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Abstract Many researchers in human-robot interaction
have acknowledged the fact that iterative design is neces-
sary to optimize the robots for the interaction with the users.
However, few iterative user studies have been reported. We
believe that one reason for this is that setting up systems for
iterative studies is cumbersome because the system architec-
tures do not support iterative design. In the paper, we address
this problem by interlinking usability research with system
development. In a first user study, we identify requirements
and concepts for a new framework that eases the employ-
ment of autonomous robots in the iterative design process.
With a second user study we show how robot behaviors are
implemented in the new framework and how it enables the
developer to efficiently make changes to these behaviors.

Keywords Human-robot interaction · System architecture ·
Autonomous systems · Tasks · Iterative system design ·
User studies

1 Introduction

Evaluation is essential in the process of designing any kind
of usable systems. Therefore, in the field of human-robot
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interaction (HRI) methods to evaluate robots have been
adapted from other disciplines (e.g., interaction analysis
[6, 26], task analysis [1, 24, 35], and heuristic evaluation
[8]). Also measuring tools to assess HRI in diverse situations
and experiments have been proposed [3, 15, 16, 18, 39].
Evaluating the systems has led to valuable insight about
the robots and the way people interact with them. How-
ever, to our knowledge and as has also been noted by other
authors (e.g., [1, 27]) very few iterative studies have been
conducted in HRI. When looking at the proceedings of the
last three HRI conferences (2011–2013), we found that only
two papers out of 96 dealt with iterative design or long-term
interaction [19, 22]. At the Ro-Man conferences between
2010 and 2012, 5 out of 368 papers concerned long-term in-
teraction [28–30, 33, 37]. In their comprehensive survey of
long-term studies in HRI, Leite et al. [23] conclude that re-
search is picking up the topic, however, the studies presented
so far are mostly exploratory. But iterative design is neces-
sary to optimize the robots and their behaviors and many
researchers in HRI have recognized this (e.g., [35, 38]).

We developed the Bonsai framework to address this issue
particularly for HRI with autonomous systems. In Sect. 2
we describe challenges of iterative system design for such
autonomous robots. We describe how we derived the con-
ceptual foundations of the framework from findings of user
studies (Sect. 3). We then introduce the Bonsai framework
and explain how it supports iterative design and enables
behavior transfer between robots and scenarios (Sect. 4).
Thereafter, we demonstrate how Bonsai was implemented in
the robot BIRON (Sect. 5) and present a short usability study
that shows how well developers can handle Bonsai (Sect. 6).
Finally, in Sect. 7 a case study illustrates how the framework
supports efficient iterative behaviour design by taking find-
ings from user studies into account.
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2 Challenges of Iterative Design in HRI

We encountered possible reasons for the lack of iterative ap-
proaches when we worked towards conducting iterative user
studies with an autonomous robot ourselves. Our goal was
to improve the autonomous system over time based on what
we learned about and from the interaction. While pursuing
this goal, we encountered several challenges.

The first challenge was a methodological one given that
the robot acts autonomously. Thus, the robot behavior is not
pre-scripted. In other words, based on the interpretation of
the sensor input and its internal states, the system decides
what actions it takes at a given point of time. Hence, no in-
teraction is exactly like another one and we had to answer
the question of how to compare robot performance between
the trials. Our solution to this challenge was to evaluate the
robot on the level of specific tasks. More information about
this is provided in Sect. 3.

The second challenge that we encountered was the ques-
tion of how the robot system needs to be designed in order
to enable researchers to integrate findings from user studies
easily and efficiently? This question was anything else but
trivial because seemingly simple improvements of the inter-
active behavior of the robot often requires to make changes
in different components of the system that have interdepen-
dencies with each other. Thus, the engineer needs a deep
understanding of components, middleware, and architecture
in order to make changes to the robot behavior.

Robotic systems typically are a result of a collaborative
engineering process in an environment of rapidly changing
technologies. They consist of a large number of hardware
and software components solving problems from different
research areas (navigation, mapping, perception, planning,
speech understanding, dialog, etc.). Therefore, most robotic
software frameworks such as ROS, CLARAty, YARP, XCF,
or Player/Stage focus on hardware abstraction, the re-use of
components, and middleware solutions. These frameworks
improved the engineering process of robotic systems sig-
nificantly. However, existing frameworks for robot develop-
ment such as YARP [10] or ROS [32] have not solved the
problem: Implementing robot behaviors with many software
components into one system appears to be still more of an
art than a systematic engineering process.

The third challenge that we encountered connected to the
iterative design process was the question of how it would
be possible to easily re-use robot behaviors that have been
evaluated in other scenarios, on other platforms, or with dif-
ferent frameworks. This question is highly relevant because
user studies and the design of robot behaviors take a lot of
time and effort. Thus, it would be a great advantage if we
were able to re-use robot behaviors that have been proven
to work well. Reusability would ease the process of setting
up systems for future iterative studies and would allow for
benchmarking between systems.

Reusability has also been one aspect envisioned by Glas
et al. [12]. The authors, quite related to our work, pro-
posed an interaction design framework for social robots.
However, their focus was on providing non-programmers
with a graphical interface to compose sequences of behav-
iors. The users did not need knowledge about the robot
driver layer and the information processing layer for be-
havior design. Even though their approach helps the goal of
having non-programmers develop robot behaviors, it makes
changes of the robot’s behaviors laborious because they have
to be adapted at all relevant parts of the sequence. Moreover,
working with the graphical interface limits the developers,
e.g., to using predefined blocks. We aim to avoid such is-
sues in our approach and want to provide reusable building
blocks of behavior that can be improved over time.

Connected to reusability is the fourth challenge: enabling
easy integration of the system in different software frame-
works and platforms. Hence, the framework needs to be
platform-independent in order to ensure that different sys-
tems can indeed profit from evaluations of other systems
and cross-system evaluations can be conducted in an effi-
cient manner.

In conclusion, new approaches are needed which enable
easy and efficient iterative design and system development
in robotics. The system shall support the design of robot be-
haviors that can easily be re-used and adapted based on user
studies. It shall combine the strengths of robotics and us-
ability research in order to produce more capable and more
usable systems.

3 Conceptual Foundations

To address the challenges mentioned in Sect. 2, we first con-
ducted one time evaluations to develop concepts to analyze
the complex interaction structure which also support itera-
tive design. One of these concepts is the structuring of the
interaction into tasks [26]. Tasks are recurring patterns on
the interaction level (the level on which the interplay be-
tween the users and the robot can be analyzed). Such pat-
terns form the structure of the interaction. Tasks enable the
researcher to compare different interactions with each other.
Each task is based on a prototypical interaction script. This
script describes the combination of behaviors that the users
and the robot have to perform in order to complete the task
(for examples see Sects. 7.1.4 and 7.2.4). In previous work
we distinguished three kinds of tasks [25]:

– social tasks
– functional tasks
– problem-related tasks

The social tasks frame the interaction and are mainly
used to manage the participant’s attention and the turn tak-
ing. Examples for social tasks are greetings, introductions,
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and farewells. These occur in most interactions and, thus,
most interactive robots need to be able to handle social tasks.

The functional tasks constitute the main part of the inter-
action. They are mandatory to reach the goal of the interac-
tion and strongly depend on the interaction scenario. A typ-
ical functional task for a mobile robot is to drive to another
location.

The third group subsumes the problem-related tasks.
These are initiated by the robot or the user if they detect
a problem in the interaction and dispose of a strategy to
solve it. Most problem-related tasks are strongly connected
to the sensory perception of the system. Typical examples
for problem-related tasks are the robot getting stuck at ob-
stacles and asking for help or the robot not detecting the user
anymore and trying to detect him/her again (see Case Study
in Sect. 7). The problem-related tasks enable the robot and
the user to continue the interaction even if there is a problem.

Analyzing the problem solving procedures as tasks al-
lows us to represent them in a transition matrix with all other
tasks in order to determine when they occur. Thus, all tasks
are represented in a task structure. By task structure we re-
fer to the quantity and order of the tasks. It offers important
insights in the course of the interaction, e.g., which tasks
cause most problem-related tasks or which tasks are most
commonly initiated by the users. Typically in HRI, only one
task occurs at a time and the task structure is linear.

