Skip to main content
Log in

Ship space sharing strategies with different rental modes: How does NVOCCs cooperate with booking platform?

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

The development of sharing economy has effectively changed the gap between market participants and promoted the emergence of new business modes, which has also brought enlightenment to the operation of shipping e-commerce. In this paper, we develop a liner shipping system consisting of one ship space booking platform and two Non-Vessel Operating Common Carriers (NVOCCs). Under two rental modes proposed by platform, the NVOCCs separately determine the order quantity of ship spaces and then consider whether to share the remaining idle ship spaces on the platform before the start of voyage. Introducing multi-party game theory, the optimal sharing strategy and ship space rental mode are obtained. The results reveal that both NVOCCs choosing sharing strategy will achieve a win–win situation, which is also beneficial for the platform. Furthermore, we find the most appropriate operation mode of the platform is to provide differentiated rentals, and this choice is independent of NVOCCs’ sharing strategies. The differential rentals mode is also more beneficial to the NVOCC with larger potential demand, but adverse for the NVOCC with less potential demand, so the latter is more inclined to share remaining spaces under the same rental mode. We also extend the model to multiple NVOCCs and present numerical analysis to verify the validity of the conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aloui C, Jebsi K (2016) Platform optimal capacity sharing: willing to pay more does not guarantee a larger capacity share. Econ Model 54:276–288

    Article  Google Scholar 

  • Chang CH, Lan LW, Lee M (2015) An integrated container management model for optimizing slot allocation plan and empty container repositioning. Marit Econ Logist 17(3):315–340

    Article  Google Scholar 

  • Chen JH, Liu X, Zhang XH, He JL, Luo LH (2017) Optimal bilateral cooperative slot allocation for two liner carriers under a co-chartering agreement. J Navig 1–13

  • Chew EP, Huang HC, Johnson EL, Nemhauser GL, Sokol JS, Leong CH (2006) Short-term booking of air cargo space. Eur J Oper Res 174(3):1979–1990

    Article  Google Scholar 

  • Choi TM, He YY (2019) Peer-to-peer collaborative consumption for fashion products in the sharing economy: platform operations. Transp Res Part E Logist Transp Rev 126:49–65

    Article  Google Scholar 

  • Choi TM, Guo S, Liu N, Shi XT (2019) Values of food leftover sharing platforms in the sharing economy. Int J Prod Econ 213:23–31

    Article  Google Scholar 

  • Cui H, Notteboom T (2018) A game theoretical approach to the effects of port objective orientation and service differentiation on port authorities’ willingness to cooperate. Res Transp Bus Manag 26:76–86

    Article  Google Scholar 

  • Dulebenets MA (2019) Minimizing the total liner shipping route service costs via application of an efficient collaborative agreement. IEEE Trans Intell Transp Syst 20(1):123–136

    Article  Google Scholar 

  • Dulebenets MA, Golias MM, Mishra S (2018) A collaborative agreement for berth allocation under excessive demand. Eng Appl Artif Intell 69:76–92

    Article  Google Scholar 

  • Gholamian MR, Ebrahimzadeh-Afruzi M (2019) Credit and discount incentive options for two-level supply chain coordination, under uncertain price-dependent demand. Oper Res 1–25

  • Hu JK, Huang YF, Zhao XY (2019) Research on the slot allocation of container liner under E-commerce environment. Comput Ind Eng 129:556–562

    Article  Google Scholar 

  • Imai A, Nishimura E, Papadimitriou S (2008) Berthing ships at a multi-user container terminal with a limited quay capacity. Transp Res Part E Logist Transp Rev 44(1):136–151

    Article  Google Scholar 

  • Jiang XJ, Chew EP, Lee LH, Tan KC (2013) Flexible space-sharing strategy for storage yard management in a transshipment hub port. OR Spectr 35(2):417–439

    Article  Google Scholar 

  • Jiao W, Yan H, Pang KW (2016) Nonlinear pricing for stochastic container leasing system. Transp Res Part B Methodol 89:1–18

    Article  Google Scholar 

  • Jin XF, Park KT, Kim KH (2019) Storage space sharing among container handling companies. Transp Res Part E Logist Transp Rev 127:111–131

    Article  Google Scholar 

  • Kolar P, Schramm HJ, Prockl G (2018) Intermodal transport and repositioning of empty containers in Central and Eastern Europe hinterland. J Transp Geogr 69:73–82

    Article  Google Scholar 

  • Kung LC, Zhong GY (2017) The optimal pricing strategy for two-sided platform delivery in the sharing economy. Transp Res Part E Logist Transp Rev 101:1–12

    Article  Google Scholar 

  • Kuzmicz KA, Pesch E (2019) Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation. Omega 85:194–213

    Article  Google Scholar 

  • Lai XF, Tao Y, Wang F, Zou ZB (2019) Sustainability investment in maritime supply chain with risk behavior and information sharing. Int J Prod Econ 218:16–29

    Article  Google Scholar 

  • Lee S, Moon I (2020) Robust empty container repositioning considering foldable containers. Eur J Oper Res 280(3):909–925

    Article  Google Scholar 

  • Liu JG, Wang JJ (2019) Carrier alliance incentive analysis and coordination in a maritime transport chain based on service competition. Transp Res Part E Logist Transp Rev 128:333–355

    Article  Google Scholar 

  • Liu D, Yang HL (2013) Optimal slot control model of container sea-rail intermodal transport based on revenue management. Procedia Soc Behav Sci 96:1250–1259

    Article  Google Scholar 

  • Liu Z, Wang S, Du Y, Wang H (2016) Supply chain cost minimization by collaboration between liner shipping companies and port operators. Transp J 55(3):296–314

    Article  Google Scholar 

  • Li L, Zhang RQ (2015) Cooperation through capacity sharing between competing forwarders. Transp Res Part E Logist Transp Rev 75:115–131

    Article  Google Scholar 

  • Li YG, Bai XM, Xue KL (2020) Business modes in the sharing economy: How does the OEM cooperate with third-party sharing platforms? Int J Prod Econ 221:107467

    Article  Google Scholar 

  • Ma HL, Wong WH, Leung LC, Chung SH (2020) Facility sharing in business-to-business model: a real case study for container terminal operators in hong kong port. Int J Prod Econ 221:107483

    Article  Google Scholar 

  • Notteboom TE, Parola F, Satta G, Pallis AA (2017) The relationship between port choice and terminal involvement of alliance members in container shipping. J Transp Geogr 64:158–173

    Article  Google Scholar 

  • Panayides PM, Wiedmer R (2011) Strategic alliances in container liner shipping. Res Transp Econ 32(1):0–38

    Article  Google Scholar 

  • Peng J, Zhou Z, Li R (2015) A collaborative berth allocation problem with multiple ports based on genetic algorithm. J Coast Res 73:290–297

    Article  Google Scholar 

  • Peng QY, Wang CX, Xu L (2020) Emission abatement and procurement strategies in a low-carbon supply chain with option contracts under stochastic demand. Comput Ind Eng 144:106502

