Skip to main content

Advertisement

Log in

Towards the Development of Emotional Dancing Humanoid Robots

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Throughout human civilization, dance has been considered to be a means of communication. With advances in Artificial Intelligence (AI) and Robot Technology (RT), it is now possible to create biped humanoid robots that can dance. This manuscript provides an overview of dancing robots that have been developed during the past 24 years. It then introduces several emotional flexible spine humanoid robots developed by the author. As part of the introduction, it presents the world’s first humanoid robot that can exhibit dynamic walk with flexible spine motions. This is followed by a discussion on applications, some development issues and possible future directions of research related to dancing robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Andrews T, Pinner MSM (2008) Johnny 5 lives again. R Mag 52–55

  2. Apostolos MK (1988) A comparison of the artistic aspects of various industrial robots. In: Proceedings of the 1st international conference on industrial and engineering applications of artificial intelligence and expert systems, vol 1, pp 548–552

  3. Arkin RC, Fujita M, Takagi T, Hasegawa R (2001) Ethological modeling and architecture for an entertainment robot. In: Proceedings of the IEEE international conference on robotics and automation, vol 1, pp 453–458

  4. Aucouturier J, Ikeuchi K, Hirukawa H, Nakaoka S, Shiratori T, Kudoh S, Kanehiro F, Ogata T, Kozima H, Okuno H, Michalowski MP, Ogai Y, Ikegami T, Kosuge K, Takeda T, Hirata Y (2008) Cheek to chip: dancing robots and AI’s future. IEEE Intell Syst 23(2):74–84

    Article  Google Scholar 

  5. Aucouturier JJ, Ogai Y, Ikegami T (2007) Making a robot dance to music using chaotic itinerancy in a network of Fitzhugh-Nagumo neurons. In: Proceedings of the 14th international conference on neural information processing (ICONIP2007). http://www.jj-aucouturier.info/papers/ICONIP-2007.pdf

  6. Borst C, Wimböck T, Schmidt F, Fuchs M (2009) Rollin’ Justin—mobile platform with variable base. In: Proceedings of the 2009 IEEE international conference on robotics and automation (ICRA’09), pp 1597–1598

  7. Breazeal C (2002) Designing sociable robots. MIT Press, Cambridge

    Google Scholar 

  8. Breazeal C, Brooks R (2004) Robot emotion: a functional perspective. In: Fellous J, Arbib M (eds) Who needs emotions: the brain meets the robot. MIT Press, Cambridge

    Google Scholar 

  9. Brooks RA, Breazeal C, Scassellati B, O’ Reilly UM (1999) Technologies for human/humanoid natural interactions. In: Proceedings of the second international symposium on human/humanoid natural interactions, pp 135–147

  10. Brownlow S, Dixon AR, Egbert CA, Radcliffe RD (1997) Perception of movement and dancer characteristics from point-light displays of dance. Psychol Rec 47(3):411–421

    Google Scholar 

  11. Chestnutt J, Lau M, Cheung G, Kuffner J, Hodgins J, Kanada T (2005) Footstep planning for the Honda ASIMO humanoid. In: Proceedings of the IEEE international conference on robotics and automation (ICRA2005), pp 629–634

  12. Dautenhahn K, Werry I (2004) Towards interactive robots in autism therapy: background motivation and challenges. Pragmat Cogn 12(1):1–36

    Article  Google Scholar 

  13. Delcomyn F (1998) Foundations of neurobiology. Freeman, New York

    Google Scholar 

  14. Endo N, Momoki S, Zecca M, Saito M, Mizoguchi Y, Itoh K, Takanishi A (2008) Development of whole-body emotion expression humanoid robot. In: Proceedings of the 2008 IEEE international conference on robotics and automation, pp 2140–2145

  15. Fuchs M, Borst C, Robuffo Giordano BA, Kraemer E, Kangwald J, Gruber R, Seitz N, Plank G, Kunze K, Burger R, Schmidt F, Wimböck T, Hirzinger G (2009) Rollin’ Justin—design considerations and realization of a mobile platform for a humanoid upper body. In: Proceedings of the 2009 IEEE international conference on robotics and automation (ICRA’09). http://www.inescporto.pt/~fgouyon/docs/OliveiraGouyonReis_ARTECH2008.pdf