However, the task structure alone does not tell whether
the goals of the tasks were achieved. Therefore, also fail-
ures within tasks (deviation patterns for each prototypical
interaction script) need to be analyzed. To give an exam-
ple of such a failure: guiding the robot might not end in a
problem-related task (e.g., the robot recognizing an obstacle
and asking for help) but, nevertheless, the robot might stop
before the user asked it to do so, e.g., because it mistook an-
other utterance for a stop command. Thus, the robot could
not detect a problem (as it would have needed to initiate a
problem-related task). This example points to the fact that
failures that are apparent on the interaction level often have
their cause on the system level. The system level describes
the robot components and their interplay.

To analyze both interaction level and system level at the
same time we have previously proposed the SInA (Systemic
Interaction Analysis) approach [26]. SInA allows for a care-
ful description of the interaction and helps to determine the
relations between the user’s and the system’s behavior. SInA
is used to identify what the robot does, what happens within
the robot, and what the users do. Deviations from the pro-
totypical interaction scripts and their causes (i.e., inappro-
priate expectations of the user or inadequate design of the
robot) can be identified.

Typical deviations from prototypical interaction scripts
that we found in previous studies were problems with speech
understanding, person perception, the robot’s states (one ac-
tion was not finished and a new one could not be started),

and navigation (the robot getting stuck at an obstacle or the
user standing within the security distance of the robot). We
proposed that changing either the robot feedback, the com-
ponents, or the system architecture could solve each of these
problems [24, 26]. To give some examples: a change to the
robot feedback could make the robot ask the users to step
back, the users would get out of the robot’s security dis-
tance, and the robot could start driving; an improvement to
the speech recognition component could decrease the num-
ber of speech understanding problems; and changes to the
architecture could allow participants to start new actions be-
fore previous ones are finished.

This view was strongly connected to the traditional sys-
tem design that required making changes at different levels
of the system and often within various components. How-
ever, as has been argued above, this often makes iterative de-
sign a very tough challenge. Thus, we concluded that adapt-
ing the system based on findings from user studies would
be much easier if we could make changes on a level that
was closely related to the task concept. For each task, the
robot needs a predefined set of skills. Each skill defines what
the robot does on the system level. In other words, skills
break the interaction down in functionalities that the robot
can handle.

The advantage of using the concepts of skills and tasks
together is that it is clearly defined which skills are needed
for which tasks. The findings from the task analysis on
the interaction level can be straightforwardly translated into
changes that need to be made on the level of the skills. Thus,
the skills should be modeled on a level that abstracts from
the robot’s components and the architecture.

The design of the skills depends on the kind of tasks that
are implemented. As has been mentioned above, social tasks
are largely responsible for managing the participant’s atten-
tion. Thus, in the technical implementation, such tasks need
to be translated into sensors, e.g., a Person Sensor which is
a set of software components that enables the robot to detect
users in its vicinity. The implementation of the functional
tasks strongly depends on the scenario. However, most func-
tional tasks probably require the skills to include actuators.
The problem-related tasks will depend on strategies to solve
the problems. How exactly these concepts are defined and
used in the framework is described in the following.

4 Bonsai Framework

In this section, we explain the concept of Bonsai. We com-
pare it to other systems to show what additional functional-
ity and advantages Bonsai offers.

4.1 Concept

The main conceptual idea of Bonsai is to decouple the
design and decomposition of the system into components
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and the following architectural issues from the specifica-
tion of system skills. While the architecture is still based on
reusable components, we introduce the concept of abstract
sensors and actuators, skills, and strategies in order to cope
with necessary changes to the robot behavior without need-
ing to reconfigure the components or architecture.

Bonsai is a domain-specific library implemented in JAVA
that builds up on the concept of sensors and actuators that
allow the linking of perception to action. The Bonsai sen-
sors and actuators provide appropriate interfaces for the def-
inition of skills and abstract from functional and hardware
components or middleware issues. The sensors and actua-
tors are used as atomic building blocks and encapsulate de-
coupled services provided by the software components of
the system. A Bonsai sensor can be a simple abstraction of
a real hardware sensor, e.g., a laser sensor, or a complex
sensor such as the Person Sensor that is based on different
software components to track persons in the robot’s vicinity.
We explain this sensor in depth, as it is the basis for every
interaction with a user.

Figure 1 depicts the general structure of the Person Sen-
sor. Again, the goal of this sensor is to provide information
about a person in the robot’s vicinity [17]. The readLast-
SeenPerson() method detaches the skill code (e.g., “follow
person” skill) from the specific system configuration. In this
case, the person sensor is internally realized by the config-
uration of four components that manage the detection and
tracking of person hypotheses over time. This example ad-
dresses a Bonsai sensor. We will now also describe an exam-
ple for an actuator. The Navigation actuator is a typical rep-
resentative of a complex encapsulated actuator. As depicted
in Fig. 2, the Navigation Actuator provides basic functions
for a robot to navigate. These functions are expressed in dif-
ferent methods, e.g., the setGoal() method. Despite its sim-
ple interface, the Bonsai sensor triggers a rather complex in-
teraction between software components. The interplay of the
components dealing with the navigation, namely the SLAM
component, the goal generator, the obstacle avoidance, and
the path planner is transparent to the navigation actuator.

Fig. 1 The person anchoring
sub-system with the system
components on the left and the
Bonsai Person Sensor on the
right

Fig. 2 The navigation
sub-system with system
components on the left and the
Bonsai Navigation Actuator on
the right
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When calling the setGoal() method, the robot will move to a
coordinate on the SLAM map that is declared in the Naviga-
tionGoal data while taking the obstacle avoidance into con-
sideration. Thus, the actuator interface again detaches the
skill code (e.g., “search for persons” skill) from the system’s
software components and the middleware by implementing
a factory design pattern for sensors and actuators [11].

As the example shows, the sensors and actuators reach
beyond simple hardware abstraction by encapsulating com-
plex perception-action-linking processes. The ability of
Bonsai to configure the system allows to have simple in-
terfaces, e.g., the Person Sensor, which trigger a complex
sequence of actions in the Functional Component level (see
Sect. 5). One of the benefits of this approach is that a system
configuration is linked to a specific skill of the robot. Skills
are sequences of state-based deployments of sensors and
actuators. As has been mentioned above, the sequence of
activated sets of skills in the system corresponds to the task
structure on the interaction level. The skills are combined to
construct complex robot behaviors, e.g., the robot needs a
greeting skill to initiate an interaction, throughout the inter-
action the person needs to be perceived, and the robot needs
additional skills to complete the actual task such as learn-
ing about its environment. A skill can have multiple states
that incorporate different sensors and actuators. A “follow
person” skill for example starts with sensing people around
the robot which it can follow. Then the robot announces this
to the person and activates an appropriate strategy that sets
the navigation goals related to the person. If the robot can-
not perceive a person anymore, this is also announced and
another strategy is used for the “navigation actuator”. States
like these (moving towards the navigation goal, moving in
a way that allows to redetect the person, etc.) determine
the robot’s behavior. They are active until the necessary in-
formation for the next state is available, e.g., a person is
detected.

In our current implementation, the states are controlled
by an SCXML based state machine ([2], Apache Commons
project: http://commons.apache.org/scxml) that builds up on
the state chart formalism of Harel [14]. The state machine
approach is very general and offers a standardized exchange
format via SCXML. Bonsai itself does not model the high
level control flow of a system and, thus, supports the decou-
pling of the skills from the control flow which is highly de-
sirable because it ensures the reusability of the skills in dif-
ferent situations and scenarios. However, Bonsai could be
used with other control abstractions, e.g., SMACH, which
also works based on a state machine but is closely coupled
to the ROS environment. However, SMACH does not explic-
itly model the behavior of a robot but rather is used for rapid
prototyping of a scenario. For a more detailed comparison
of the systems see Sect. 4.2.

The second important concept in Bonsai is the skill con-
cept. The strength of the skill concept is that all similar situa-
tions during an interaction (e.g., all situations where a greet-
ing is required) can be modeled and handled within one skill,
even if necessary functionality is spread over different sys-
tem components. We refer to this attribute of skills as be-
ing local. All information and possible actions are available
from a skill (e.g., the greeting skill would have the infor-
mation if a person was perceived through the sensors and
provide different ways of saying the greeting). Thus, skills
can also serve as observable units for evaluation on the inter-
action level. This behavior-oriented design (BOD) as, e.g.,
proposed by Bryson [5] enables the developer to model the
behavior and the interaction instead of the system configu-
ration.