    Article  Google Scholar 

  • Qin X, Liu Z, Tian L (2020) The strategic analysis of logistics service sharing in an e-commerce platform. Omega 92:102153

    Article  Google Scholar 

  • Qi Q, Wang J, Bai QG (2017) Pricing decision of a two-echelon supply chain with one supplier and two retailers under a carbon cap regulation. J Clean Prod 151:286–302

    Article  Google Scholar 

  • Shaw DR, Grainger A, Achuthan K (2016) Multi-level port resilience planning in the UK: How can information sharing be made easier? Technol Forecast Soc Change 121:126–138

    Article  Google Scholar 

  • Song ZZ, Tang WS, Zhao RQ (2018) Cooperation mode for a shipping company with heterogeneous ports: Business cooperation vs. port investment. Transp Res Part E Logist Transp Rev 118:513–533

    Article  Google Scholar 

  • Taylor TA (2018) On-demand service platforms. Manuf Serv Oper Manag 20(4):704–720

    Article  Google Scholar 

  • Wang S, Liu Z, Qu X (2015) Collaborative mechanisms for berth allocation. Adv Eng Inform 29(3):332–338

    Article  Google Scholar 

  • Wang TS, Xing Z, Hu HT, Qu XB (2019) Overbooking and delivery-delay-allowed strategies for container slot allocation. Transp Res Part E Logist Transp Rev 122:433–447

    Article  Google Scholar 

  • Wang X, Ng CT, Dong C (2020) Implications of peer-to-peer product sharing when the selling firm joins the sharing market. Int J Prod Econ 219:138–151

    Article  Google Scholar 

  • Wang CX, Peng QY, Xu L (2020a) Decision and coordination of a low-carbon supply chain considering environmental tax policy on consumers. Kybernetes

  • Zheng J, Sun Z, Gao Z (2015) Empty container exchange among liner carriers. Transp Res Part E Logist Transp Rev 83:158–169

    Article  Google Scholar 

  • Zhong YG, Lin ZZ, Zhou YW, Cheng TCE, Lin XG (2019) Matching supply and demand on ride-sharing platforms with permanent agents and competition. Int J Prod Econ 218:363–374

    Article  Google Scholar 

  • Zurheide S, Fischer K (2013) Erratum: a revenue management slot allocation model for liner shipping networks. Marit Econ Logist 15(4):523–523

    Article  Google Scholar 

Download references

Acknowledgements

We would like to be grateful to the editors and anonymous referees for their valuable comments. This paper was supported by the National Natural Science Foundation of China (Grant No. 71974123) and Innovation Program of Shanghai Municipal Education Commission (CN) (Grant No. 2017-01-07-00-10-E00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanxu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Proofs

When the random factor \({\upxi }_{i}\) in demand function is assumed to follow the uniform distribution, i.e. \(\xi_{i} \sim U\left( {0,B_{i} } \right)\), the equilibriums of liner shipping system under three different sharing strategies with same rental level are described in Table

Table 5 Equilibriums of different sharing strategies under same rental

5.

In order to ensure that the liner company is profitable and the order quantity is not negative, we require \(p > w\), so we can get \(pB_{1} \left( {p + h_{2} } \right) + pB_{2} \left( {p + h_{1} } \right) - 2\left( {a - bp} \right)\left( {p + h_{1} } \right)\left( {p + h_{2} } \right) > 0\) under SN strategy, \(B_{1} \left( {p + h_{2} } \right) + B_{2} p - 2\left( {a - bp} \right)\left( {p + h_{2} } \right) > 0\) under SO strategy and \(B_{1} + B_{2} - 2\left( {a - bp} \right) > 0\) under SB strategy.

Proof of Lemma 2 From Table 5, we can get the derivatives of unit rental of booking platform with respect to idle costs (1) \(\frac{{\partial w^{SN} }}{{\partial h_{1} }} = \frac{{\left( {a - bp} \right)B_{1} \left( {p + h_{2} } \right)^{2} }}{{\left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]^{2} }} > 0\), \(\frac{{\partial w^{SO} }}{{\partial h_{1} }} = \frac{{\partial w^{SB} }}{{\partial h_{1} }} = 0\), \(\frac{{\partial w^{SN} }}{{\partial h_{2} }} = \frac{{\left( {a - bp} \right)B_{2} \left( {p + h_{1} } \right)^{2} }}{{\left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]^{2} }} > 0\), \(\frac{{\partial w^{SO} }}{{\partial h_{2} }} = \frac{{p^{3} \left[ {4p\left( {a - bp} \right) + cB_{1} } \right]B_{2} }}{{\left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]^{2} }} > 0\), \(\frac{{\partial w^{SB} }}{{\partial h_{2} }} = 0\). (2) Taking the derivative with respect to price-sensitivity coefficient, it is obtained as \(\frac{{\partial w^{SN} }}{{\partial {\text{b}}}} = - \frac{{p\left( {p + h_{1} } \right)\left( {p + h_{2} } \right)}}{{B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{1} } \right)}} < 0\), \(\frac{{\partial w^{SO} }}{{\partial {\text{b}}}} = - \frac{{2p^{3} \left( {p + h_{2} } \right)}}{{2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)}} < 0\), \(\frac{{\partial w^{SB} }}{{\partial {\text{b}}}} = - \frac{{2p^{3} }}{{\left( {c + 2p} \right)\left( {B_{1} + B_{2} } \right)}} < 0\). Furthermore, we can prove that \(\frac{{\partial w^{SN} }}{{\partial u_{1} }} = - \frac{{\left( {a - bp} \right)\left( {p + h_{1} } \right)\left( {p + h_{2} } \right)^{2} }}{{4\left[ {u_{2} \left( {p + h_{1} } \right) + u_{1} \left( {p + h_{2} } \right)} \right]^{2} }} < 0\). \(\frac{{\partial w^{SO} }}{{\partial u_{1} }} = - \frac{{p^{2} \left( {p + h_{2} } \right)\left[ {\left( {c + 2p} \right)\left( {a - bp} \right)\left( {p + h_{2} } \right) - cpu_{2} } \right]}}{{\left[ {2p^{2} u_{2} + \left( {c + 2p} \right)u_{1} \left( {p + h_{2} } \right)} \right]^{2} }}\), where \(\left( {c + 2p} \right)\left( {a - bp} \right)\left( {p + h_{2} } \right) - cpu_{2} = 2p\left( {a - bp} \right)\left( {p + h_{2} } \right) + c\left[ {\left( {p + h_{2} } \right)\left( {a - bp} \right) - u_{2} p} \right]\), owing that \(pB_{1} \left( {p + h_{2} } \right) + pB_{2} \left( {p + h_{1} } \right) - 2\left( {a - bp} \right)\left( {p + h_{1} } \right)\left( {p + h_{2} } \right) > 0\) and \(B_{1} \left( {p + h_{2} } \right) + B_{2} p - 2\left( {a - bp} \right)\left( {p + h_{2} } \right) > 0\), so \(\left( {p + h_{2} } \right)\left( {a - bp} \right) - u_{2} p > 0\), thus \(\frac{{\partial w^{SO} }}{{\partial u_{1} }} < 0\). \(\frac{{\partial w^{SB} }}{{\partial u_{1} }} = - \frac{{p^{2} \left( {a - bp} \right)}}{{\left( {c + 2p} \right)\left( {u_{1} + u_{2} } \right)^{2} }} < 0\). According to Table 5, the derivative of rental with respect to \(u_{2}\) is similar, so we omit the derivative results here.