  16. Fujita M, Kuroki Y, Ishida T, Doi T (2003) Autonomous behavior control architecture of entertainment humanoid robot SDR-4X. In: IEEE/RSJ international conference on intelligent robots and systems

  17. Fujita M, Sabe K, Kuroki Y, Ishida T, Doi T (2003) SDR-4X II: a small humanoid as an entertainer in home environment. In: International symposium of robotics research

  18. Ge SS (2007) Social robotics: integrating advances in engineering and computer science. Accessed 10 Feburary 2009. http://robotics.nus.edu.sg/files/srl/pdf/ECTI07-Keynote-v3.pdf

  19. Geppert L (2004) QRIO: The Robot That Could. Accessed 21 February 2009. http://www.spectrum.ieee.org/may04/3990

  20. Grunberg D, Ellenberg R, Kim Y, Oh P (2000) From RoboNova to HUBO: platforms in robot dance. In: Proceedings of the international conference of advanced humanoid robotics research (ICAHRR), pp 1743–1750

  21. Guenter F. Roos L, Guignard A, Billard A (2005) Design of a biomimetic upper body for the humanoid robot robota. In: Proceedings of the IEEE-RAS international conference on humanoid robots, IEEE, pp 56–61

  22. Hanna JL (1987) To dance is human: a theory of nonverbal communication. University of Chicago Press, Chicago

    Google Scholar 

  23. Hara F, Akazawa H, Kobayashi H (2001) Realistic facial expressions by SMA driven face robot. In: Proceedings of the IEEE international workshop on robot and human interactive communication, pp 504–511

  24. Hirata Y, Hayashi T, Takeda T, Kosege K, Wang Z (2005) Step estimation method for dance partner robot MS DanceR using neural network. In: Proceedings of the 2005 IEEE international conference on robotics and biomimetics, pp 523–528

  25. Ishida T, Kuroki Y, Yamaguchi J (2003) Development of mechanical system for a small biped entertainment robot. In: IEEE international workshop on robot and human interactive communication, pp 297–302

  26. Ishiguro H (2007) Android science. Mainichi Communication, Tokyo. In Japanese

    Google Scholar 

  27. Ishiguro H (2007) Scientific issues concerning androids. The Int J Robot Res 26(1):105–117

    Article  Google Scholar 

  28. Itoh K, Miwa H, Nukariya Y, Zecca M, Takanobu H, Roccella S, Carrozza MC, Dario P, Takanishi A (2006) Mechanism and functions for a humanoid robot to express human-like emotions. In: Proceedings of the IEEE international conference on robotics and automation (ICRA2006), pp 4390–4392

  29. Jenkins OC, Matarić MJ (2002) Deriving action and behavior primitives from human motion data. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems, vol 3, pp 2551–2556

  30. Kanda T, Hirano T, Eaton D, Ishiguro H (2004) Interactive robots as social partners and peer tutors for children: a field trial. Hum-Comput Interact 19(1):61–84

    Article  Google Scholar 

  31. Kosuge K (2008) Development of dance partner robot—PBDR. In: Marques K, Almeida A, Tokhi MO, Virk GS (eds) Advances in mobile robotics. World Scientific, Singapore, pp 3–4

    Google Scholar 

  32. Kosuge K, Hayashi T, Hirata Y, Tobiyama R (2003) Dance partner robot—Ms DanceR. In: Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems, vol 4, pp 3459–3464

  33. Kosuge K, Takeda T, Hirata Y, Endo M, Nomura M, Sakai K, Koizumi M, Oconogi T (2008) Partner Ballroom Dance Robot—PBDR. J Control Meas Syst Integr 1(1):74–80

    Google Scholar 

  34. Kozima H, Michalowski MP, Nakagawa C (2008) A playful robot for research therapy, and entertainment. Int J Soc Robot 1(1):3–81

    Article  Google Scholar 

  35. Kozima H, Nakagawa C (2006) Interactive robots as facilitators of children’s social development. In: Lazinica A (ed) Mobile robots: toward new applications. Advanced Robotics Systems, Vienna, pp 269–286

    Google Scholar 

  36. Kuroki Y et al (2003) A small biped entertainment robot exploring human-robot interactive applications. In: IEEE international workshop on robot and human interactive communication, pp 303–308