The third important concept of Bonsai are strategies that
bundle multiple Bonsai sensors in order to detect and solve
problem-related tasks. Strategies only make use of sensors
and produce output for one actuator (see Fig. 3). Follow-
ing the concept of sensors and actuators that has been dis-
cussed above, the actuators are not limited to real hardware

Fig. 3 Interplay between
skills/strategies/sensors/actuators
and the components (Functional
Layer) and hardware (Hardware
Layer) coupled with the
schematic control abstraction of
Bonsai

http://commons.apache.org/scxml
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Fig. 4 Example for a Bonsai
strategy that fuses the given
sensor data to generate new
information about the current
scene and the objects in it, that
are then used to select the
nearest object to the robot
(simple strategy) to generate a
goal the robot can move to

actuators. Within the Bonsai framework, strategies enhance
the re-usability of skills and accomplish an abstraction of
how to process certain information available to the system.
Strategies can be reused at different points in one skill or in
different skills to react to unexpected situations during the
processing. Strategies can trigger software components or
sub-systems depending on the current situation. They there-
fore determine the way an actuator is controlled in Bonsai.
Strategies can be “simple”, e.g., following a person, where
the distance the robot keeps between guide and itself is
computed through a strategy. For more complex scenarios,
strategies can also be a way to enrich the interpretation of
the current scene. In that case, we speak of informed strate-
gies. These perform a processing step on the data provided
by the sensors (Sensor Fusion) which generates additional
information that is used to guide the robot’s behavior (see
Fig. 4).

Assuming that one of the Bonsai sensors does not pro-
vide correct data, the strategy may detect an error and the
system can react to that, e.g., by trying a different strategy.
With the according code spread over several software com-
ponents, the processing would fail with no chance to react.
Thus, the Bonsai strategies support the loose coupling of the
components that is desirable in interactive systems.

4.2 Comparing Bonsai with SMACH

As has been mentioned in Sect. 4.1, also other systems
like SMACH enable developers to model robot behavior.
SMACH is a good example of how prototyping environ-
ments for robotic systems often come together: An exist-
ing middleware abstraction is extended by a state-machine-
based tool that allows to sequence the different software
components to produce a consistent system action. This of-
ten does not involve a modeling of the robot behavior itself,
which is also true for SMACH. It rather implements a state-
ful sequencer of the system components, which is sufficient

to test features of the system components but is insufficient
for modeling the robot behavior and to test, improve, or ex-
tend it over time. In fact, the typical way of rapid prototyping
for robot scenarios as it is done with SMACH is counter pro-
ductive for iterative system design since it focuses on sys-
tem features and does not involve a proper behavior abstrac-
tion. With SMACH, the robot action and the control flow are
modeled in the same place, the SMACH states. This reduces
the reusability of the states and requires the developers to
implement robot behavior either inside the controller or in
the system components themselves. The strong dependency
on the ROS middleware and the ROS messages intensifies
this effect. Furthermore, for user-driven system design for
interactive mobile robots the user and the interaction must
be taken into account. This implies to have a continuous
evaluation cycle with real users which highlights the impor-
tance of reusable skills and independence of the middleware
or scenario. This is why Bonsai emphasizes the behavior ab-
straction and provides tools to model the robot behavior and
the control flow separately.

4.3 Advantages of Bonsai

Bonsai has several advantages that we want to point out ex-
plicitly. The framework makes modeling new behaviors and
adapting skills easy because the paradigm for our iterative
design approach is to model the robot behavior locally. As
mentioned above, this means that the strategies are part of
the skills and are not spread over many components or rules.
Thus, they are independent of the way the system architec-
ture is implemented and if problems are identified in user
studies, there is only one place where they need to be fixed—
the Bonsai skill. Moreover, Bonsai skills can easily be trans-
ferred to other platforms and architectures. A first proof of
this has been given in a bachelor thesis where one student
implemented the framework in the NAO system within a
short period of some weeks [34].
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The behaviors implemented by skills are also minimal,
e.g., only one functionality of the robot is modeled at the
same time. Furthermore, they are modular to enable combi-
nation of many skills for a specific scenario. These three cri-
teria (local, minimal, and modular behavior modeling) ease
the iterative design process for developers, because they do
not have to design rules for the component configuration,
which requires a detailed knowledge of the system. Addi-
tional insights gained in user studies can be implemented
into individual robot behaviors. These behaviors are then
easily reusable for different scenarios or platforms.

5 Implementation of Bonsai in the BIRON System

In the following case study we apply Bonsai to improve a
service robot in the home tour scenario. This scenario fo-
cuses on multi-modal HRI to enable the robot to learn about
a domestic environment and its artifacts, the appearance and
location of objects, and their spatial and temporal relations.
In other words, the robot is guided through an apartment by
the user and learns about rooms and objects. This is neces-
sary because it is not possible to pre-program the robot for
every potential environment. Hence, it has to learn about its
surroundings with the help of the user. Once the robot has
acquired the knowledge, it can serve as a kind of “butler”
providing personal services (e.g., laying the table, cleaning
rooms). In the current implementation, the learning is the
prominent part of the scenario. However, new functionali-
ties are being developed, e.g., the robot takes the user back
to one of the objects or rooms learned previously. Thus, it
could also show places to other people.

The possibility to incrementally extend the scenario by
new tasks that require new robot skills is one of the advan-
tages of the home tour. Many tasks are also transferrable to
other domestic or public scenarios that require social inter-
action with single persons or groups of people. Thus, the
scenario can be used to demonstrate the reusability of the
skills. An example of this is the RoboCup@Home competi-
tion [42], where a collection of tests is defined and individu-
ally scored. Each test requires the robots to show a different
collection of skills that are embedded in a human-robot in-
teraction. As the tests are iteratively adapted or changed over
the years, the re-use and extendibility of robot skills plays
also a role. Last but not least, the scenario serves well to
motivate repeated / long-term interactions which are a nec-
essary requirement for an iterative design process.

5.1 Robot Platform

The hardware platform we use in the home tour scenario
is BIRON, the BIelefeld Robot companiON. It is based on
the research platform GuiaBotTM, customized and equipped

with sensors for analysis of the current situation in HRI. It
runs autonomously and in soft real-time on two piggyback
laptops. The robot base is a PatrolBotTM. Inside the base
there is a 180° laser range finder with a scanning height of
30 cm above the floor (SICK LMS) which we use for per-
son detection, navigation, and map building. The cameras
that are used for person and object detection/ recognition are
2MP CCD firewire cameras (Point Grey Grashopper). One
is facing down for object detection and recognition, the sec-
ond camera is facing up for face detection and recognition.
BIRON is also equipped with an optical imaging system for
real time 3D image data acquisition (SwissRanger) which is
used for classification of rooms and objects. Additionally the
robot possesses a Katana IPR 5 degrees-of-freedom (DOF)
arm, a small and lightweight manipulator driven by 6 DC-
Motors with integrated digital position encoders. The end
effector is a sensor-gripper with distance and touch sensors
(6 inside, 4 outside) allowing to grasp and manipulate ob-
jects weighing up to 400 grams. The upper part of the robot’s
body houses a touch screen (15 inch) as well as the system
speaker. The on-board microphone has a hyper-cardioid po-
lar pattern and is mounted on top of the robot. Finally, the
platform is equipped with bumpers on both sides that enable
a physical interaction. When pressed they will stop the robot
immediately. The overall height of BIRON is approximately
140 cm.

5.2 Implementation

Brugali and Shakhimardanov [4] have pointed out that the
configuration of the system, the connection between com-
ponents at runtime, is crucial for component-based systems
such as the robot BIRON. The configuration to a great extent
defines what the robot is able to do at a certain point of time.
This implies that the configuration needs to be dynamic to
enable the system to react to changes in the environment and
in the HRI task. A former architecture of the BIRON system
covered this issue by introducing a component that could
change the system configuration at runtime based on pre-
defined rules [36]. While this approach made functionality
of the robot feasible, it explicitly modeled component inter-
action instead of the desired robot behavior. With different
scenarios and more complex tasks for a robot to interact in,
the software architecture needs to focus more on designing
the behavior of the robot and its interaction capabilities. This
is why we implemented Bonsai in the BIRON platform.