Proof of Lemma 3 Taking the derivative with respect to idle costs gives \(\frac{{\partial Q_{1}^{SN} }}{{\partial h_{1} }} = - \frac{{B_{1} \left\{ {2pB_{1} B_{2} \left( {p + h_{1} } \right)\left( {p + h_{2} } \right) + pB_{1}^{2} \left( {p + h_{2} } \right)^{2} + B_{2} \left( {p + h_{1} } \right)^{2} \left[ {pB_{2} - 2\left( {a - bp} \right)\left( {p + h_{2} } \right)} \right]} \right\}}}{{2\left( {p + h_{1} } \right)^{2} \left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]^{2} }}\), owing that \(B_{1} p\left( {p + h_{2} } \right) + B_{2} p\left( {p + h_{1} } \right) - 2\left( {p + h_{1} } \right)\left( {p + h_{2} } \right)\left( {a - bp} \right) > 0\), so \(pB_{1} B_{2} \left( {p + h_{1} } \right)\left( {p + h_{2} } \right) + pB_{2}^{2} \left( {p + h_{1} } \right)^{2} - 2B_{2} \left( {p + h_{1} } \right)^{2} \left( {a - bp} \right)\left( {p + h_{2} } \right) = B_{2} \left( {p + h_{1} } \right)\left[ {pB_{1} \left( {p + h_{2} } \right) + pB_{2} \left( {p + h_{1} } \right) - 2\left( {a - bp} \right)\left( {p + h_{1} } \right)\left( {p + h_{2} } \right)} \right] > 0\), thus \(\frac{{\partial Q_{1}^{SN} }}{{\partial h_{1} }} < 0.\) \(\frac{{\partial Q_{1}^{SO} }}{{\partial h_{1} }} = \frac{{\partial Q_{1}^{SB} }}{{\partial h_{1} }} = \frac{{\partial Q_{1}^{SB} }}{{\partial h_{2} }} = 0\), \(\frac{{\partial Q_{1}^{SN} }}{{\partial h_{2} }} = - \frac{{\left( {a - bp} \right)B_{1} B_{2} \left( {p + h_{1} } \right)}}{{\left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]^{2} }} < 0\), \(\frac{{\partial Q_{1}^{SO} }}{{\partial h_{2} }} = - \frac{{p^{2} B_{1} B_{2} \left[ {4p\left( {a - bp} \right) + cB_{1} } \right]}}{{\left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]^{2} }} < 0\). The derivatives of \(Q_{1}^{S*}\) and \(Q_{2}^{S*}\) with respect to the idle cost are symmetrical, and will not be repeated here. (2) Taking the derivative with respect to price-sensitivity gives \(\frac{{\partial Q_{1}^{SN} }}{{\partial {\text{b}}}} = - \frac{{pB_{2} \left( {p + h_{1} } \right)}}{{B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)}} < 0\), \(\frac{{\partial Q_{1}^{SO} }}{{\partial {\text{b}}}} = - \frac{{p\left[ {2p^{2} B_{2} + cB_{1} \left( {p + h_{2} } \right)} \right]}}{{2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)}} < 0\), \(\frac{{\partial Q_{1}^{SB} }}{{\partial {\text{b}}}} = - \frac{{p\left[ {c\left( {B_{1} + B_{2} } \right) + 2pB_{2} } \right]}}{{\left( {c + 2p} \right)\left( {B_{1} + B_{2} } \right)}} < 0\). Moreover, taking the derivative with respect to the potential demand gives us \(\frac{{\partial Q_{1}^{SN} }}{{\partial u_{1} }} = \frac{{2pu_{1} u_{2} \left( {p + h_{1} } \right)\left( {p + h_{2} } \right) + pu_{1}^{2} \left( {p + h_{2} } \right)^{2} + u_{2} \left( {p + h_{1} } \right)^{2} \left[ {pu_{2} - \left( {a - bp} \right)\left( {p + h_{2} } \right)} \right]}}{{\left( {p + h_{1} } \right)\left[ {u_{2} \left( {p + h_{1} } \right) + u_{1} \left( {p + h_{2} } \right)} \right]^{2} }} > 0\), it’s prove is the same as \(\frac{{\partial Q_{1}^{SN} }}{{\partial h_{1} }}\). Under the SO strategy, \(\frac{{\partial Q_{1}^{SO} }}{{\partial u_{1} }} = \frac{{8p^{3} u_{1} u_{2} \left( {p + h_{2} } \right) + 2p\left( {c + 2p} \right)u_{1}^{2} \left( {p + h_{2} } \right)^{2} + 4p^{3} u_{2} \left[ {pu_{2} - \left( {a - bp} \right)\left( {p + h_{2} } \right)} \right]}}{{\left[ {2p^{2} u_{2} + \left( {c + 2p} \right)u_{1} \left( {p + h_{2} } \right)} \right]^{2} }}\), according to \(8p^{3} u_{2} \left[ {u_{1} \left( {p + h_{2} } \right) + pu_{2} - \left( {a - bp} \right)\left( {p + h_{2} } \right)} \right] > 0\), we can get \(\frac{{\partial Q_{1}^{SO} }}{{\partial u_{1} }} > 0\). \(\frac{{\partial Q_{1}^{SB} }}{{\partial u_{1} }} = \frac{{2p\left[ {\left( {u_{1} + u_{2} } \right)^{2} - \left( {a - bp} \right)u_{2} } \right]}}{{\left( {c + 2p} \right)\left( {u_{1} + u_{2} } \right)^{2} }}\), it is known that \(\left( {u_{1} + u_{2} } \right)^{2} > u_{2} \left( {u_{1} + u_{2} } \right)\), so \(\left( {u_{1} + u_{2} } \right)^{2} - \left( {a - bp} \right)u_{2} > u_{2} \left[ {u_{1} + u_{2} - \left( {a - bp} \right)} \right] > 0\), thus \(\frac{{\partial Q_{1}^{SB} }}{{\partial u_{1} }} > 0\). Similarly, we can easily obtain \(\frac{{\partial Q_{1}^{SN} }}{{\partial u_{2} }} = \frac{{\left( {a - bp} \right)u_{1} \left( {p + h_{1} } \right)\left( {p + h_{2} } \right)}}{{\left[ {u_{2} \left( {p + h_{1} } \right) + u_{1} \left( {p + h_{2} } \right)} \right]^{2} }} > 0\), \(\frac{{\partial Q_{1}^{SO} }}{{\partial u_{2} }} = \frac{{2p^{2} u_{1} \left[ {2p\left( {a - bp} \right) + cu_{1} } \right]\left( {p + h_{2} } \right)}}{{\left[ {2p^{2} u_{2} + \left( {c + 2p} \right)u_{1} \left( {p + h_{2} } \right)} \right]^{2} }} > 0\), \(\frac{{\partial Q_{1}^{SB} }}{{\partial u_{2} }} = \frac{{2p\left( {a - bp} \right)u_{1} }}{{\left( {c + 2p} \right)\left( {u_{1} + u_{2} } \right)^{2} }} > 0\). The derivative of \(Q_{2}^{S*}\) with respect to \(b\) and \(B_{i}\) is similar to the above.

