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Abstract
This empirical study compares elderly people’s social perception of human versus robotic coaches in the context of an
active and healthy aging program. In evaluating hedonic and utilitarian value perceptions of exergames (i.e., video games
integrating physical activity), we consider elderly people’s judgments of the warmth and competence (i.e., social cognition)
of their assigned coach (human vs. robot). The field experiments involve 58 elderly participants in the real-life context.
Leveraging a mixed-method approach that combines quantitative and qualitative data, we show that (1) socially assistive
robots activate feelings of (automated) social presence (2) human coaches score higher on perceived warmth and competence
relative to robotic coaches, and (3) social cognition affects elderly people’s experience (i.e., emotional and cognitive reactions
and behavioral intentions) with respect to exergames. These findings can inform future developments and design of social
robots and systems for their smoother inclusion into elderly people’s social networks. In particular, we recommend that
socially assistive robots take complementary roles (e.g., motivational coach) and assist human caregivers in improving elderly
people’s physical and psychosocial well-being.

Keywords Automated social presence · Social cognition · Socially assistive robots · Exergames · Elderly care · User
experience

1 Introduction

Many societies face the challenges of aging popula-
tions, at risk of reduced physical activity [54], whereas
an active lifestyle has proven health-related benefits for
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m.caic@maastrichtuniversity.nl

João Avelino
javelino@isr.tecnico.ulisboa.pt

Dominik Mahr
d.mahr@maastrichtuniversity.nl

Gaby Odekerken-Schröder
g.odekerken@maastrichtuniversity.nl

Alexandre Bernardino
alex@isr.tecnico.ulisboa.pt

1 School of Business and Economics, Maastricht University,
Maastricht, The Netherlands

2 Institute for Systems and Robotics Instituto Superior Técnico,
University of Lisbon, Lisbon, Portugal

3 Service Science Factory, Maastricht University, Maastricht,
The Netherlands

aging adults [3]. When a sedentary lifestyle becomes rou-
tine though [5], falls among elderly people can develop
into an alarming problem, often leading to hospitaliza-
tion and reduced physical autonomy [77]. Evidence links
decreased motivation for physical activity to advanced age
[67], which implies the need for healthcare systems to
develop effective solutions to ensure the physical well-
being of elderly people. Exergames offer an innovative
way for seniors to avoid a sedentary lifestyle and com-
bat the degenerative effects of aging; their easy-to-follow
steps and gamified nature motivate seniors to remain phys-
ically active through playful interactions. The application
of exergames in healthcare settings also has yielded posi-
tive outcomes for both physical and cognitive well-being [9,
76]. Recent studies of the use of exergames in rehabilita-
tion [16, 71] suggest comparable or slightly better results
(e.g., balance, gait) than achieved with conventional fitness
programs.

According to a study of the usability of exergame plat-
forms [70], elderly people’s cognitive deficiencies can hinder
their engagement with exergames though. We propose that
a social agent can serve a supportive function, guiding and
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motivating elderly people through the gaming process. Pro-
fessionals in care institutions do their best to keep elderly
patients physically and mentally active, but the unprece-
dented relative growth of the elderly population is creating
a gap between the supply of and demand for care services
[42]. As an aid, gaming platforms can include virtual agents
that serve in guidance and motivational roles, with an auto-
mated social presence. Still, the presence of a physical entity
enhances interactions with an autonomous agent, compared
with a virtual or real entity presented on screen [49, 58,
69]. These findings have motivated researchers to turn their
attention to socially assistive robots (SAR), like Vizzy [51],
MBOT [74], andGrowMu [57],which understand social cues
through facial and voice recognition technology, are capable
of engaging in quasi-social interactions, and can cause users
to feel as if they are in the company of a social entity [14,
72].

The extent to which current SARs are capable of helping
people enjoy and perceive exergames as useful is a cru-
cial research topic. The adoption of a user-centered design
perspective, with continuous benchmarks and comparisons
between SARs and care professionals, can support tech-
nological improvements that better suit professionals and
elderly patients. In this study, we take the perspective of
elderly users to address the following research question:
How does an automated (i.e., SAR) versus human pres-
ence affect elderly people’s experience with exergames to
improve their physical activity? For this purpose, we use
the Vizzy robot (Fig. 1) as a robotic coach and the Portable
Exergames Platform for Elderly (PEPE) [70] as an exergame
system. Vizzy is a semiautonomous robot, and PEPE is a
fixed gaming platform. These systems were developed and
designed specifically for use in elderly care institutions.With

Fig. 1 Vizzy interacting with an elderly lady

an experimental design, applied in five elderly care loca-
tions, we investigate users’ experience with playing one of
PEPE’s exergames, in the company of a human or robotic
coach (Vizzy), by gathering their responses to a questionnaire
augmentedwith a set of probing questions. The resulting con-
tributions and practical implications include:

• An empirical test of the new concept of automated social
presence and how it influences exergame experiences for
seniors.