  37. Lim H, Ishii A, Takanishi A (2000) Emotion-based walking of a biped humanoid robot. In: Proceedings of the 13th CISM-IFToMM symposium on theory and practice of robots and manipulators Ro.Man.Sy 2000, pp 295–306

  38. Lim H, Ishii A, Takanishi A (2000) Emotion expression of a biped personal robot. Proceedings of the 2000 IEEE/RSJ international conference on robots and systems, pp 191–196

  39. Lim H, Takanishi A (2007) Biped walking robots created at Waseda University: WL and WABIAN family. Philos Trans Ser A, Math Phys Eng Sci 365–1850

  40. Matarić M (2002) Visuo-motor primitives as a basis for learning by imitation: linking perception to action and biology to robotics. In: Dautenhahn K, Nehaniv C (eds) Imitation in animals and artifacts. MIT Press, Cambridge, pp 392–422

    Google Scholar 

  41. Matarić MJ, Jenkins OC, Fod A, Zordan V (2000) Control and imitation in humanoids. In: In AAAI fall symposium on simulating human agents, North Falmouth, MA

  42. Matarić MJ, Zordan V, Mason Z (1998) Movement control methods for complex, dynamically simulated agents: Adonis dances the Macarena. In: Proceedings of autonomous agents 1998, pp 317–324

  43. Matarić MJ, Zordan V, Williamson MM (1999) Making complex articulated agents dance. Auton Agents Multi-Agent Syst 2(1):23–44

    Article  Google Scholar 

  44. Miwa H, Itoh K, Matsumoto M, Zecca M, Takanobu H, Roccella S (2004) Effective emotional expressions with emotion expression humanoid robot WE-4RII. In: Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems, pp 2203–2208

  45. Miwa H, Okuchi T, Takanobu H, Takanishi A (2002) Development of a new human-like head robot WE-4. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems, vol 2, pp 2443–2448

  46. Mizuuchi I, Inaba M, Inoue H (2001) A flexible spine human-form robot—development and control of the posture of the spine. In: Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems, Maui, Hawaii, vol 3, pp 2099–2104

  47. Mizuuchi I, Nakanishi Y, Namiki Y, Nachio T, Junichi U, Inaba M (2006) Realization of standing of the musculoskeletal humanoid Kotaro by reinforcing muscles. In: Proceedings of the 2006 IEEE-RAS international conference on humanoid robotics, pp 176–181

  48. Mizuuchi I, Tajima R, Yoshikai T, Sato D, Nagashima K, Inaba M, Kuniyoshi Y, Inoue H (2002) The design and control of the flexible spine of a fully tendon-driven humanoid “Kenta”. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems, Lausanne, Switzerland, vol 3, pp 2527–2532

  49. Mizuuchi I, Waita H, Nakanishi Y, Yoshikai T, Inaba M, Inoue H (2003) A musculo-skeletal robot leg capable of adding or rearranging the muscles. In: 21th annual conference of the robotics society of Japan. Robotics Society of Japan, Tokyo, Japan. Presentation number: 1C29

  50. Mizuuchi I, Waita H, Nakanishi Y, Yoshikai T, Inaba M, Inoue H (2004) Design and implementation of reinforceable muscle humanoid. In: Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan, pp 828–833

  51. Mizuuchi I, Yoshiaki T, Sodeyama Y, Nakanishi Y, Miyadera A, Yamamoto T, Niemela T, Hayashi M, Urata J, Namiki Y, Nishino T, Inaba M (2006) Development of musculoskeletal humanoid Kotaro. In: Proceedings of the 2006 IEEE international conference on intelligent robots and systems, pp 82–87

  52. Mizuuchi I, Yoshida S, Inaba M, Inoue H (2003) The development and control of the flexible-spine of a human-form robot. Adv Robot 17(2):179–196

    Article  Google Scholar 

  53. Mizuuchi I, Yoshikai T, Sato D, Yoshida S, Inaba M, Inoue H (2003) Behavior developing environment for the large-dof muscle-driven humanoid equipped with numerous sensors. In: Proceedings of the IEEE international conference on robotics and automation (ICRA2003), pp 1940–1945

  54. Nakazawa A, Nakaoka S, Ikeuchi K (2004) Matching and blending human motions using temporal scaleable dynamic programming. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 287–294