Proof of Proposition 2 (1) According to the difference between the optimal rental under the SN strategy and the SO strategy in Table 5, we can get \(w^{SN} - w^{SO} = \frac{{B_{1} \left( {p + h_{2} } \right)\left\{ {2\left( {a - bp} \right)\left( {p + h_{2} } \right)\left[ {cp + \left( {c + 2p} \right)h_{1} } \right] - cpB_{2} \left( {p + h_{1} } \right) - cpB_{1} \left( {p + h_{2} } \right)} \right\}}}{{2\left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]\left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]}}\), where \(2\left( {a - bp} \right)\left( {p + h_{2} } \right)\left[ {cp + \left( {c + 2p} \right)h_{1} } \right] - cpB_{2} \left( {p + h_{1} } \right) - cpB_{1} \left( {p + h_{2} } \right) = 2\left( {a - bp} \right)\left( {p + h_{2} } \right)\left[ {c\left( {p + h_{1} } \right) + 2ph_{1} } \right] - c\left[ {pB_{2} \left( {p + h_{1} } \right) + pB_{1} \left( {p + h_{2} } \right)} \right] \ge 2\left( {a - bp} \right)\left( {p + h_{2} } \right)\left( {p + h_{1} } \right) - pB_{2} \left( {p + h_{1} } \right) - pB_{1} \left( {p + h_{2} } \right) > 0\), thus \(w^{SN} > w^{SO}\). Similarly, we can get the difference \(w^{SO} - w^{SB} = \frac{{p^{2} B_{2} \left\{ {2\left( {a - bp} \right)\left[ {cp + \left( {c + 2p} \right)h_{2} } \right] - cpB_{1} - cpB_{2} } \right\}}}{{\left( {c + 2p} \right)\left( {B_{1} + B_{2} } \right)\left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]}}\), we have obtained \(2\left( {a - bp} \right)\left( {p + h_{2} } \right) - pB_{1} - pB_{2} > 0\), thus \(w^{SO} > w^{SB}\). Therefore, the relationship of rental under different sharing strategies is as follows \(w^{SN} > w^{SO} > w^{SB}\).

According to the difference between the optimal rental under the SN strategy and the SO strategy in Table 5, we can get \(Q_{1}^{SO} - Q_{1}^{SN} = \frac{{B_{1} \left\{ {pB_{1}^{2} \left( {2h_{1} - c} \right)\left( {p + h_{2} } \right)^{2} + 2pB_{2} h_{1} \left( {p + h_{1} } \right)\left[ {pB_{2} - 2\left( {a - bp} \right)\left( {p + h_{2} } \right)} \right] - B_{1} \left( {p + h_{2} } \right)\left\{ {pB_{2} \left[ {cp + \left( {c - 4p - 2h_{1} } \right)h_{1} } \right] - 2c\left( {a - bp} \right)\left( {p + h_{1} } \right)\left( {p + h_{2} } \right)} \right\}} \right\}}}{{2\left( {p + h_{1} } \right)\left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]\left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]}}\), owing that \(pB_{1}^{2} \left( {2h_{1} - c} \right)\left( {p + h_{2} } \right)^{2} + 2pB_{2} h_{1} \left( {p + h_{1} } \right)\left[ {pB_{2} - 2\left( {a - bp} \right)\left( {p + h_{2} } \right)} \right] - B_{1} \left( {p + h_{2} } \right)\left\{ {pB_{2} \left[ {cp + \left( {c - 4p - 2h_{1} } \right)h_{1} } \right] - 2c\left( {a - bp} \right)\left( {p + h_{1} } \right)\left( {p + h_{2} } \right)} \right\} = 2pB_{1} h_{1} \left( {p + h_{2} } \right)\left[ {p\left( {B_{1} + B_{2} } \right) + B_{1} h_{2} } \right] + cB_{1} \left( {p + h_{2} } \right)\left[ {pB_{1} \left( {p + h_{2} } \right) + pB_{2} \left( {p + h_{1} } \right) - 2\left( {a - bp} \right)\left( {p + h_{1} } \right)\left( {p + h_{2} } \right)} \right] + 2pB_{2} h_{1} \left( {p + h_{1} } \right)\left[ {pB_{2} + B_{1} \left( {p + h_{2} } \right) - 2\left( {a - bp} \right)\left( {p + h_{2} } \right)} \right] > 0\), so we get \(Q_{1}^{SO} > Q_{1}^{SN}\). \(Q_{1}^{SB} - Q_{1}^{SO} = \frac{{pB_{1} B_{2} \left\{ {2\left( {a - bp} \right)\left[ {cp + \left( {c + 2p} \right)h_{2} } \right] - cpB_{1} - cpB_{2} } \right\}}}{{\left( {c + 2p} \right)\left( {B_{1} + B_{2} } \right)\left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]}}\). The comparison of \(w^{SO}\) and \(w^{SB}\) shows that \(2\left( {a - bp} \right)\left[ {cp + \left( {c + 2p} \right)h_{2} } \right] - cpB_{1} - cpB_{2} > 0\), so we can get \(Q_{1}^{SB} > Q_{1}^{SO}\). Therefore, the relationship of NVOCC \(I\)’s order quantity under different sharing strategies is as follows \(Q_{1}^{SN} < Q_{1}^{SO} < Q_{1}^{SB}\).

\(Q_{2}^{SO} - Q_{2}^{SN} = \frac{{B_{1} B_{2} \left\{ {2\left( {a - bp} \right)\left( {p + h_{2} } \right)\left[ {cp + \left( {c + 2p} \right)h_{1} } \right] - cpB_{2} \left( {p + h_{1} } \right) - cpB_{1} \left( {p + h_{2} } \right)} \right\}}}{{2\left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]\left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]}}\). The comparison of \(w^{SN}\) and \(w^{SO}\) shows that \(2\left( {a - bp} \right)\left( {p + h_{2} } \right)\left[ {cp + \left( {c + 2p} \right)h_{1} } \right] - cpB_{2} \left( {p + h_{1} } \right) - cpB_{1} \left( {p + h_{2} } \right) > 0\), so we can get \(Q_{2}^{SO} > Q_{2}^{SN}\). Similarly, the difference of order quantity \(Q_{2}^{SB} - Q_{2}^{SO} =\)