The architecture of the BIRON system consists of many
different components, each of which is a piece of software
providing functionality, e.g., speech recognition, to the sys-
tem. All components follow the concept of Information-
Driven-Integration (IDI) [40] by sharing data via an active
memory event-bus [41] within the system. Figure 5 shows
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Fig. 5 Overview of the
components of the BIRON
system

Table 1 Overview of all Bonsai
sensors and actuators Sensors Actuators

Laser Navigation

Camera Camera

Speech Speech

Odometry Arm

Position Screen

Map

Speed

Object

Person

the different components that are used in BIRON. The dif-
ferent colors from bottom to top refer to the level of abstrac-
tion from the hardware.

Components in the dark gray level at the bottom either
depend on direct sensory input or have a direct connection
to the hardware. The obstacle avoidance for instance needs
to get the input of the laser sensor at high frequencies to be
able to detect obstacles while the robot is moving. The motor
control represents a direct connection to the motors of the
robot base to actually move the robot. Components on the
yellow level (functional components) in the middle depend
less on the robot’s hardware and can facilitate information
and/or functions provided by components of the layer below
or of the same layer. The person tracking, e.g., facilitates
information from the lowest layer (laser) as well as informa-
tion from the face recognition. Based on these components,
the Bonsai skills that were needed for the home tour scenario
were implemented (green Bonsai layer). Examples for these
skills are following a person, learning an object, or greeting
someone. Table 1 gives an overview of all sensors and ac-
tuators implemented in Bonsai that can be used on BIRON.
As has been mentioned above, the control of the resulting
skills is not modeled in Bonsai. In this specific case we used
the XCF middleware [41] and an SCXML state machine for
coordination. However, Bonsai just as well works with other
control abstractions and middleware.

6 Usability Test of the Bonsai System

After implementing Bonsai on BIRON, we conducted a us-
ability study to ensure that the system does not only offer
new functionality but also is usable and the functionality is
accessible for the users. To enable a developer to understand
how to produce a certain robot behavior was the most im-
portant factor in terms of usability that we took into account
here.

6.1 Procedure

The usability study followed a standardized procedure for all
participants. First they had to fill out a questionnaire about
demographic information, experience with software devel-
opment in teams and programming languages, experience
with the robot BIRON and with developing behaviors for
robots in general. After completing the questionnaire, the
participants received two pages of instructions for the us-
ability test. These included a short overview of the Bonsai
framework and its building blocks as well as the actual pro-
gramming task: The robot should wait in front of the en-
trance door until it is open. After that the robot should drive
to the kitchen and check whether there was a person there.
If a person was detected, the robot should announce that and
leave the apartment.

All participants were provided with the same program-
ming environment with an empty SCXML file. The simula-
tion for testing was already running on the same computer.
All necessary skills were provided in Bonsai with the only
exception being the navigation. For the navigation the only
help provided was where to look for example code and how
the annotation looked like. For that purpose there were two
additional help sheets with additional information.

After successfully implementing the task and testing it,
the participants filled out a second questionnaire about their
experience with Bonsai. Overall, the assignment took be-
tween 60 and 90 minutes.
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6.2 Sample

The participants were selected among students and staff at
Bielefeld University that had good Java knowledge and were
familiar with XML. 17 people (16 male, 1 female) with an
average age of 27.8 years (standard deviation (sd) = 3.28,
ranging from 24 to 32 years) took part. All of them had de-
veloped software in a team before, none of them had used
Bonsai with SCXML.

6.3 Results

One of the most important findings for us was that all par-
ticipants finished the task successfully. The participants also
indicated that they felt they had solved the task well (mean
(m) = 4.24; sd = 0.66) on a scale of 1 (not at all) to 5 (very
much).1) They understood the concepts behind Bonsai very
well (understanding of the concept of sensors and actuators
m = 4.41 (sd = 0.71); understanding of the concept of skills
m = 4.35 (sd = 0.70)).

One of our main goals was to make Bonsai efficient
and easy to use. To determine whether we achieved this
goal, we asked users “how laborious did you find the de-
velopment of a robot behavior in Bonsai” (m = 1.53; sd =
0.72); whether Bonsai saved them time when programming
the robot behavior (m = 4.75; sd = 0.58); whether Bon-
sai supported them in programming (m = 4.31; sd = 0.70),
whether Bonsai helped them to avoid programming errors
(m = 3.75; sd = 0.77); and whether Bonsai enabled them
to use the functions of the robot in a reasonable manner
(m = 4.69; sd = 0.48). All mean ratings show that we suc-
ceeded in building a system that makes developing behav-
iors for robots efficient and easy.

Another important challenge for the Bonsai system was
to develop robot behaviors in a way that makes them
reusable. Therefore we asked the participants whether Bon-
sai supported them in programming reusable code (m =
4.31; sd = 0.87). The result shows that the developers
strongly believe that the behaviors that they programmed
were reusable. They also felt that the Bonsai system as
such can be used on other robots/systems (m = 4.13; sd =
0.72). This finding implies that the robot behaviors are ac-
tually reusable across systems. Finally, the users agreed
that Bonsai can be used to program complex scenarios
(m = 4.38; sd = 0.72) which is a very important criterion
for a system that shall enable robots to solve complex tasks.

From all these findings we conclude that Bonsai is actu-
ally a useful and efficient tool for developers of robot be-
haviors and that we succeeded in addressing the challenges
introduced in Sect. 2 from a developer’s point of view. How-
ever, this usability study did not address our main goal—the

1Please note that this scale applies for all following items.

integration of system development and iterative user studies.
This issue will be discussed in the following section.

7 Case Study

The case study is based on two user studies. The first user
study was conducted to do a first evaluation of the robot, to
design basic skills that it needs in the home tour scenario,
and to identify types of changes that we will typically need
to make to the Bonsai skills. After this study, the Bonsai
framework was integrated in the robot BIRON (which was
used in both studies). Thereafter, the robot with the frame-
work was evaluated in a second user study and changes that
needed to be made in the skills were identified. The paper
shows how these changes can easily be made with the new
framework and introduces metrics to quantify the amount of
work needed to implement them (see Sect. 7.3).

The case study focuses on objective data of the interac-
tion. The tasks and the structure of the tasks are analyzed
in order to identify typical problems that occur. These prob-
lems avoid that the tasks are completed. We are aware that
also the users’ subjective impression of a task or, in other
words, the user experience is very important (e.g., [39]).
However, we have found that subjective data (interviews,
questionnaires) of different users in first contact situations
(situations in which the users interact with the robot for
the very first time) is not very reliable. In other words, the
users’ subjective evaluation of the system often seems inde-
pendent of the course of the interaction. For the two stud-
ies presented here, a comparative analysis showed that the
users’ evaluations were similar and largely independent of
how well the robot functioned. One reason for this might be
the novelty effect. First scientific inquiries in the novelty ef-
fect have been undertaken in the context of media for learn-
ing [7]. Clark describes the novelty effect as the tendency
for performance to initially improve when new technology
is introduced. This improvement, however, is not an actual
improvement in learning or achievement, but is due to in-
creased interest in the new technology. Transferred to HRI
this means that people meeting robots for the first time are
excited about the experience of interacting with the systems.
This excitement often leads to higher effort in the interaction
but also to evaluations of the robots and their abilities that
are much better than would be reasonable for the course of
the actual interaction. Moreover, the subjective data that we
collected does not tell us, how the robot skills can be im-
proved. From knowing that the users did not like something,
we cannot infer how it needs to be changed to work better.
Therefore, objective data is more useful for us in this context
to show how the Bonsai framework supports efficient design
of robot behaviors.

However, this does not mean that subjective data in gen-
eral is worthless. On the contrary, when the data is acquired
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Fig. 6 Layout of the apartment where the user studies took place (line
between living room and dining room = path the robot was guided)

from the same person in a long-term iterative design process
it is extremely valuable and much more reliable.

7.1 User Study 1—Defining Requirements for Bonsai

The purpose of the first user study was to design skills
in Bonsai and to identify typical changes that need to be
made to the Bonsai skills. It was conducted on three days
in November 2007. In the following, we describe the proce-
dure of the study, the sample, the data analysis, and provide
an example of the interaction. Thereafter, we present the re-
sults.

