility maximization model and comparing the cor-
responding objective value, the final optimal solution can be derived, as well as the 
optimal objective.

5  Numerical examples and discussions

In this part we consider the performance of the proposed resource allocation mech-
anism and present some numerical examples to show its convergence in P2P net-
works. We firstly investigate the scheme in a simple network architecture and then 
analyze its performance in large scale networks.

5.1  Simple network architecture

Consider a simple network which is composed of two service providers and 
four service customers. The service providers have the access link capacity 
C = (C1,C2) = (5, 10) Mbps. The minimal and maximal resource requirements for 
each elastic or inelastic service are 0.01 Mbps and 10 Mbps, respectively. The initial 
rates xs

pc
(t) and xr

pc
(t) are all set to 0.5 Mbps, and the initial parameters �s

c
 and �r

c
 are 

all chosen 0.25. The low-pass filtering parameter is chosen � = 0.2.

5.1.1  Resource allocation for elastic services

In this case we consider the four customers are only requesting elastic services 
and analyze the proposed resource allocation scheme. The willingness-to-pay of 
four customers is w = (4, 3, 2, 1) , then the utility functions when customers request 
these elastic services are given by: Us

1
(ys

1
) = 4 log(ys

1
+ 1) , Us

2
(ys

2
) = 3 log(ys

2
+ 1) , 

Us
3
(ys

3
) = 2 log(ys

3
+ 1) , and Us

4
(ys

4
) = log(ys

4
+ 1).

We observe that the proposed scheme has two levels of convergence. The outer-
iterations update � , and the inner-iterations solve the convex approximation prob-
lem P5. In order to guarantee the convergence of every outer-iteration process, the 



2623

1 3

Optimal resource allocation for multiclass services in…

step sizes should be small enough and the number of inner-iterations should be large 
enough. Then we choose the step sizes �(t) = �(t) = 0.2∕t and the number of inner-
iterations as a fixed value T = 500.

We depict the simulation results obtained from the proposed resource allocation 
scheme in Fig.  2 and can observe its validity and performance. We find that the 
scheme gradually tends to a steady state and finally converges to an optimal resource 
allocation for each service customer within reasonable iterations.

We list the optimum derived from the proposed scheme in Table 1. Meanwhile, 
we also presented the optimal solution by using nonlinear programming software 
LINGO in this table. Since the objective function is not a strictly concave func-
tion with the variable x = (xs

pc
, p ∈ P, c ∈ Cs) , the optimal resource allocated by 

service providers for customers is not unique, which is also discussed in Theo-
rem 1. However, the objective function is a strictly concave function with the vari-
able y = (ys

c
, c ∈ Cs) , thus as we can observe in Table 1, the optimal total resource 

obtained by each customer is unique.
Next we analyze the convergence speed of the proposed resource allocation algo-

rithm. In order to improve the convergence speed of the algorithm, we conduct sev-
eral experiments to find an appropriate value for the number T of inner-iterations. 
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Fig. 2  Performance of the resource allocation algorithm for elastic services with parameters T = 500 and 
�(t) = �(t) = 0.2∕t
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Also we apply a constant step size for the subgradient-based update law since it 
often has a faster convergence speed than the diminishing step size. In this simula-
tion we choose the inner-iterations number T = 100 and step sizes �(t) = �(t) = 0.2 , 
and depict the performance of the scheme in Fig. 3. We find that the convergence 
speed of the algorithm is improved at this time, and the optimum can be achieved in 
fewer iterations.
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Table 1  The optimum for the 
resource allocation model: 
elastic services

Variable x
s∗
11

x
s∗
21

x
s∗
12

x
s∗
22

y
s∗
1

y
s∗
2

Algorithm 2.1987 4.3995 1.5660 3.1326 6.5982 4.6986
LINGO 0.6968 5.9031 1.6972 3.0027 6.5999 4.6999
Variable x

s∗
13

x
s∗
23

x
s∗
14

x
s∗
24

y
s∗
3

y
s∗
4

Algorithm 0.9334 1.8657 0.3020 0.6021 2.7991 0.9041
LINGO 2.0556 0.7443 0.5503 0.3496 2.7999 0.8999
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5.1.2  Resource allocation for multiclass services

In this part we investigate the performance of the proposed resource allocation 
scheme for both elastic and inelastic services. Without loss of generality, we 
assume the first two customers request inelastic services with utility functions 
Ur

1
(yr

1
) =

6

1+e
−(yr

1
−4)

−
6

1+e4
 and Ur

2
(yr

2
) =

4

1+e
−(yr

2
−2)

−
4

1+e2
 . The others request elastic 

services with utility functions Us
3
(ys

3
) = 2 log(ys

3
+ 1) , and Us

4
(ys

4
) = log(ys

4
+ 1) . We 

firstly choose the number of inner-iterations T = 500 and the diminishing step 
sizes �(t) = �(t) = 0.2∕t , and present the behavior of the scheme in Fig.  4. We 
observe that the scheme finally converges to an optimal resource allocation x∗ =
(2.1474, 4.2731, 1.3096, 2.5993, 1.1372, 2.3098, 0.4057, 0.8178)Mbps within 
reasonable iterations.