\(\frac{{pB_{2} \left\{ {p^{2} B_{2}^{2} \left( {2h_{2} - c} \right) + B_{2} \left\{ {2cp\left( {a - bp} \right)\left( {p + h_{2} } \right) + B_{1} \left[ {\left( {c + 4p} \right)ph_{2} + \left( {c + 2p} \right)h_{2}^{2} - cp^{2} } \right]} \right\} - \left( {c + 2p} \right)B_{1} \left( {2a - 2bp - B_{1} } \right)h_{2} \left( {p + h_{2} } \right)} \right\}}}{{\left( {c + 2p} \right)\left( {B_{1} + B_{2} } \right)\left( {p + h_{2} } \right)\left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]}}\), where \(p^{2} B_{2}^{2} \left( {2h_{2} - c} \right) + B_{2} \left\{ {2cp\left( {a - bp} \right)\left( {p + h_{2} } \right) + B_{1} \left[ {\left( {c + 4p} \right)ph_{2} + \left( {c + 2p} \right)h_{2}^{2} - cp^{2} } \right]} \right\} - \left( {c + 2p} \right)B_{1} \left( {2a - 2bp - B_{1} } \right)h_{2} \left( {p + h_{2} } \right) = 2p^{2} B_{2} h_{2} \left( {B_{1} + B_{2} } \right) + cpB_{2} \left[ {2\left( {a - bp} \right)\left( {p + h_{2} } \right) - pB_{1} - pB_{2} } \right] + B_{1} h_{2} \left( {c + 2p} \right)\left( {p + h_{2} } \right)\left[ {B_{1} + B_{2} - 2\left( {a - bp} \right)} \right] > 0\), thus \(Q_{2}^{SB} > Q_{2}^{SO}\). Therefore, the relationship of NVOCC \(II\)’s order quantity under different sharing strategies is as follows \(Q_{2}^{SN} < Q_{2}^{SO} < Q_{2}^{SB}\).

(2) According to the profit function of the NVOCC, \(\pi_{c1}^{SO} - \pi_{c1}^{SN} = \left( {p - w^{SO} } \right)Q_{1}^{SO} - \left( {p + h_{1} } \right)\frac{{z_{1}^{SO2} }}{{2B_{1} }} - \left( {p - w^{SN} } \right)Q_{1}^{SN} + \left( {p + h_{1} } \right)\frac{{z_{1}^{SN2} }}{{2B_{1} }} = \left[ {p - \frac{p}{{2B_{1} }}\left( {z_{1}^{SO} + z_{1}^{SN} } \right)} \right]\left( {z_{1}^{SO} - z_{1}^{SN} } \right) + \frac{{h_{1} }}{{2B_{1} }}z_{1}^{SN2} + w^{SN} Q_{1}^{SN} - w^{SO} Q_{1}^{SO}\), where \(\frac{{h_{1} }}{{2B_{1} }}z_{1}^{SN2} + w^{SN} Q_{1}^{SN} - w^{SO} Q_{1}^{SO} \ge \frac{{h_{1} }}{{2B_{1} }}z_{1}^{SN2} + w^{SO} \left( {z_{1}^{SN} - z_{1}^{SO} } \right) \ge \frac{{h_{1} }}{{2B_{1} }}\left[ {z_{1}^{SN2} + 2B_{1} \left( {z_{1}^{SN} - z_{1}^{SO} } \right)} \right] = \frac{{h_{1} }}{{2B_{1} }}\left[ {z_{1}^{SN} \left( {z_{1}^{SN} + 2B_{1} } \right) - 2B_{1} z_{1}^{SO} } \right]\). Known that \(B_{1} - z_{1}^{SN} = \frac{{B_{1} \left\{ {B_{1} \left( {p + 2h_{1} } \right)\left( {p + h_{2} } \right) + \left( {p + h_{1} } \right)\left[ {B_{2} \left( {p + 2h_{1} } \right) + 2\left( {a - bp} \right)\left( {p + h_{2} } \right)} \right]} \right\}}}{{2\left( {p + h_{1} } \right)\left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]}} > 0\), \(B_{1} - z_{1}^{SO} = \frac{{B_{1} \left\{ {\left( {c + p} \right)B_{1} \left( {p + h_{2} } \right) + p\left[ {pB_{2} + 2\left( {a - bp} \right)\left( {p + h_{2} } \right)} \right]} \right\}}}{{2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)}} > 0\), so \(2B_{1} - \left( {z_{1}^{SO} + z_{1}^{SN} } \right) > 0\). Thus, we can obtain \(\pi_{c1}^{SO} > \pi_{c1}^{SN}\). \(\pi_{c1}^{SB} - \pi_{c1}^{SO} = \left[ {p - \frac{p}{{2B_{1} }}\left( {z_{1}^{SB} + z_{1}^{SO} } \right)} \right]\left( {z_{1}^{SB} - z_{1}^{SO} } \right) + w^{SO} Q_{1}^{SO} - w^{SB} Q_{1}^{SB} \ge \left[ {p - w^{SB} - \frac{p}{{2B_{1} }}\left( {z_{1}^{SB} + z_{1}^{SO} } \right)} \right]\left( {z_{1}^{SB} - z_{1}^{SO} } \right)\), and \(B_{1} - z_{1}^{SB} = \frac{{B_{1} \left[ {2p\left( {a - bp} \right) + \left( {c + p} \right)\left( {B_{1} + B_{2} } \right)} \right]}}{{\left( {c + 2p} \right)\left( {B_{1} + B_{2} } \right)}} > 0\), so \(\pi_{c1}^{SB} > \pi_{c1}^{SO}\). Therefore, the relationship of NVOCC \(I\)’s profit under different sharing strategies is \(\pi_{c1}^{SN} < \pi_{c1}^{SO} < \pi_{c1}^{SB}\). Moreover, since the two liner companies are symmetrical and the rentals payable are the same, the conclusion of NVOCC \(II\) is similar.