• Quantitative and qualitative comparisons of the social per-
ceptions elderly people form about human and robotic
coaches.

• Evaluations of elderly people’s experiences (i.e., emo-
tional and cognitive reaction and behavioral intentions)
with the exergame, depending on the company.

In Sect. 2, we discuss prior end-user studies with SARs in
motivational and conversational roles, which constitutes the
background for our conceptual model in Sect. 3. We present
the hypotheses in Sect. 4. Next, we describe Vizzy, PEPE,
the research setup, experimental design, and data collection
procedures in Sect. 5. After we detail the results in Sect. 6, we
discuss contributions and implications of our study in Sect. 7.

2 RelatedWork

2.1 Social Robots for Older Adults

Applications of SARs in elderly care constitute a trending
research topic. Several studies with older adults test their
acceptability and possible range of applications. In Iwa-
mura et al.’s work [41], seniors used two robots as shopping
partners, and the findings suggest that the robots’ social
skills (e.g., conversation) improve people’s intentions to use
them. McColl and Nejat [50] present an exploratory study
at an elderly care facility to investigate user engagement
and compliance during mealtime interactions with a robot.
Participants were engaged and compliant with the robot’s
instructions and also perceived the robot as enjoyable.

Other studies have investigated the evolution of seniors’
perceptions ofSARsover a longer periodof time. In a studyof
which factors determine long-term user acceptance of social
robots [34], the evidence reveals that hedonic factors gain
the most attention, but utilitarian factors are a fundamental
prerequisite of long-term interactions (i.e., the robot must
have a clear purpose).Amore recent contribution investigates
older adults with dementia at residential aged care facilities
over four years [46]. After each trial, the robot’s services
improved, reflecting staff and resident feedback, leading to
statistically significant increases in engagement and robot
acceptability.
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2.2 Robotic Coaches

Robotic coaches are platforms that engage, monitor, and
support physical exercise activities, through verbal and
non-verbal communication, demonstration of exercises, and
real-time corrective or motivational feedback. An early study
[25] explored interaction enjoyment and perceived utility,
with a comparison of two different approaches. The first
relied on a relational robot that praised, addressed users by
name, and expressed humor and empathy. The second used
a non-relational robot that just provided scores and help
as needed. Users regarded the relational robot as a better
companion and exercise coach than the non-relational one.
Robotic coaches thus need to provide motivational support
to users during the exercise. In turn, users perceive relational
robots as more intelligent and more helpful. Feasibility tests
of a robot coach architecture with older adults also indi-
cate promising acceptability results [24]. This architecture
includes a rule-based decision process but also can learn
users’ preferences, estimate their affective state, and recall
past interactions. Users’ perceptions of their interaction with
the robot thus improved, relative to their initial expectations.
Schneider and Kümmert [66] also investigate the differences
in motivation created by a robot that solely instructs users
(instructor role) and one that exercises alongside the user
(companion role); people appearmoremotivated by the robot
companion role. Finally, in a robot coaching scenario [33],
an elderly user study cites engagement and enjoyment while
exercising but also reveals some difficulties, such as hearing
instructions, focusing on the physical aspects of the robot
while ignoring verbal instructions, and confusion associated
with performing sequences of gestures.

2.3 Comparing Human and Robot Actors

Extant studies also compare the performances of human and
robotic actors in a variety of contexts. To summarize these
findings, we start with studies in which participants have no
direct interaction with the human/robotic actor, then con-
tinue on to studies in laboratory settings, and finally end our
analysis in this section with findings from real-world field
experiments.