7.1.1 Procedure

To conduct the study in a realistic environment, people were
invited to the robot apartment in Bielefeld (Germany) which
provided an appropriate setting for the home tour scenario.
The apartment is a typical German apartment (see Fig. 6).

The participants were welcomed and then received a writ-
ten introduction to the study. The introduction consisted of
a short description of the home tour scenario and the robot
BIRON and an overview of the phases of the user study.
Thereafter, the participants answered a questionnaire on de-
mographic data and their experience interacting with robots.
In user study 1, the users were then trained on using the
speech recognition system, i.e., they were instructed about
the proper placement of the headset microphone and were
asked to speak some phrases for habituation. The recogni-
tion results were shown to them on a laptop. Thereafter, the
participants were guided into the room where the robot was
waiting ready for operation. The users were handed a tu-
torial script for practice to reduce hesitant behaviors. The
script contained all commands they would need later on and
the users were asked to try them out with the robot. This was
necessary because the robot’s vocabulary was restricted and

we wanted the participants to have a feeling for the kinds of
utterances that the autonomous robot understood. After the
tutorial session, the participants carried out the main task.
The instruction for this main task was:

– greet the robot
– guide the robot from the living room to the dining room

via the hall (see Fig. 6)
– show and label the living room and the dining room
– show the bookshelf in the living room and the floor lamp

in the dining room
– say good-bye

These tasks were chosen based on the scenario and cov-
ered all abilities that the robot had at this point of time.
Taking into account that the robot was running fully au-
tonomously, these tasks were quite complex. The partici-
pants were also free to try other things but these are not
included in the analysis because they are not comparable
between the interactions.

The whole interaction was videotaped with three cam-
eras. One stationary camera was positioned in the kitchen
and another one in the dining room. Moreover, we accom-
panied the interaction with a handheld camera. The experi-
menter who operated this camera was trained to not get in
the way of the participants and always tried to keep an ap-
propriate distance.

After the interaction, the participants were interviewed.
They answered a questionnaire that included items on liking
of the robot, attributions made towards the robot, and us-
ability of the robot. More information about the procedure
is provided in [24] and [25]).

7.1.2 Sample

This first study was conducted with 14 participants (9 male,
5 female). People with different ages and backgrounds were
invited to the study. Their age ranged from 16 to 71 years
(average 45.5 years). They were average computer users (3.2
on a scale of 1 [no experience at all] to 5 [a lot of experi-
ence]) and did have none or very few experience with robots
(1.29 on the same scale of 1 (no experience) to 5 (a lot of ex-
perience)). All participants were native speakers of German
and interacted with BIRON in German.

7.1.3 Data Analysis

As has been mentioned above, the whole interaction was
videotaped. The videos were then imported into the anno-
tation tool ELAN2 where they were synchronized with logs
from the interaction (e.g., speech understanding of the robot,

2http://www.lat-mpi.eu/tools/elan/.

http://www.lat-mpi.eu/tools/elan/
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person perception, utterances of the robot). Further anno-
tations were added manually based on predefined coding
schemes (e.g., speech of the user, tasks). The task annotation
shall be discussed in a little more detail, as it is the basis for
the analysis presented here.

The task annotation followed concrete rules. It was based
on the verbal utterances of the user and the robot. For each
task an opening utterance was predefined, e.g., the opening
for an object teaching task was a user utterance like “This
is a cup”. Also the end of each task was predefined by ut-
terances of the user or the robot. If the object teaching task
followed the prototypical interaction script, it would end by
the robot saying “Cup, I have taken a look at it”. However,
tasks might also be interrupted by other tasks. Either the
user might ask the robot to do something else before the
task is finished (e.g., to follow) or the robot might initiate a
problem-related task (e.g., trying to detect the person again
if it does not detect her anymore). Thus, only one task took
place at a time and the interaction had a linear task structure
as discussed in Sect. 3. As the annotation criteria were very
well defined and did not leave room for interpretation it was
not necessary to check for interrater reliability.

After being annotated, the tasks were evaluated with
SALEM (Statistical AnaLysis of Elan files in Matlab), a
toolbox that we developed for the purpose of analyzing
ELAN annotations in Matlab [13]. The same toolbox was
used for both studies, which ensured comparability of the
data. SALEM is a quantitative approach to data analysis. We
chose this approach to get a measure of how long and how
many attempts the users needed to complete certain tasks.
Moreover, SALEM provided us with a measure of how of-
ten problems occured in the different tasks and how long
it took to recover from them. Thus, we could prioritize the
tasks that needed to be adapted. SALEM was complemented
by the qualitative SInA approach in order to find explana-
tions for why problems in the tasks occurred and to identify
possible solutions (see Sect. 3).

The main measures that we extracted were the number
and mean duration (including standard deviation) of tasks
per participant, the percentage of failures for each task, and
transition probabilities between tasks. The results are pre-
sented later in this section.

7.1.4 Example Interaction

In the following we provide examples from the interaction to
enable the reader to better understand the data analysis. As
has been mentioned above, the progression of the interaction
is determined by prototypical interaction scripts. To give an
example, the prototypical interaction script for the greeting
task in this user study consisted of the following steps [24]
(il indicates that the step is taken on the interaction level, sl
means that it takes place on the system level; see Sect. 3):

– user walks up to the robot (il)
– robot perceives user (sl)
– user receives an ID (sl)
– PTA3 changes to state listen (sl)
– user says greeting (e.g., “hello”, “hello Biron”, “Biron

hello”) (il)
– robot processes utterance (sl)
– Mindi [animation on the screen] changes to thinking/

processing (il)
– robot understands greeting (sl)
– PTA changes to state person (sl)
– Mindi changes to standing/lookingatuser (il)
– robot answers (“hello”) (il)

Such a prototypical interaction script is specified for each
task. From the example you can see that this particular script
refers to specific components within the system (e.g., PTA,
speech recognition, and the component that generates the
display output). This implies that changes to the system
would have to be made in all these components. In the Bon-
sai framework this is not necessary anymore (see Sect. 7.2).

The following example shows a typical interaction (the
interaction level only which is determined by scripts as the
one above). The utterances have been translated from Ger-
man to English. If there is a line break between two utter-
ances of the robot (R) or the user (U) this indicates that there
was a long break or a non-verbal action between these utter-
ances. Not all non-verbal actions are included in the exam-
ple, as these would make it overly complex. If they are rele-
vant to understand the example though, they are provided in
brackets.

U: Hello Biron.
R: Hello. My name is Biron. What’s your name?
U: Simon.
R: Nice to meet you Simon. Do you want to know some-

thing about me? Please say yes or no.
U: No.
R: Ok. You will see how everything works.
U: Biron follow me.
R: Ok, I follow you. (user guides the robot within the living

room)
U: Biron stop.
R: Ok, I stop.
U: Biron, this is the living room.
R: This is the living room then. (Biron turns around to look

at the living room)
R: Oh sorry, I can’t see you anymore. Please say hello again

if you still want to talk to me.
U: Hello Biron.
R: Hello.

3The PTA is the component for person tracking and attention (see
[20]).
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Table 2 Descriptive statistics of the task analysis of user study 1; count and percentage of failures that occurred in the tasks

Task Count Percentage
count of all
annotations

Minimum
duration
(seconds)

Maximum
duration
(seconds)

Mean
duration
(seconds)

Standard
deviation
duration

Duration of all
annotations (%)

Count of
failures

Percentage
of failures

Social tasks

greet 45 11.45 0.99 30.23 8.12 6.92 4.99 10 22.22

intro 5 1.27 19.09 57.50 41.81 18.08 2.86 2 40.00

farewell 18 4.58 2.41 23.15 9.13 5.61 2.24 4 22.22

Functional tasks

guiding 109 27.74 3.28 75.07 22.84 12.75 34.00 9 8.26

teaching object 66 16.79 4.14 61.55 19.50 11.58 17.58 31 46.97

teaching room 40 10.18 3.87 37.36 17.71 9.04 9.68 10 25.00

Problem-related tasks

register 38 9.67 8.19 55.45 19.19 11.55 9.96 4 10.53

obstacle 25 6.36 8.35 55.38 22.15 9.96 7.56 0 0

reset 18 4.58 13.26 92.14 28.15 19.39 6.92 5 27.78

stop 29 7.38 3.62 29.98 10.60 6.49 4.20 3 10.34

Overall 393 100 0.99 92.14 18.63 12.72 100 78 19.85

U: Biron, this is the shelf.
R: Ok, I’m taking a look at it.
R: Shelf, I have taken a look at it.
U: Biron follow me.
R: Ok, I follow you. (user guides the robot to the hallway)
R: Oh, I guess that there is some obstacle in my way. Please

pull me away from it and say hello again. (user pulls the
robot away from the obstacle (the door frame))

U: Hello.