  55. Nakazawa A, Nakaoka S, Ikeuchi K, Yokoi K (2002) Imitating human dance motions through motion structure analysis. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems, pp 2539–2544

  56. Oh JH, Hanson D, Kim WS, Han Y, Kim JY, Park IW (2006) Design of android type humanoid robot Albert HUBO. In: Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 1428–1433

  57. Oliveira J, Gouyon F, Reis LP (2008) Towards an interactive framework for robot dancing applications. In: International conference on digital arts. http://www.inescporto.pt/~fgouyon/docs/OliveiraGouyonReis_ARTECH2008.pdf

  58. Or J (2006) A control system for a flexible spine belly-dancing humanoid. Artif Life 12:63–88

    Article  Google Scholar 

  59. Or J (2008) The development of emotional flexible spine humanoid robots. In: Or J (ed) Affective computing, IN-TECH, pp 133–156

  60. Or J, Takanishi A (2004) A biologically inspired CPG-ZMP control system for the real-time balance of a single-legged belly dancing robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 1, pp 931–936

  61. Or J, Takanishi A (2005) From lamprey to humanoid: the design and control of a flexible spine belly dancing humanoid robot with inspiration from biology. Int J Hum Robot 81–104

  62. Or J, Takanishi A (2007) Effect of a flexible spine emotional belly dancing robot on human perceptions. Int J Hum Robot 4(1):21–47

    Article  Google Scholar 

  63. Pearson H (2004) Robot belly-dancer shakes her stuff, January 2004. www.nature.com/nsu/040119/040119-1.html

  64. Peick M (2005) Dance as communication: messages sent and received through dance. UW-L J Undergrad Res 8. http://www.atomic-knights.de/

  65. Roos L, Guenter F, Guignard A, Billard A (2006) Design of a biomimetic spine for the humanoid robot robota. In: Proceedings of the IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, pp 329–334

  66. Ruchanurucks M, Nakaoka S, Kudoh S, Ikeuchi K (2005) Generation of humanoid robot motions with physical constraints using hierarchical B-spine. In: Proceedings of the 2005 IEEE/RSJ international conference on intelligent robots and systems, pp 674–679

  67. Ruchanurucks M, Nakaoka S, Kudoh S, Ikeuchi K (2006) Humanoid robot motion generation with sequential physical constraints. In: Proceedings of the 2006 international conference on robotics and automation, pp 2649–2654

  68. Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K (2002) The intelligent ASIMO: system overview and integration. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems, Lausanne, Switzerland, vol 3, pp 2478–2483

  69. Scassellati B (2003) Investigating models of social development using a humanoid robot. In: Proceedings of the IEEE international conference on robotics and automation (ICRA2003), vol 4, pp 2704–2709

  70. Setiawan S, Hyon S, Yamaguchi J, Takanishi A (1999) Dynamic interaction between a human and a bipedal humanoid robot. In: Pioneering international symposium on MOVIC in mechatronics, pp 74–79

  71. Setiawan S, Hyon S, Yamaguchi J, Takanishi A (1999) Physical interaction between human and a bipedal humanoid robot—realization of human-follow walking. In: Proceedings of the 1999 IEEE international conference on robotics automation, pp 361–367

  72. Shibata T, Mitsui T, Wada K, Touda A, Kumasaka T, Tagami K, Tanie K (2001) Mental commit robot and its application to therapy of children. In: Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics, vol 2, pp 1053–1058

  73. Shin D, Sardellitti I, Khatib O (2008) A hybrid actuation approach for human-friendly robot design. In: Proceedings of the IEEE international conference on robotics and automation (ICRA2008), pp 1747–1752

  74. Solis J, Taniguchi K, Ninomiya T, Takanishi A (2007) Towards an expressive performance of the Waseda Flutist Robot: production of Vibrato. In: Proceedings of the IEEE international symposium on robot and human interactive communication, pp 780–785

  75. Taga G, Yamaguchi Y, Shimizu H (2006) Leg task models for reproducing human dance motions on biped humanoid robots. J Robot Soc Jpn 24(3):388–399

    Google Scholar 

  76. Takanishi A, Egusa Y, Tochizawa M, Takeya T, Kato I (1988) Realization of dynamic biped walking stabilized with trunk motion. In: Proceedings of ROMANSY 7, pp 68–79