The first group of studies relies on online surveys that
present participants with written [75] or video recorded [39]
scenarios, followed by a set of questions designed to eval-
uate their perceptions of human versus robotic actors. The
foci of the studies varies, from moral dilemmas to the com-
munication ability of the human or robot agent. For example,
one online study [75] reports that participants assign higher
moral obligations to human than robotic actors, such that
they believe it is morally wrong for a hypothetical human
actor to choose to act and save four, while sacrificing one,
coalminer, but they expect the robot tomake this choicewhen

facedwith the samemoral dilemma.Another study [39] com-
pares human and robotic doctors’ ability to inform patients
about their health conditions, following a standardized script.
Participants evaluate the robot better at communicating bad
news, though these researchers predict that human social
presence might invert the results in a real-life scenario.
Although the design of these experiments allow for replica-
tion and comparability betweenhumans and robots, theyhave
limited external validity, because they refer to specific, artifi-
cial scenarios, and participants have no contact with actors or
no immersion in the scenario. Such a limitation is especially
important in critical scenarios [39], such aswhen participants
do not experience a real health diagnosis.

Another group of studies relies on laboratory-based
methodologies that enable participant–agent interactions.
These studies generally report no significant differences in
the behaviors of participants in the presence of robotic versus
human agents. For example, in a shared attention memoriza-
tion taskwith a human or robot agent [47], the participant and
agent point at images and look at them together. Later, par-
ticipants reviewed another set of pictures and had to identify
which they had seen before. Recognition performance was
better when the participant initiated the pointing behavior
than when the collaborator did so, but it did not matter if that
collaboratorwas a humanor a robot. In a turn-based variant of
the Tower of Hanoi experiment, conducted with a human or
robot collaborator [44], participants performed significantly
better with a collaborator than when playing individually,
but again, there were no significant differences between
the human and robot collaborator conditions. Because the
collaborator always made the best move, the lack of per-
formance differences could be because the game was too
simple. Although these studies suggest that participants ben-
efit equally from collaborating with other humans or robots,
one contribution [44] assigns an advantage to humans, in
terms of perceived social presence and perceived credibility.
These designs are replicable and controlled, and they rely
on participant–collaborator interactions. However, the labo-
ratory setting might limit internal and external validity.

Finally, some studies use realistic field experiments to
compare human and robotic teachers [28, 45]. For exam-
ple, when teachers gave a tutorial on prime numbers, no
significant differences emerged in the student evaluations
of human or robotic teachers [45]. The robot in this study
was fully autonomous but could not adapt its gestures to
events in the classroom or engage in mutual gazes with stu-
dents. In a similar study of programming principles [28],
students between 14 and 17 years of age performed better
with the robotic teacher, whereas those 10–13 years of age
performed better with a human teacher. Younger students
(6–9 years) showed no significant performance differences.
Although they do not suffer the limitations of the previously
mentioned studies, strong novelty effects are present in these
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studies, especially [28]. Beyond the novelty of interacting
with a robot, the participants were visiting students, unfa-
miliar with the university environment.

This literature review reveals that prior research has
focused on different domains of social interaction, including
moral expectations, diagnosis communication, shared atten-
tion benefits, gamingperformance effectswith a collaborator,
and teaching. They also provide valuable insights into the
issues and methodologies that are required to achieve suc-
cessful experiments involving human and robot actors. First,
in particular, they reveal that people evaluate humans and
robots differently, even if the robot is perceived to be intel-
ligent [75]. Second, lab experiments allow for more control
over the stimuli, but they might not be valid in real-life sce-
narios [39]. Third, some elements of thesemethodologies are
standard and necessary for interaction studies, to increase
their internal validity. The human actor must be trained to
follow the same script and move similarly to the robot; the
task shouldmatch the robots’ skills to reduce possible biases.
However, literature is still sparse in this domain, and to the
best of our knowledge, no study compares older adults’ per-
ceptions of exergames when they are coached by either a
human or a robot. The following section substantiates the
importance and relevance of such a study.

3 Conceptual Background

Social interactions are not reserved to humans. Technologies
mimic humans, in their appearance and behaviors (i.e., social
robotics, [11]), and quasi-social interactions increasingly
appear in diverse service settings, such as robotic waiters,
bank tellers, and receptionists. These artificially intelligent
social actors can engage in quasi-social interactions [6].
Robots are not social by nature but instead are programmed
to act as conversational partners and socially interactive peers
[32].Yet,when they engage in these quasi-social interactions,
humans tend to perceive robotic systems as social beings [36,
60]. This phenomenon is closely linked to the concept of
social presence, broadly defined as the sense of being with
others (e.g., in virtual reality, [38]) or having the access to
others’minds (i.e., cognitive, affective, and intentional states,
[7]). Social presence is a property of humans, not technolo-
gies [6], so current theories may benefit from using social
presence as a lens to compare interactions with either human
or non-human actors. The concept of automated social pres-
ence, as introduced in service literature, refers to “the extent
to which machines (e.g., robots) make consumers feel that
they are in the company of another social entity” ([72], p. 44).
If robots can interact with people in human-like ways, such
as by listening, conversing, or reading emotional cues, then
people might automatically respond socially to them [60].
In particular, this study argues that people may activate their

social cognition and judge the non-human social actor on the
basis of warmth and competence dimensions, which are the
universal dimensions of social cognition.