\(\pi_{p}^{SO} - \pi_{p}^{SN} = w\left( {Q_{1}^{SO} + Q_{2}^{SO} } \right) - c\frac{{z_{1}^{SO2} }}{{2B_{1} }} - w\left( {Q_{1}^{SN} + Q_{2}^{SN} } \right) = w\left( {z_{1}^{SO} - z_{1}^{SN} + z_{2}^{SO} - z_{2}^{SN} } \right) - c\frac{{z_{1}^{SO2} }}{{2B_{1} }}\), where \(w\left( {z_{1}^{SO} - z_{1}^{SN} } \right) - c\frac{{z_{1}^{SO2} }}{{2B_{1} }} > c\left( {z_{1}^{SO} - z_{1}^{SN} - \frac{{z_{1}^{SO2} }}{{2B_{1} }}} \right) = \frac{c}{{2B_{1} }}\left[ {2B_{1} \left( {z_{1}^{SO} - z_{1}^{SN} } \right) - z_{1}^{SO2} } \right]\) and it has been proved that \(B_{1} > z_{1}^{SO} > z_{1}^{SN}\), thus \(\pi_{p}^{SO} > \pi_{p}^{SN}\). \(\pi_{p}^{SB} - \pi_{p}^{SO} = w\left( {Q_{1}^{SB} + Q_{2}^{SB} } \right) - c\left( {\frac{{z_{1}^{SB2} }}{{2B_{1} }} + \frac{{z_{2}^{SB2} }}{{2B_{2} }}} \right) - w\left( {Q_{1}^{SO} + Q_{2}^{SO} } \right) + c\frac{{z_{1}^{SO2} }}{{2B_{1} }} = \left[ {w - \frac{c}{{2B_{1} }}\left( {z_{1}^{SB} + z_{1}^{SO} } \right)} \right]\left( {z_{1}^{SB} - z_{1}^{SO} } \right) + w\left( {z_{2}^{SB} - z_{2}^{SO} } \right) - c\frac{{z_{2}^{SB2} }}{{2B_{2} }}\), where \(\left( {z_{2}^{SB} - z_{2}^{SO} } \right) - c\frac{{z_{2}^{SB2} }}{{2B_{2} }} > 0\) is similar to the previous and \(w - \frac{c}{{2B_{1} }}\left( {z_{1}^{SB} + z_{1}^{SO} } \right) = \frac{1}{{2B_{1} }}\left[ {2B_{1} w - c\left( {z_{1}^{SB} + z_{1}^{SO} } \right)} \right] > \frac{c}{{2B_{1} }}\left[ {2B_{1} - \left( {z_{1}^{SB} + z_{1}^{SO} } \right)} \right] > 0\), so \(\pi_{p}^{SB} > \pi_{p}^{SO}\). Therefore, the relationship of ordering platform’s profit under different sharing strategies is \(\pi_{p}^{SN} < \pi_{p}^{SO} < \pi_{p}^{SB}\).

Accordingly, the equilibriums of liner shipping system under three different sharing strategies with different rental levels are described in Table

Table 6 Equilibriums of different sharing strategies under different rentals

6.

In order to ensure that the liner company \(i \left( {i = I,II} \right)\) is profitable and the order quantity is not negative, we require \(p > w_{i}\), so we can get \(pB_{i} - \left( {a - bp} \right)\left( {p + h_{i} } \right) > 0\) under DN strategy, \(pB_{1} - \left( {a - bp} \right) > 0\) and \(pB_{2} - \left( {a - bp} \right)\left( {p + h_{2} } \right) > 0\) under DO strategy and \(B_{i} - \left( {a - bp} \right) > 0\) under DB strategy.

Proof of Lemma 5 From Table 6, we can get the derivative about idle cost \(\frac{{\partial w_{1}^{DN} }}{{\partial h_{1} }} = \frac{a - bp}{{2B_{1} }} > 0\), \(\frac{{\partial w_{1}^{DO} }}{{\partial h_{1} }} = \frac{{\partial w_{1}^{DB} }}{{\partial h_{1} }} = 0\). Taking the derivative about price-sensitivity coefficient give us \(\frac{{\partial w_{1}^{DN} }}{\partial b} = - \frac{{p\left( {p + h_{1} } \right)}}{{2B_{1} }} < 0\), \(\frac{{\partial w_{1}^{DO} }}{\partial b} = \frac{{\partial w_{1}^{DB} }}{\partial b} = - \frac{{p^{3} }}{{\left( {c + 2p} \right)B_{1} }} < 0\). Similarly, we can get \(\frac{{\partial w_{1}^{DN} }}{{\partial u_{1} }} = - \frac{{\left( {a - bp} \right)\left( {p + h_{1} } \right)}}{{8u_{1}^{2} }} < 0\), \(\frac{{\partial w_{1}^{DO} }}{{\partial u_{1} }} = \frac{{\partial w_{1}^{DB} }}{{\partial u_{1} }} = - \frac{{p^{2} \left( {a - bp} \right)}}{{4\left( {c + 2p} \right)u_{1}^{2} }} < 0\). When the ordering platform charges different rentals for the two NVOCCs respectively, the decision of \(w_{i}^{D*}\) is only related to the liner company \(i\), so the change of \(w_{2}^{D*}\) is symmetrical to \(w_{1}^{D*}\), which is omitted here.

Proof of Lemma 6 Taking the derivative with respect to idle cost gives \(\frac{{\partial Q_{1}^{DN} }}{{\partial h_{1} }} = - \frac{{pB_{1} }}{{2\left( {p + h_{1} } \right)^{2} }} < 0\), \(\frac{{\partial Q_{1}^{DO} }}{{\partial h_{1} }} = \frac{{\partial Q_{1}^{DB} }}{{\partial h_{1} }} = 0\). Taking the derivative with respect to price-sensitivity coefficient give us \(\frac{{\partial Q_{1}^{DN} }}{\partial b} = - \frac{p}{2} < 0\), \(\frac{{\partial Q_{1}^{DO} }}{\partial b} = \frac{{\partial Q_{1}^{DO} }}{\partial b} = - \frac{{p\left( {p + {\text{c}}} \right)}}{c + 2p} < 0\). Similarly, \(\frac{{\partial Q_{1}^{DN} }}{{\partial u_{1} }} = \frac{p}{{2\left( {p + h_{1} } \right)}} > 0\), \(\frac{{\partial Q_{1}^{DO} }}{{\partial u_{1} }} = \frac{{\partial Q_{1}^{DB} }}{{\partial u _{1} }} = \frac{p}{c + 2p} > 0\). The decisions of \(Q_{1}^{D*}\) and \(Q_{2}^{D*}\) are symmetrical, and will not be repeated here.

Proof of Proposition 4 (1) According to the difference between the optimal order quantity under the DN strategy and the DO strategy in Table 6, \(Q_{1}^{DO} - Q_{1}^{DN} = \frac{{c\left( {a - bp} \right)\left( {p + h_{1} } \right) + pB_{1} \left( {2h_{1} - c} \right)}}{{2\left( {c + 2p} \right)\left( {p + h_{1} } \right)}} > 0\). Meanwhile, \(Q_{1}^{DO} - Q_{1}^{DB} = 0\). Thus, we can obtain \(Q_{1}^{DN} < Q_{1}^{DO} = Q_{1}^{DB}\). The decisions of \(Q_{1}^{D*}\) and \(Q_{2}^{D*}\) are symmetrical, and will not be repeated here.

