Skip to main content
Log in

The Safety of a Robot Actuated by Pneumatic Muscles—A Case Study

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

In situations where robots share their workspace with humans, and where physical human-robot interaction is possible or even necessary, safety is of paramount importance. This paper presents a study of the safety of a lightweight robot actuated by pneumatic muscles. Due to its low weight, it has excellent hardware safety characteristics. In spite of this, it is shown that the system can be unsafe when under PID control. It is also shown that safety can be greatly increased by using Proxy-Based Sliding Mode Control (PSMC). The role of passive compliance in safety is also investigated. It is argued that passive compliance can have positive as well as negative effects on robot safety, depending on the situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albu-Schäffer A, Ott C, Hirzinger G (2007) A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1):23–39

    Article  Google Scholar 

  2. Albu-Schäffer A, Eiberger O, Grebenstein M, Haddadin S, Ott C, Wimböck T, Wolf S, Hirzinger G (2008) Soft robotics. IEEE Robot Autom Mag 15(3):20–30

    Article  Google Scholar 

  3. Avivzienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of dependable and secure computing. IEEE Trans Dependable Secure Comput 1(1):11–33

    Article  Google Scholar 

  4. Bicchi A, Tonietti G (2004) Fast and soft arm tactics: dealing with the safety-performance trade-off in robot arms design and control. IEEE Robot Autom Mag 11(2):22–33

    Article  Google Scholar 

  5. Bicchi A, Rizzini SL, Tonietti G (2001) Compliant design for intrinsic safety: general issues and preliminary design. In: Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems, Maui, HI, vol 4, pp 1864–1869

  6. Bicchi A, Tonietti G, Bavaro M, Piccigallo M (2003) Variable stiffness actuators for fast and safe motion control. In: Siciliano B, Khatib O, Groen F (eds) Proceedings of the international symposium on robotics research, springer tracts in advanced robotics (STAR). Springer, Berlin

    Google Scholar 

  7. Bicchi A, Peshkin MA, Colgate JE (2008) Safety for physical human-robot interaction. In: Springer handbook of robotics. Springer, Berlin, pp 1335–1348

    Chapter  Google Scholar 

  8. Buerger SP, Hogan N (2007) Complementary stability and loop shaping for improved human-robot interaction. IEEE Trans Robot 23(2):232–244

    Article  Google Scholar 

  9. Chou CP, Hannaford B (1996) Measurement and modelling of McKibben pneumatic artificial muscles. IEEE Trans Robot Autom 12(1):90–102

    Article  Google Scholar 

  10. Daerden F, Lefeber D (2001) The concept and design of pleated pneumatic artificial muscles. Int J Fluid Power 2(3):41–50

    Google Scholar 

  11. Daerden F, Lefeber D (2002) Pneumatic artificial muscles: actuators for robotics and automation. Eur J Mech Environ Eng 47(1):10–21

    Google Scholar 

  12. De Luca A (2000) Feedforward/feedback laws for the control of flexible robots. In: Proceedings of the IEEE international conference on robotics and automation, pp 233–240

  13. De Luca A, Book W (2008) Robots with flexible elements. In: Springer handbook of robotics. Springer, Berlin, pp 287–319

    Chapter  Google Scholar 

  14. De Santis A, Siciliano B, De Luca A, Bicchi A (2008) An atlas of physical human-robot interaction. Mech Mach Theory 43(3):253–270

    Article  MATH  Google Scholar 

  15. Dhillon BS, Fashandi ARM, Liu KL (2002) Robot systems reliability and safety: a review. J Qual Maint Eng 8(3):170–212

    Article  Google Scholar 

  16. Diolaiti N, Melchiorri C, Stramigioli S (2005) Contact impedance estimation for robotic systems. IEEE Trans Robot 21(5):925–935

    Article  Google Scholar 

  17. EuroNCAP (2008) European new car assessment programme—assessment protocol and biomechanical limits

  18. Filippini R, Sen S, Bicchi A (2008) Toward soft robots you can depend on. IEEE Rob Autom Mag 15(3):31–41

    Article  Google Scholar 

  19. Formica D, Zollo L, Guglielmelli E (2006) Torque-dependent compliance control in the joint space for robot-mediated motor therapy. J Dyn Syst Meas Control 128:152–158

    Article  Google Scholar 

  20. Gilardi G, Sharf I (2002) Literature survey of contact dynamics modelling. Mech Mach Theory 37:1213–1239

    Article  MATH  MathSciNet  Google Scholar 

  21. Haddadin S, Albu-Schäffer A, Hirzinger G (2007) Approaching Asimov’s 1st law: the role of the robot’s weight class. In: Robotics: science and systems conference (RSS2007), Atlanta, USA