  77. Takeda T, Hiarata Y, Kosuge K (2007) HMM-based error recovery of dance step selection for dance partner robot. In: Proceedings of the 2007 international conference on robotics and automation, pp 1768–1773

  78. Takeda T, Hiarata Y, Wang Z, Kosuge K (2006) HMM-based error detection of dance step selection for dance partner robot—MS DanceR. In: Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 5631–5636

  79. Takeda T, Kosuge K, Hirata Y (2005) HMM-based dance step estimation for dance partner robot—MS DanceR. In: Proceedings of the 2005 IEEE/RSJ international conference on intelligent robots and systems, pp 1602–1607

  80. Tanaka F, Fortenberry B, Aisaka K, Movellan JR (2005) Plans for developing real-time dance interaction between QRIO and Toddlers in a classroom environment. In: Proceedings of the 2005 4th IEEE international conference on development and learning (ICDL 2005), pp 142–147

  81. Tanaka F, Movellan JR, Fortenberry B, Aisaka K (2006) Daily HRI evaluation at a classroom environment: reports from dance interaction experiments. In: Proceedings of the 1st annual conference on human-robot interaction (HRI 2006), pp 3–9

  82. Tanaka F, Noda K, Sawada T, Fujita M (2004) Associated emotion and its expression in an entertainment robot QRIO. Lecture notes in computer science, vol 3166. Springer, Berlin, pp 499–504

    Google Scholar 

  83. Tanaka F, Suzuki H (2004) Dance interaction with QRIO: a case study for non-boring interaction by using an entertainment ensemble model. In: IEEE international workshop on robot and human interactive communication

  84. Tanaka F, Noda K, Sawada T, Fujita M (2004) Associated emotion and its expression in an entertainment robot QRIO. In: International conference on entertainment computing, pp 265–298

  85. Tapus A, Fasola J, Matarić MJ (2008) Socially assistive robotics for individuals suffering from Dementia. In: Robotics helpers: user interaction, interfaces and companions in assistive and therapy robotics workshop, proceedings of the 3rd ACM/IEEE international conference on human-robot interaction (HRI)

  86. Ulam PD, Arkin RC (2008) Biasing behavioral activation with intent for an entertainment robot. In: Intelligent service robotics, vol 1. Springer, Berlin, pp 195–209

    Google Scholar 

  87. Vukobratovic M, Borovac C, Surdilovic D (2001) Zero-moment point—proper interpretation and new applications. In: Proceedings of the 2001 IEEE international conference on humanoid robots, pp 234–244

  88. Wada K, Shibata T (2007) Social effects of robot therapy in a care house—change of social network of the residents for two months. In: Proceedings of the IEEE international conference on robotics and automation (ICRA2007), pp 1250–1255

  89. Walker G (2009) Suspectart. Accessed 13 Feburary 2009. http://www.gileswalker.org/gileswalker.org/home.html.

  90. Walters ML, Syrdal DS, Dautenhahn K, Boekhorst RT, Koay KL (2008) Avoiding the uncanny valley: robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion. Auton Robots 24(2):159–178

    Article  Google Scholar 

  91. Yoshii K, Nakadai K, Torii T, Hasegawa Y, Tsujino H, Komatani K, Ogata T, Okuno HG (2007) A biped robot that keeps steps in time with musical beats while listening to music with its own ears. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2007), pp 1743–1750

  92. Yoshikai T, Otake N, Mizuuchi I, Inaba M, Inoue H (2004) Development of an imitation behavior in humanoid Kenta with reinforcement learning algorithm based on the attention during imitation. In: Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems, pp 828–833. Sendai, Japan

  93. Zecca M, Endo N, Momoki S, Itoh K, Takanishi A (2008) Design of the humanoid robot KOBIAN—preliminary analysis of facial and whole body emotion expression capabilities. In: Proceedings of the 2008 IEEE/RAS international conference on humanoid robots, pp 487–492

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Or.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Or, J. Towards the Development of Emotional Dancing Humanoid Robots. Int J of Soc Robotics 1, 367–382 (2009). https://doi.org/10.1007/s12369-009-0034-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-009-0034-2

Keywords

Navigation