(2) \(\pi_{c1}^{DO} - \pi_{c1}^{DN} = \left( {p - w_{1}^{DO} } \right)Q_{1}^{DO} - p\frac{{z_{1}^{DO2} }}{{2B_{1} }} - \left( {p - w_{1}^{DN} } \right)Q_{1}^{DN} + \left( {p + h_{1} } \right)\frac{{z_{1}^{DN2} }}{{2B_{1} }} = p\left[ {z_{1}^{DO} - z_{1}^{DN} - \frac{1}{{2B_{1} }}\left( {z_{1}^{DO2} - z_{1}^{DN2} } \right)} \right] + w_{1}^{DN} Q_{1}^{DN} - w_{1}^{DO} Q_{1}^{DO} + h_{1} \frac{{z_{1}^{DN2} }}{{2B_{1} }} \ge \frac{p}{{2B_{1} }}\left( {z_{1}^{DO} - z_{1}^{DN} } \right)\left[ {2B_{1} - \left( {z_{1}^{DO} + z_{1}^{DN} } \right)} \right]\) \(+ \frac{{h_{1} }}{{2B_{1} }}\left[ {2B_{1} \left( {z_{1}^{DN} - z_{1}^{DO} } \right) + z_{1}^{DN2} } \right]\). Similar to the same rental situation, \(B_{1} - z_{1}^{DN} = \frac{1}{2}\left[ {a - bp + \frac{{B_{1} \left( {p + 2h_{1} } \right)}}{{p + h_{1} }}} \right] > 0\) and \(B_{1} - z_{1}^{DO} = \frac{{p\left( {a - bp} \right) + \left( {c + p} \right)B_{1} }}{c + 2p} > 0\), so \(2B_{1} - \left( {z_{1}^{DO} + z_{1}^{DN} } \right) > 0\), thus we can obtain \(\pi_{c1}^{DO} > \pi_{c1}^{DN}\). Meanwhile, \(\pi_{c1}^{DO} - \pi_{c1}^{DB} = 0\). Therefore, the relationship of NVOCC \(I\)’s profit under different sharing strategies is \(\pi_{c1}^{DN} < \pi_{c1}^{DO} = \pi_{c1}^{DB}\).

Proof of Proposition 5 Similarly, the difference between the optimal rental under the DN strategy and the DO strategy gives us \(w_{1}^{DN} - w_{1}^{DO} = \frac{{\left( {a - bp} \right)\left[ {cp + \left( {c + 2p} \right)h_{1} } \right] - cpB_{1} }}{{2\left( {c + 2p} \right)B_{1} }} > 0\) and \(w_{1}^{DO} - w_{1}^{DB} = 0\). Thus, we can obtain \(w_{1}^{DN} > w_{1}^{DO} = w_{1}^{DB}\). The decisions of \(w_{1}^{D*}\) and \(w_{2}^{D*}\) are symmetrical, and will not be repeated here. (2) \(\pi_{p}^{DO} - \pi_{p}^{DN} = w_{1}^{DO} Q_{1}^{DO} + w_{2}^{DO} Q_{2}^{DO} - c\frac{{z_{1}^{DO2} }}{{2B_{1} }} - \left( {w_{1}^{DN} Q_{1}^{DN} + w_{2}^{DN} Q_{2}^{DN} } \right) = w_{1}^{DO} Q_{1}^{DO} - w_{1}^{DN} Q_{1}^{DN} - c\frac{{z_{1}^{DO2} }}{{2B_{1} }} > c\left( {z_{1}^{DO} - z_{1}^{DN} - \frac{{z_{1}^{DO2} }}{{2B_{1} }}} \right)\), where \(z_{1}^{DO} - z_{1}^{DN} - \frac{{z_{1}^{DO2} }}{{2B_{1} }} > 0\) is similar to the same rental situation, so \(\pi_{p}^{DO} > \pi_{p}^{DN}\). Meanwhile, \(\pi_{p}^{DB} - \pi_{p}^{DO} = w_{1}^{DB} Q_{1}^{DB} + w_{2}^{DB} Q_{2}^{DB} - c\left( {\frac{{z_{1}^{DB2} }}{{2B_{1} }} + \frac{{z_{2}^{DB2} }}{{2B_{2} }}} \right) - \left( {w_{1}^{DO} Q_{1}^{DO} + w_{2}^{DO} Q_{2}^{DO} } \right) + c\frac{{z_{1}^{DO2} }}{{2B_{1} }} = w_{2}^{DB} Q_{2}^{DB} - w_{2}^{DO} Q_{2}^{DO} - c\frac{{z_{2}^{DB2} }}{{2B_{2} }} > c\left( {z_{1}^{DB} - z_{1}^{DO} - \frac{{z_{1}^{DB2} }}{{2B_{1} }}} \right)\), so \(\pi_{p}^{DB} > \pi_{p}^{DO}\). Therefore, the relationship of ordering platform’s profit under different sharing strategies is \(\pi_{p}^{DN} < \pi_{p}^{DO} < \pi_{p}^{DB}\).

Proof of Proposition 6 It can be known from the assumption that \(\frac{{B_{1} }}{{h_{1} }} > \frac{{B_{2} }}{{h_{2} }}\), so \(w_{2}^{DN} - w^{SN} = \frac{{\left( {a - bp} \right)\left( {p + h_{2} } \right)\left[ {B_{1} \left( {p + h_{2} } \right) - B_{2} \left( {p + h_{1} } \right)} \right]}}{{2B_{2} \left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]}} > 0\), \(w^{SN} - w_{1}^{DN} = \frac{{\left( {a - bp} \right)\left( {p + h_{1} } \right)\left[ {B_{1} \left( {p + h_{2} } \right) - B_{2} \left( {p + h_{1} } \right)} \right]}}{{2B_{1} \left[ {B_{2} \left( {p + h_{1} } \right) + B_{1} \left( {p + h_{2} } \right)} \right]}} > 0\). Therefore, when neither one NVOCC chooses sharing, the relationship of ordering platform’s optimal rentals is \(w_{2}^{DN} > w^{SN} > w_{1}^{DN}\).

\(w_{2}^{DO} - w^{SO} = \frac{{\left( {p + h_{2} } \right)\left\{ {B_{1} \left[ {\left( {c + 2p} \right)\left( {a - bp} \right)\left( {p + h_{2} } \right) - cpB_{2} } \right] - 2p^{2} \left( {a - bp} \right)B_{2} } \right\}}}{{2B_{2} \left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]}}\), owing that \(B_{1} \left[ {\left( {c + 2p} \right)\left( {a - bp} \right)\left( {p + h_{2} } \right) - cpB_{2} } \right] - 2p^{2} \left( {a - bp} \right)B_{2} = cB_{1} \left[ {\left( {a - bp} \right)\left( {p + h_{2} } \right) - pB_{2} } \right] + 2p\left( {a - bp} \right)\left[ {p\left( {B_{1} - B_{2} } \right) + B_{1} h_{2} } \right] > 0\), so we can obtain \(w_{2}^{DO} > w^{SO}\). Meanwhile, the difference \(w^{SO} - w_{1}^{DO} = \frac{{p^{2} \left\{ {B_{1} \left[ {\left( {c + 2p} \right)\left( {a - bp} \right)\left( {p + h_{2} } \right) - cpB_{2} } \right] - 2p^{2} \left( {a - bp} \right)B_{2} } \right\}}}{{\left( {c + 2p} \right)B_{1} \left[ {2p^{2} B_{2} + \left( {c + 2p} \right)B_{1} \left( {p + h_{2} } \right)} \right]}} > 0\), thus \(w_{2}^{DO} > w^{SO} > w_{1}^{DO}\).