  22. Haddadin S, Albu-Schäffer A, Hirzinger G (2007) Safety evaluation of physical human-robot interaction via crash-testing. In: Robotics: science and systems conference (RSS2007), Atlanta, USA

  23. Haddadin S, Albu-Schäffer A, De Luca A, Hirzinger G (2008) Collision detection & reaction: a contribution to safe physical human-robot interaction. In: Proceedings of the 2008 IEEE/RSJ international conference on intelligent robots and systems, Nice, France, pp 3356–3363

  24. Haddadin S, Albu-Schäffer A, Hirzinger G (2008) The role of the robot mass and velocity in physical human-robot interaction, part I non-constrained blunt impacts. In: Proceedings of the 2008 IEEE international conference on robotics and automation, Pasadena, CA, pp 1331–1338

  25. Haddadin S, Albu-Schäffer A, Hirzinger G (2008) The role of the robot mass and velocity in physical human-robot interaction, part II: constrained blunt impacts. In: Proceedings of the 2008 IEEE international conference on robotics and automation, Pasadena, CA, pp 1339–1345

  26. Hägele M, Nilsson K, Pires JN (2008) Industrial robotics. In: Springer handbook of robotics. Springer, Berlin, pp 963–986

    Chapter  Google Scholar 

  27. Heinzmann J, Zelinsky A (2003) Quantitative safety guarantees for physical human-robot interaction. Int J Robot Res 22(7–8):479–504

    Article  Google Scholar 

  28. Hirzinger G, Sporer N, Albu-Shäffer A, Hähnle M, Krenn R, Pascucci A, Schedl M (2002) DLR’s torque-controlled light weight robot III-are we reaching the technological limits now? In: Proceedings of the 2002 IEEE international conference on robotics and automation, Washington, DC, pp 1710–1716

  29. Hogan N (1985) Impedance control: an approach to manipulation, parts I–III. J Dyn Syst Meas Control 107:1–24

    Article  MATH  Google Scholar 

  30. Hung JY, Gao W, Hung JC (1993) Variable structure control: a survey. IEEE Trans Ind Electron 40(1):2–22

    Article  Google Scholar 

  31. Hunt KH, Crossley FRE (1975) Coefficient of restitution interpreted as damping in vibroimpact. ASME J Appl Mech, pp 440–445

  32. Ikuta K, Ishii H, Nokata M (2003) Safety evaluation method of design and control for human-care robots. Int J Robot Res 22(5):281–297

    Article  Google Scholar 

  33. Inoue K (1987) Rubbertuators and applications for robots. In: Proceedings of the 4th international symposium on robotic research, pp 57–63

  34. Kikuuwe R, Fujimoto H (2006) Proxy-based sliding mode control for accurate and safe position control. In: Proceedings of the 2006 IEEE international conference on robotics and automation, pp 25–30

  35. Kulić D, Croft EA (2006) Real-time safety for human-robot interaction. Robot Auton Syst 54(1):1–12

    Article  Google Scholar 

  36. Laprie JC (1985) Dependable computing and fault tolerance: concepts and terminology. In: Proceedings of the 15th IEEE international symposium on fault-tolerant computing, pp 2–11

  37. Lim Ho, Tanie K (2000) Human safety mechanisms of human-friendly robots: passive viscoelastic trunk and passively movable base. Int J Robot Res 19(4):307–335

    Article  Google Scholar 

  38. Oberer S, Schraft RD (2007) Robot-dummy crash tests for robot safety assessment. In: 2007 IEEE international conference on robotics and automation, Rome, Italy, pp 2934–2939

  39. Pervez A, Ryu J (2008) Safe physical human robot interaction—past, present and future. J Mech Sci Technol 22:469–483

    Article  Google Scholar 

  40. Pratt GA, Williamson MM (1995) Series elastic actuators. In: IEEE international workshop on intelligent robots and systems (IROS 1995), Pittsburgh, USA, pp 399–406

  41. Salisbury K, Townsend W, Eberman B, DiPietro D (1988) Preliminary design of a whole-arm manipulation system (WAMS). In: Proceedings of the 1988 IEEE international conference on robotics and automation, Philadelphia, PA, vol 1, pp 254–260

  42. Sardellitti I, Park J, Shin D, Khatib O (2007) Air muscle controller design in the distributed macro-mini (DM2) actuation approach. In: Proceedings of the 2007 IEEE/RSJ international conference on intelligent robots and systems, pp 1822–1827