This example is not complete but it includes all aspects
that are relevant for the case study and the following analy-
sis.

7.1.5 Results

The analysis is based on 393 tasks that were annotated for all
participants in the study. Table 2 shows the descriptive statis-
tics for these tasks and the number of failures that occurred
in each task. All changes that needed to be made to the tasks
are based on these quantitative findings and the qualitative
analysis of interaction protocols like the one shown in the
previous section. The changes were mainly motivated by
the fact that almost 20 % of all tasks failed and another
28 % were problem-related tasks to repair the interaction
(and even some of these failed).

We first describe the findings for all tasks. Table 2 shows
that 45 greeting tasks were executed. The number is very
high because in this study the participants obviously used
the greeting to re-attract the robot’s attention. The robot it-
self triggered the users to do so because part of the regis-
ter task was that it asked the user to say hello again if she

wanted to continue the interaction (see Example Interaction
in Sect. 7.1.4). How this was handled will be shown in con-
nection to the register task. One qualitative observation that
we made concerning the greeting task was that BIRON’s re-
ply to the first greeting was “Hello. My name is Biron. What
is your name?” The robot did not notice if the user had said
“hello Biron”. When the participants had used the robot’s
name in their greeting, it was quite obvious that they did
not expect the robot to repeat it. The Bonsai skill should be
designed accordingly.

After the initial greeting the robot offered an introduc-
tion to the users that most of them did not want to listen to.
For the design of the Bonsai skill we decided that the users
should not get the choice whether they wanted to listen to
the introduction anymore. Instead the introduction should
be shortened but everybody would have to listen to it. This
approach was chosen to make sure that all users were re-
minded of the robot’s abilities and to stress again that they
can say stop at all times to make the robot stop whatever it
is doing.

No changes needed to be made to the farewell task which
basically consisted of saying good-bye. This task was the
last one belonging to the social tasks. The tasks that are dis-
cussed next are functional tasks.

A main issue with the guiding task was that many users
did not say stop at the end of the guiding which was a re-
quirement of the prototypical interaction script. Therefore,
the Bonsai skill was changed so that the robot now directly
requests the user to say stop to finish the task and to enable
the robot to switch to the next state. Also an additional Bon-
sai skill was designed to avoid this problem: the offer skill.
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Table 3 Transition matrix for the most common functional (predeces-
sor) and problem-related (successor) tasks in study 1 (bold numbers
highlight the most frequent transitions)

Task Predecessor

guide teach object teach room

Successor

register 0.211 0.076 0.200

obstacle 0.202 0 0

reset 0.037 0.076 0.025

stop 0.018 0.197 0.125

If the stop command was recognized correctly and also all
other tasks are finished, the robot should now ask what it
should do next or how it could help. Thus, it should indicate
that it is ready for the next command.

The quantitative analysis showed that the highest per-
centage of failures (47 %) occurred in the object teaching
task. Two thirds of these were caused by speech recognition
problems. The user labeled an object and the robot misun-
derstood the name. When the robot repeated the name at the
end of the task (see Sect. 7.1.4), the user noticed the misun-
derstanding but could not repair it. Thus, we concluded that
the Bonsai skill needed to include some verification step that
allows the user to easily correct the robot. The same was true
for the teaching room task. Additionally, the transition ma-
trix (see Table 3) showed that this task in 20 % of the cases
was followed by a register task. The main cause for this was
that the robot turned around to take a look at the room which
in most cases led to the problem that it could not perceive the
user anymore and the user needed to register. Turning was
necessary because the robot was not equipped with a 360°
laser range finder but intended to acquire a representation
of the whole room. It became obsolete with the improved
component for navigation and mapping. This is positive es-
pecially because the participants did not understand why the
robot turned and frequently tried to interrupt the turn.

Also the problem-related tasks were redesigned before
they were implemented in Bonsai skills. The register task
(making sure that the robot system perceives a user) was
most frequent in this group (see Table 2). With respect to
the development of Bonsai skills, we assumed that it would
not be possible to design the robot in a way that makes the
register task obsolete. Given that the users spent 10 % of the
overall interaction time on this task, we decided that it would
have to be more efficient though. The interaction example
shows that the robot in the register task asked the user to say
hello again if she still wanted to interact with it. We decided
to avoid this in the Bonsai skill design and to equip the robot
with the ability to resolve this situation on its own by adding
a new Bonsai strategy. Thus, the robot should try to redetect
the user by itself, only asking the user to wait to increase the
chance of detecting her close to where she had been detected

before. The analysis of the second user study will show how
well the skill implemented based on this idea worked.

In the obstacle task, the user needed to pull the robot
away from the obstacle because it could not free itself (see
Example Interaction in Sect. 7.1.4). This usually happened
when the robot tried to cross the door between the living
room and the hallway that was quite narrow. Having users
pull the robot is not acceptable especially not if the robot
is used by elderly or physically impaired people. Therefore,
the robot needs to be equipped with a behavior that enables it
to solve these situations independently by turning and devel-
oping a strategy to get to its destination. This behavior was
one actuator that was integrated in the Bonsai skill. Thus,
the obstacle task was not necessary anymore.

The same is true for the reset task. This task allowed users
to say ’reset’ in order to reset the robot to a somewhat con-
sistent state in order to being able to continue the interaction.
All Bonsai skills should now be equipped with fallback be-
haviors in case of certain problems during the interaction. If
none of the fallbacks takes effect, the system should be able
to reset to a consistent state without a user command. Bon-
sai strategies have been implemented for the management of
these failure states.

The last problem-related task was the stop task. The robot
prompted the user to say stop because all tasks had to be
completed. This restriction should be loosened in the Bon-
sai framework. The system should not initialize the stop task
anymore because if the robot knows that it is waiting for a
stop command, it should not have to ask the user for it. How-
ever, the users should still be able to use the stop command
and to initialize the stop task themselves. This is a typical
example of a Bonsai strategy that takes a speech sensor and
triggers another software component.

7.1.6 Requirements for Bonsai

From the analysis we can summarize typical changes that we
will need to make to the Bonsai skills based on user studies
that will be conducted later in the design process. Changes
to robot utterances will be necessary for various reasons: im-
proving user experience (e.g., not confusing users by telling
them the robot’s name if they have just used it themselves),
adapting choices that users are given (e.g., skipping tasks),
or reminding users of things they have to say or do (e.g.,
asking them for the next command).

Moreover, the Bonsai framework has to support the im-
plementation of new skills (e.g., the offer skill), of new
steps within skills (e.g., verification steps that ensure that the
robot has understood something correctly), and of changes
to strategies (e.g., who has the initiative at a certain point of
time). It is also necessary that skills can easily be removed if
they are not necessary anymore (e.g., the obstacle skill that is
obsolete because of more intelligent robot behavior). Based
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on these findings, the Bonsai framework has been designed
and tested in a second user study.

7.2 User Study 2—Using Bonsai on BIRON

When we conducted the second study on three days in
March 2010, the Bonsai framework was already imple-
mented. In the following, we analyze how well the Bonsai
skills and strategies worked in the interaction and which ad-
ditional changes needed to be made to them.

7.2.1 Procedure

The procedure of this second study was very similar to the
first one. Again, it was designed to test all the skills of the
robot that had by then been implemented. This includes the
tasks mentioned above and two additional task: asking the
robot to go back to one of the rooms or objects that had
been learned previously. The high degree of similarity to the
first study was necessary to allow for comparisons between
both. In the procedure only one step changed: the introduc-
tion to the speech recognition system was skipped. This step
was not necessary anymore because we were now able to
use the on-board microphone of the robot for speech recog-
nition. Apart from this, the procedure stayed the same (see
Sect. 7.1.1). However, as has been described above, the pro-
totypical interaction scripts had been changed based on the
findings from the first study and the implementation in Bon-
sai. The effects of these changes on the interaction level are
illustrated with an exemplary interaction in Sect. 7.2.4.