Similarly, \(w_{2}^{DB} - w^{SB} = \frac{{p^{2} \left( {a - bp} \right)\left( {B_{1} - B_{2} } \right)}}{{\left( {c + 2p} \right)B_{2} \left( {B_{1} + B_{2} } \right)}} > 0\), \(w^{SB} > w_{1}^{DB} = \frac{{p^{2} \left( {a - bp} \right)\left( {B_{1} - B_{2} } \right)}}{{\left( {c + 2p} \right)B_{1} \left( {B_{1} + B_{2} } \right)}} > 0\), thus \(w_{2}^{DB} > w^{SB} > w_{1}^{DB}\).

Proof of Proposition 8 The proof process is similar to Proposition 6 and is omitted here.

Proof of Proposition 7, 9 According to the relationship of rentals and order quantities obtained in the foregoing, the relationship among profits of NVOCC and ordering platform under different rental modes can be derived, and the proofs are similar to Propositions 4 and 5. Therefore they are omitted here.

Appendix 2. Proofs for extension

The superscripts NSN, NSO, and NSB are used to represent three sharing strategies in the following models considering \(n\) NVOCCs.

Under the NSN strategy, all of \(n\) NVOCCs choose the non-sharing strategy. After the booking platform determines the rental \(w\), each NVOCC decides its own booking quantity \(Q_{i} \left( {i = 1,2, \ldots ,n} \right)\). In this case, the profit functions are as follows

$$ \pi_{ci} \left( {Q_{i} |Q_{1} ,Q_{2} , \ldots ,Q_{i - 1} ,Q_{i + 1} , \ldots ,Q_{n} } \right) = p \cdot \min \left( {Q_{i} ,D_{i} } \right) - wQ_{i} - h_{i} \left( {Q_{i} - D_{i} } \right)^{ + } $$
$$ \pi_{p} \left( {w|Q_{1} ,Q_{2} , \ldots ,Q_{i} , \ldots ,Q_{n} } \right) = w \cdot \mathop \sum \limits_{i = 1}^{n} Q_{i} $$
$$ i = 1,2, \ldots ,n $$

The solution process is similar to Sect. 4.1, and the optimal rental and sharing levels of \(n\) NVOCCs are obtained

$$ \overline{z}_{i} \left( w \right) = F_{i}^{ - 1} \left( {\frac{p - w}{{p + h_{i} }}} \right) $$
$$ w^{NSN} = \frac{{\left[ {n\left( {a - bp} \right) + \mathop \sum \nolimits_{i = 1}^{n} \overline{z}_{i} \left( {w^{NSN} } \right)} \right]}}{{ \mathop \sum \nolimits_{i = 1}^{n} \left[ {f_{i} \left( {z_{i} } \right)\left( {p + h_{i} } \right)} \right]^{ - 1} }} $$

Under the NSO strategy, assuming that the first \(k\) NVOCCs choose sharing strategy, and the next \(n - k\) NVOCCs choose non-sharing strategy. In this case, the profit functions obtained are as follows

$$ \pi_{ci} \left( {Q_{i} |Q_{1} ,Q_{2} , \ldots ,Q_{i - 1} ,Q_{i + 1} , \ldots ,Q_{k} } \right) = p \cdot \min \left( {Q_{i} ,D_{i} } \right) - wQ_{i} , \quad i = 1,2, \ldots ,k $$
$$ \pi_{cj} \left( {Q_{j} |Q_{k + 1} , \ldots ,Q_{j - 1} ,Q_{j + 1} , \ldots ,Q_{n} } \right) = p \cdot \min \left( {Q_{j} ,D_{j} } \right) - wQ_{j} - h_{j} \left( {Q_{j} - D_{j} } \right)^{ + } ,\quad j = k + 1, \ldots ,n $$
$$ \pi_{p} \left( {w|Q_{1} , \ldots ,Q_{i} , \ldots ,Q_{j} \ldots ,Q_{n} } \right) = w \cdot \left( {\mathop \sum \limits_{i = 1}^{k} Q_{i} + \mathop \sum \limits_{j = k + 1}^{n} Q_{j} } \right) - c \cdot \mathop \sum \limits_{i = 1}^{k} \left( {Q_{i} - D_{i} } \right)^{ + } $$

The optimal rental of the booking platform and the sharing level of the NVOCC \(i\) that chooses the sharing strategy and the NVOCC \(j\) that chooses the non-sharing strategy are obtained

$$ \overline{z}_{i} \left( w \right) = F_{1}^{ - 1} \left( {\frac{p - w}{p}} \right) i = 1,2, \ldots ,k $$
$$ \overline{z}_{j} \left( w \right) = F_{2}^{ - 1} \left( {\frac{p - w}{{p + h_{j} }}} \right) j = k + 1, \ldots ,n $$
$$ w^{NSO} = \frac{{p\left\{ {c\mathop \sum \nolimits_{i = 1}^{k} f_{i} \left( {z_{i} } \right)^{ - 1} + p\left[ {n\left( {a - bp} \right) + \mathop \sum \nolimits_{i = 1}^{n} \overline{z}_{i} \left( {w^{NSO} } \right)} \right]} \right\}}}{{p^{2} \mathop \sum \nolimits_{j = k + 1}^{n} \left[ {f_{j} \left( {z_{j} } \right)\left( {p + h_{j} } \right)} \right]^{ - 1} + \left( {p + c} \right)\mathop \sum \nolimits_{i = 1}^{k} f_{i} \left( {z_{i} } \right)^{ - 1} }} $$

Under the NSB strategy, all \( of n\) NVOCCs choose the sharing strategy. The profit functions of the booking platform and the NVOCCs are as follows

$$ \pi_{ci} \left( {Q_{i} |Q_{1} ,Q_{2} , \ldots ,Q_{i - 1} ,Q_{i + 1} , \ldots ,Q_{n} } \right) = p \cdot \min \left( {Q_{i} ,D_{i} } \right) - wQ_{i} $$
$$ \pi_{p} \left( {w|Q_{1} ,Q_{2} , \ldots ,Q_{i} , \ldots ,Q_{n} } \right) = w \cdot \mathop \sum \limits_{i = 1}^{n} Q_{i} - c \cdot \mathop \sum \limits_{i = 1}^{n} \left( {Q_{i} - D_{i} } \right)^{ + } $$
$$ i = 1,2, \ldots ,n $$

Get the optimal equilibriums by solving the above expected profit functions

$$ \overline{z}_{i} \left( w \right) = F_{i}^{ - 1} \left( {\frac{p - w}{p}} \right) $$
$$ w^{SB} = \frac{{p\left\{ {c\mathop \sum \nolimits_{i = 1}^{n} f_{i} \left( {z_{i} } \right)^{ - 1} + p\left[ {n\left( {a - bp} \right) + \mathop \sum \nolimits_{i = 1}^{n} \overline{z}_{i} \left( {w^{SB} } \right)} \right]} \right\}}}{{\left( {p + c} \right)\mathop \sum \nolimits_{i = 1}^{n} f_{i} \left( {z_{i} } \right)^{ - 1} }} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Wang, C. Ship space sharing strategies with different rental modes: How does NVOCCs cooperate with booking platform?. Oper Res Int J 22, 3003–3035 (2022). https://doi.org/10.1007/s12351-021-00643-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-021-00643-4

Keywords

Navigation