We also investigate the convergence speed of the resource allocation scheme 
in this scenario where elastic and inelastic services are coexisting. We choose 
the inner-iterations number T = 100 and constant step sizes �(t) = �(t) = 0.2 , and 
depict the scheme behavior in Fig. 5. We can observe that the scheme converges 
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much faster than that when choosing larger inner-iterations number and diminish-
ing step sizes.

5.2  Large scale networks

Now we consider the performance of the resource allocation scheme in large scale 
networks with different number of peers. The access link capacity of service pro-
viders are all assumed to be 20 Mbps. The low-pass filtering parameter is � = 0.2 
and the initial parameters are all �s

c
= 0.25 . And the number of inner-iterations is 

T = 100 and the step sizes are �(t) = �(t) = 0.2.

5.2.1  Resource allocation for elastic services

Considering the different willingness-to-pay of customers when they request ser-
vices, we assume that there are four types of customers in the P2P networks. Each 
type of customers has the same number and is with one of the utility functions 
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discussed in Sect. 5.1.1. In Fig. 6, we depict the evolution of aggregated utility in 
large scale P2P networks with different number of peers. We find that the number of 
peers does not influence the convergence speed of the resource allocation scheme. 
The aggregated utility increases gradually with the number of peers but, in almost 
all cases, the optimal value is achieved within the same number of iterations (e.g., 
200 iterations). In fact, it is the parameters of the resource allocation scheme such as 
inner-iterations number and step sizes that mainly affect the convergence speed, as 
we have discussed in Sect. 5.1.

5.2.2  Resource allocation for multiclass services

In this case of resource allocation for multiclass services in large scale networks, we 
assume that both customers requesting elastic services and those requesting inelas-
tic services are divided into two types. Each type of customers has the same one of 
the utility functions considered in Sect. 5.1.2. Then in Fig. 7, we present the evolu-
tion of aggregated utility of multiclass services in different scale networks. Similar 
to the results for only elastic services in Sect.  5.2.1, the optimal objective can be 
finally reached in almost the same number of iterations. However, it appears to con-
verge slower than that in the case for only elastic services. This is rather expected. 
When considering only elastic services, the service customers have the same struc-
ture of logarithmic utility functions and run the separate update steps in parallel. We 

Fig. 6  Performance of the 
resource allocation algorithm 
for elastic services in large scale 
networks
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believe that the convergence speed can be also improved if we choose proper param-
eters such as more suitable inner-iterations number and step sizes.

6  Conclusions

In recent years P2P networks have played an important role in supporting elastic 
applications (e.g., file sharing) and inelastic applications (e.g., video distribution) 
over the Internet, and been applied into many scenarios, e.g., distributed stor-
age, cloud computing, edge computing and vehicular networks. Especially, P2Ps 
have well supported online video conferencing applications (e.g., Tencent meet-
ing, Zoom) in 2020 due to the epidemic of COVID-19. However, it is a crucial 
challenge and difficult problem to achieve reasonable and effective resource allo-
cation for peers who acquire both elastic and inelastic services. In this paper we 
concentrate on resource allocation for both elastic and inelastic services in P2P 
networks, and formulate the utility maximization model for peers who request 
these services. The utility maximization model is an intractable and difficult non-
convex optimization problem, since the inelastic services have non-concave util-
ity functions. In order to obtain the optimal resource allocation, we approximate 
the utility maximization problem to an equivalent convex optimization problem 
by applying the successive approximation method, and design a gradient-based 
resource allocation scheme to achieve the optimal solution of the approximations. 
The proposed scheme is proven to converge to an optimal solution of the primal 
utility maximization model which also satisfies the KKT conditions. Numerical 
examples verify the convergence of resource allocation scheme for both elastic 
and inelastic services. For further research work, we will investigate the resource 
allocation of multiclass applications in edge computing which builds on P2Ps.
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