7.2.2 Sample

For the second study, we tried to keep the sample as similar
as possible. We invited a new group of participants that had
not interacted with the robot before. Again, 14 participants
(7 male, 7 female) took part. Their ages ranged from 18 to
54 years (mean 38.9 years). Their experience with comput-
ers was very similar to what was indicated in the first study
(3.1 on a scale of 1 [no experience at all] to 5 [a lot of experi-
ence]). The experience with robots (1.7 on the same scale of
1 (no experience at all) to 5 (a lot of experience)) was only
slightly higher than in the first study due to one person who
was more experienced. Again, all participants were native
speakers of German and interacted with BIRON in German.

7.2.3 Data Analysis

The data analysis process was similar to the first user study
(see Sect. 7.1.3). The videos were synchronized with man-
ual annotations and logs from the interaction (e.g., speech
understanding of the robot, person perception, utterances of

the robot) in ELAN. One advantage that comes with Bon-
sai is that we can now log the skills and do not need to log
components and later make sense of the different data.

The tasks were again annotated manually based on
the same rules that were specified in the first study (see
Sect. 7.1.3). They were also evaluated using the SALEM
toolbox and the SInA approach. Given that each task con-
sists of a predefined set of skills, future work should focus
on automating the task annotations by extracting them from
the skill logs.

The measures introduced above and in user study 1 fo-
cus on the interaction side of the system. However, we aim
to also evaluate the improvements that came with Bonsai on
the system side. It is difficult to measure system improve-
ments with software metrics, because only a few, like the
evolution matrix by Lanza [21], take the developing process
and the whole system into account. The approach proposed
by Lanza is a merely quantitative one looking at the evolu-
tion of classes by visualizing which classes grow/shrink, ap-
pear/disappear. However, this approach does not tell whether
classes appear or grow because new functionality is embed-
ded or because the system becomes inefficient and vice versa
whether classes shrink/disappear because of software refac-
toring or because of removing functionality. Thus, the ap-
proach is not feasible here. Rather we have decided to use a
simple measure based on Lines of Code (LoC) [9] that takes
the lines of code that need to be modified for one change
in a behavior and the number of different components in-
volved into account. With these metrics we can show, how
the effort of making changes in the iterative design process
decreased with the new framework. An example analysis for
the metrics is presented in Sect. 7.3.

7.2.4 Example Interaction

Also with Bonsai, prototypical interaction scripts determine
the course of the interaction. They are implemented in the
skills. We here show the new script for the greeting task for
comparison:

– user walks up to the robot (il)
– Bonsai Person Sensor is initiated (sl)
– user says greeting (“hello”, “hello Biron”, “Biron hello”)

(il)
– Bonsai greeting skill is initiated (sl)

The prototypical interaction script of the greeting is much
shorter than it was before (four compared to eleven steps).
However, it is of course still possible to make changes to the
robot behavior and it is clear where these changes have to be
made: in the Bonsai skill.

The following example shows how the new implementa-
tions of the tasks changed the interaction. As in the previous
example, the utterances have been translated from German
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to English. Again, if there is a line break between two ut-
terances of the robot (R) or the user (U) this indicates that
there was a long break or a non-verbal action between these
utterances.

U: Hello Biron.
R: Hello. What’s your name?
U: Simon.
R: Hello Simon. I can follow you and you can show me the

apartment. You can say stop at all times, and I stop. What
can I do for you now?

U: Follow me.
R: I will follow you until you say stop. (user guides the

robot within the living room)
U: Stop.
R: I will stop here.
R: What shall I do?
U: This is the living room.
R: I will learn living room, right?
U: Right.
R: I have learned the living room.
R: What shall I do now?
U: This is a shelf.
R: I will remember the shelf, right?
U: Yes.
R: I have learned the shelf.
U: Follow me.
R: I will follow you until you say stop. (user guides the

robot that is now able to go through the door au-
tonomously)

This example illustrates the changes that have been made.
They are now discussed in more detail.

7.2.5 Results

In the data of the second study, 385 interaction sequences
were coded. Table 4 shows the descriptive statistics for all
tasks and the number of failures that occurred in each task.
The overall percentage of failures has decreased by 5 % (to
15 %) in comparison to the first user study. Even though this
is not a lot on first sight and the difference is not statistically
significant (one reason being that the standard deviation be-
tween the participants was very high with sd = 10.33 % in
the first study and sd = 8.61 % in the second study), the
result is positive given that two new functional tasks were
introduced. We also compared the percentage of failures
in the single tasks that were part of both studies. We con-
ducted Fisher exact tests for failures and success for all tasks
summarizing all participants. However, these did not reveal
any statistical differences. Nevertheless, the findings can be
backed up with qualitative observations which are of partic-
ular importance because the corpus is not very big.

Only very few failures occurred in the social tasks (greet,
info, and offer) which indicates that the prototypical inter-
action scripts and the Bonsai implementations of these work
well and no changes are required (see Table 4).

More failures occurred in the functional tasks. Teaching
objects and teaching rooms are the most problematic tasks
compared with the first user study. SInA revealed that in the
teaching object task all failures were caused by speech un-
derstanding problems, in the teaching rooms task all but one.

Table 4 Descriptive statistics of the task analysis of user study 2, count and percentage of failures that occurred in the tasks

Task Count Percentage
count of all
annotations

Minimum
duration
(seconds)

Maximum
duration
(seconds)

Mean
duration
(seconds)

Standard
deviation
duration

Duration of all
annotations (%)

Count of
failures

Percentage
of failures

Social tasks

greet 14 3.64 8.51 103.26 28.43 24.45 7.22 0 0

intro 14 3.64 6.18 6.46 6.33 0.09 1.61 0 0

offer 133 34.55 1.06 19.50 3.00 2.82 7.24 4 3.01

Functional tasks

guiding 69 17.92 0.96 103.16 26.78 24.58 33.54 12 17.39

teaching object 58 15.06 0.12 43.64 17.15 11.97 18.05 19 32.76

teaching room 47 12.21 0.36 61.18 16.20 10.49 13.82 14 29.79

showing object 8 2.08 8.10 169.32 60.76 53.11 8.82 2 25.00

showing room 6 1.56 5.08 86.96 29.84 31.59 3.25 5 83.33

Problem-related tasks

register 20 5.19 2.16 59.34 12.29 13.93 4.46 0 0

stop 16 4.16 2.08 18.12 6.89 4.87 2.00 2 12.50

overall 385 100 0.12 169.32 14.31 19.34 100 58 15.06
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These failures were very common because of the usage of
the on-board microphone and point to the fact that speech
recognition in natural environments is still a challenge. Nev-
ertheless, not using a headset makes interaction in the home
tour scenario much more natural and needs to be encouraged
also in future studies. Therefore, as long as speech recogni-
tion technology does not become better, the problems have
to be addressed by changing the robot behavior. Qualitative
analysis revealed that the users are now (in contrast to the
first study) able to tell the robot that it had misunderstood.
However, this resulted in the robot saying that it would for-
get what it had just learned which counted as a failure even
though the interaction could continue smoothly afterwards.
As the robot should still learn the object or room, the more
appropriate behavior would be to prompt the users to repeat
the name. This change can easily be made in Bonsai by a
local change in the corresponding state of the “learn new
object/room” skill. Instead of treating the dialog component
as a central control component, it is treated as a Bonsai actu-
ator that provides an interface to the services offered by the
dialog sub-system. Thus, a skill can request different dialog
interaction patterns [31], e. g., changing it from an “infor-
mation prompt” to an “information request”. This example
is further discussed in the context of the metrics for system
redesign (see Sect. 7.3).