  43. Schulte HF (1961) The characteristics of the McKibben artificial muscle. In: The application of external power in prosthetics and orthotics, publication 874, National Academy of Sciences, National Research Council, Washington, pp 94–115

    Google Scholar 

  44. Shin D, Sardellitti I, Khatib O (2008) A hybrid actuation approach for human-friendly robot design. In: Proceedings of the 2008 IEEE international conference on robotics and automation, Pasadena, CA, pp 1747–1752

  45. Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  46. Spong MW (1987) Modeling and control of elastic joint robots. ASME J Dyn Syst Meas Control 109:310–319

    Article  MATH  Google Scholar 

  47. Tomei P (1991) A simple PD controller for robots with elastic joints. IEEE Trans Autom Control 36(10):1208–1213

    Article  MathSciNet  Google Scholar 

  48. Van Damme M, Daerden F, Lefeber D (2005) A pneumatic manipulator used in direct contact with an operator. In: Proceedings of the 2005 IEEE international conference on robotics and automation, Barcelona, Spain, pp 4505–4510

  49. Van Damme M, Vanderborght B, Van Ham R, Verrelst B, Daerden F, Lefeber D (2007) Proxy-based sliding mode control of a manipulator actuated by pleated pneumatic artificial muscles. In: Proceedings of the 2007 IEEE international conference on robotics and automation, pp 4355–4360

  50. Van Ham R, Sugar TG, Vanderborght B, Hollander KW, Lefeber D (2009) Compliant actuator designs—review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robot Autom Mag 16(3):81–94

    Article  Google Scholar 

  51. Vanderborght B, Verrelst B, Van Ham R, Van Damme M, Lefeber D, Meira Y, Duran B, Beyl P (2006) Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. Int J Robot Res 25(4):343–358

    Article  Google Scholar 

  52. Vanderborght B, Tsagarakis N, Semini C, Van Ham R, Caldwell D (2009) MACCEPA 2.0: compliant actuator used for energy efficient hopping robot CHOBINO. In: Proceedings of the 2009 IEEE international conference on robotics and automation, Kobe, Japan, pp 544–549

  53. Verrelst B, Van Ham R, Vanderborght B, Lefeber D, Daerden F, Van Damme M (2006) Second generation pleated pneumatic artificial muscle and its robotic applications. Adv Robot 20(7):783–805

    Article  Google Scholar 

  54. Versace J (1971) A review of the severity index. In: Proceedings 15th stapp car crash conference, New York

  55. Wassink M, Stramigioli S (2007) Towards a novel safety norm for domestic robotics. In: Proceedings of the 2007 IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, pp 3354–3359

  56. Willinger R, Kang HS, Diaw B (1999) Three-dimensional human head finite-element model validation against two experimental impacts. Ann Biomed Eng 27:403–410

    Article  Google Scholar 

  57. Wolf S, Hirzinger G (2008) A new variable stiffness design: matching requirements of the next robot generation. In: Proceedings of the 2008 IEEE international conference on robotics and automation, Pasadena, CA, pp 1741–1746

  58. Yamada Y, Hirasawa Y, Huang S, Umetani Y, Suita K (1997) Human-robot contact in the safeguarding space. IEEE/ASME Trans Mech 2(4):230–236

    Article  Google Scholar 

  59. Zinn M, Khatib O, Roth B, Salisbury JK (2002) A new actuation approach for human friendly robot design. In: Proceedings of international symposium on experimental robotics, Santa Angelo d’Ischia, Italy

  60. Zinn M, Khatib O, Roth B, Salisbury JK (2004) Playing it safe. IEEE Robot Autom Mag 11(2):12–21

    Article  Google Scholar 

  61. Zinn M, Roth B, Khatib O, Salisbury JK (2004) A new actuation approach for human friendly robot design. Int J Robot Res 23(4–5):379–398

    Article  Google Scholar 

  62. Zollo L, Siciliano B, Laschi C, Teti G, Dario P (2003) An experimental study on compliance control for a redundant personal robot arm. Robot Auton Syst 44:101–129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Van Damme.

Additional information

This work has been funded by the European Commision’s 7th Framework Program as part of the VIACTORS project (grant No. 231554).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Damme, M., Beyl, P., Vanderborght, B. et al. The Safety of a Robot Actuated by Pneumatic Muscles—A Case Study. Int J of Soc Robotics 2, 289–303 (2010). https://doi.org/10.1007/s12369-009-0042-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-009-0042-2

Navigation