Also the guiding task resulted in failures. The percent-
age of failures for the guiding tasks actually increased from
8.26 % in the first user study to 17.39 % in the second user
study. However, the analysis revealed that this was actually
due to the fact that the guiding was less often interrupted by
problem-related tasks in the second study (transition prob-
ability for guiding to the problem-related tasks 0.468 vs.
0.254). The users needed significantly less guiding tasks to
reach the goal (mean number of guiding tasks 7.79 per user
in user study 1 and 4.93 in user study 2; p > 0.001, Fisher
exact test). Thus, the mean duration of the individual guid-
ing sequences increased, increasing also the chance for the
robot to fail, e.g., by misunderstanding a user utterance as
a stop command or by the need to initiate a register task.
To decrease the number of cases where re-registration of the
user is necessary, the distance that the robot keeps from the
user might have to be adapted. This change to the Bonsai
skill is discussed as one example in Sect. 7.3.

Table 4 also depicts the results for the new functional
tasks showing object and room. However, these will not be
discussed here as they include only few cases and cannot be
compared to user study 1.

The percentage of problem-related tasks overall de-
creased significantly from 28 % in the first study to 9 %
in the second study (p > 0.001, Fisher exact test). Also
the time needed to complete the problem-related tasks was
much shorter in the second study. In the case of the regis-
ter task, the mean duration decreased from 19.19 seconds

Table 5 Transition matrix for the most common functional (predeces-
sor) and problem-related (successor) tasks in study 2 (bold numbers
highlight the most frequent transitions)

Task Predecessor

guide teach object teach room show object show room

Successor

register 0.254 0.041 0.021 0 0

stop 0 0.122 0.106 0 0

to 12.29 seconds. The shorter mean duration of the register
task is due to the fact that the robot had been enabled to find
the user on its own without needing verbal input. The robot
simply asked the user to wait for it, looked around, and sig-
naled when it had detected the user by saying “Oh, there you
are”. In this case the participants probably did not take the
disruption as seriously. However, this question has to remain
open for future analysis. This new strategy worked with all
users and all occurrences of the situation. The old strategy,
that was also implemented when the person could not be
re-detected, was never deployed. However, the difference in
task length is not statistically significant which is again due
to high standard deviations (sd = 12.39 seconds in the first
study and sd = 17.55 seconds in the second study). In the
first study most participants needed about 15 to 20 seconds
to complete the task. In the second study one instance of the
task took almost one minute whereas most others were com-
pleted within five seconds. If this one task is excluded from
the test, it actually is highly significant (T (47) = 2.7099,
p = 0.0094∗∗), indicating that the autonomous register task
was actually quicker than the one based on verbal user input.
Thus, we do not propose any changes to the Bonsai register
skill at this point of time.

The mean duration of the stop task was reduced signif-
icantly from 10.60 seconds to 6.89 seconds (for all stop
tasks that did not fail T (37) = 2.7716, p = 0.0087∗∗). This
shorter mean duration can be attributed to the changes of the
prototypical interaction script of this task described above
(see Sect. 7.1.5). Thus, the execution of this task seems to
be quite efficient now and no redesign of the Bonsai skill is
needed.

As in the first study, most problem-related tasks occurred
during the guiding of the robot. Guiding sequences were fol-
lowed by a register task with a probability of 0.254 (see Ta-
ble 5). This happened slightly more often in the second study
which means that person tracking while moving in space is
still a problem, especially because lighting conditions in the
apartment change between rooms. However, as stated be-
fore, the register task is solved more elegantly now because
the robot had learned to re-register users on its own with-
out asking them for help. Thus, there is no urgent need for
changes in the Bonsai skill.
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The teaching objects and rooms tasks were mainly inter-
rupted by the stop task. SInA has shown that this was mostly
due to the fact that the robot needed a long time to react to
the users’ utterances. Thus, the users initiated the stop task
to make sure that the robot did not have a problem. As can be
seen from the descriptive statistics (see Table 4), overall the
stop task occurred less frequently in the second study (4 %
of all tasks compared to 7 % in the first user study), however,
the difference was not statistically significant. Given that the
remaining stop tasks were initiated by the users only infre-
quently, no changes to the Bonsai skill are proposed.

7.3 Metrics for System Redesign

The results presented above focused on the interaction side
of system design and changes that need to be made within
certain skills have been identified. We also pointed out how
making these changes profits from the Bonsai framework.
In the following, we concretize the benefits of Bonsai on the
system side by providing some examples based on the Lines
of Code metric introduced in Sect. 7.2.3.

The first example concerns the guiding skill of the robot.
As explained earlier, the robot should search for a person
at the last known position before asking the user for help.
Also the robot should announce right away if the person is
moving too fast and the distance between person and robot
increases too much (“Oh, please wait!”). This behavior is
enabled via the information available to a Bonsai skill from
other components and the code is not included in a com-
ponent. Thus, the information is represented locally (see
Sect. 4). In the prior BIRON system, e.g., the follow be-
havior code was included in one of the components, namely
the Person Tracking and Attention (PTA) [20]. The con-
trol was achieved via a rule-based sequencer [36], which
mainly had to switch between different components that
would then control (parts of) the robot. With hardware ab-
stracted in Bonsai via sensors and actuators we were able
to decrease the complexity of the components since they do
not need to include behavior code, hence being easier to de-
bug/maintain, and we could increase the reusability of the
developed behaviors via control abstraction, which allows to
avoid control code, e.g., individually re-implemented finite
state machines, in the Bonsai skills.

As has been mentioned above, the metrics used here to
measure the effects of the implementation of the new frame-
work are the lines of code that need to be modified for one
change in a behavior and the number of different compo-
nents where the changes need to be made. To make a sim-
ple change in the follow behavior in the prior robot system,
e.g., the distance kept between person and robot, a developer
would have to change two lines of code in the PTA com-
ponent and four lines of code in the rule-based sequencer.

These four lines concern two rules that control the robot be-
havior and one guard each that monitors the information ex-
change between components. Thus, overall six lines of code
in two components have to be adapted. In Bonsai the devel-
oper changes one line of code in one skill.

A more complex example to illustrate the efficiency of
the Bonsai approach is the re-inquiry of information, e.g.,
asking for the correct label of rooms and objects in case
of a misunderstanding instead of forgetting the information
and starting over. To implement this change without Bonsai,
three components would have to be adapted: The dialog to
initialize the user interaction, the rule-based sequencer, and
the component that manages the information about the sur-
rounding. The dialog would have to be extended by roughly
three lines of code for the understanding part and the ini-
tialization of the user interaction. The sequencer would be
changed in six lines: two new rules for the interaction with
one guard each and two additional guards for the informa-
tion flow between dialog and component. The specific com-
ponent would be changed in three lines to achieve that the
object label is not deleted but replaced. These changes of
approximately twelve lines of code in three important parts
of the system bare a high risk of undesired side effects. Ad-
ditionally the behavior developer might not be an expert for
the dialog or the component affected, which would make
the changes even more difficult and risky. With Bonsai this
change can be handled in one skill that needs five additional
lines of code: Asking for the correct label (one line), replac-
ing the wrong label (one line) and three lines for exception
handling.

Going beyond these examples, it is easy to imagine that
the number of lines that need to be changed in Bonsai can
increase quickly for more complex changes in a behavior.
However, also more lines in other components would need
to be changed without Bonsai and the general rule for inter-
active systems is that it is better to change more lines in one
place than to make a few changes in many places. This is due
to the fact that changes in many components bare the risk of
introducing undesired changes in the overall system perfor-
mance and require a lot more knowledge about the overall
system.

8 Conclusion & Future Work

The paper set out to design a framework that supports itera-
tive system design for autonomous robots. From our point of
view, such a framework needs to make adaptations of robot
behavior based on findings from user studies efficient and
needs to provide the possibility to re-use robot behaviors in
future user studies and on different platforms.

We propose that these challenges can only be met with
a framework that abstracts from the multitude of compo-
nents within the system and allows to make changes in only
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one place not requiring a deep knowledge about the whole
system. Based on this assumption, we designed the Bonsai
framework. The concepts for this framework were retracted
from concepts that are also used in user studies because only
in such studies we can determine concrete requirements for
future system design. Furthermore, the paper shows the im-
plementation of the framework in a robot. In a further user
study we illustrate how the system works with the frame-
work and how it supports iterative design. Thus, we con-
tribute a system that supports iterative design by enabling
researchers to adapt robot behaviors in an efficient way.

However, the efforts described here can just be the start
of the iterative process of using Bonsai. In the future we aim
to increase the usefulness of the framework by integrating
more skills and strategies, by re-using skills in other scenar-
ios and systems, and by using it in more iterations of user
studies.
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