3.1 Social Cognition

According to Fiske et al. [31], when interacting with mem-
bers of the same species, humans need to determine whether
the other is friend or foe (i.e., warmth dimension), and
whether it is capable of acting on good or ill intentions (i.e.,
competence dimension). Although robots are notmembers of
the same species, their anthropomorphism [53] and increas-
ing social dexterity make them resemble humans in many
aspects. This study in particular focuses on SARs, which
offer assistance through social interactions in a humanlike
manner [26]. In a healthcare context, SARs are autonomous,
understand social cues through facial and voice recognition,
and can provide both child (e.g., autism therapy, [65]) and
elderly (e.g., medication reminders, [13]) care. In an elderly
care context, SARs offer services such as health monitor-
ing and safety, encouragement to engage in rehabilitation
or general health-promoting exercises, social mediation,
interactions, and companionship [27]. By performing more
socially engaging tasks, these robots take roles as com-
panions, collaborators, partners, pets, or friends [21, 32].
We build on the idea that humans judge a social interac-
tor (even a non-human actor) on warmth (i.e., friendliness,
kindness, caring) and competence (i.e., efficacy, skill, confi-
dence) dimensions, which then determines their emotional,
cognitive, and behavioral reactions. Thus we address recent
calls for research on the effects of automated social pres-
ence on the perceived enjoyment and usefulness of service
interactions and the acceptance of new technologies [36, 72].

4 Hypotheses Development

We test our empirical model through field experiments with
elderly people. The research aim is to investigate the dif-
ferences between human and robotic companions when it
comes to motivating elderly persons to engage in physical
activity. We introduce hypotheses related to robotic coaches
only (H1), comparisons of human and robotic coaches (H2
and H3), and user experiences with the exergame (H4 and
H5). Figure 2 depicts the empirical model.

Using the argument that humans tend to treat non-human
actors/systems as social beings [36, 60] and the definition
of automated social presence [72], we investigate whether
SARs, which display human-like social behavior and com-
municative skills [10], evoke feelings of social presence in
humans. Furthermore, this study extends previous research
[30, 43] by involving socially dexterous robots that are capa-
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Fig. 2 Empirical model. Notes: H1 is tested with one-sample t-tests; H2 and H3 are tested with independent sample t-tests; H4 and H5 are tested
with seemingly unrelated regressions (SUR)

ble of engaging in a dialog, gazing, and responding to social
cues. Thus, we hypothesize:

H1 Robotic coaches are perceived to have automated social
presence (i.e., people feel they are in the company of a social
entity).

If people feel like they are in the company of a social
entity, they likely evaluate robots using the mechanisms of
social cognition (i.e., warmth and competence), similar to
their evaluations of human companions [72]. We extend pre-
vious research [30] with a comparison of human and robotic
coaches, with the prediction that

H2 There is a difference in the (a) perceived warmth and (b)
perceived competence of human versus robotic coaches.

Moreover, in line with calls for further research [35, 37],
we explore the effects of automated social presence versus the
presence of human coaches onusers’ emotional and cognitive
reactions, which may influence their acceptance of the tech-
nologies [73]. Being in the company of a human or a robot
may determine whether elderly participants find playing the
exergame enjoyable and effective. We therefore postulate:

H3 There is a difference in the (a) hedonic and (b) utilitarian
value perceptions of an exergame, depending on whether the
coach is a human or a robot.

Finally, assuming users evaluate both human and robotic
entities using universal social cognition dimensions, we
further consider how differences in people’s social cogni-
tion–based evaluations of human versus robot coaches affect
their emotional and cognitive responses and, ultimately, their
intentions to use the exergame. Therefore:

H4 (a) Perceived warmth and (b) perceived competence of
the coach affects users’ (i) hedonic and (ii) utilitarian value
perceptions of the exergame experience.

H5 (a) Hedonic and (b) utilitarian value perceptions affect
users’ intentions to use the exergame.

5 Methods andMaterials

5.1 Robot Description

The robotic platform in these experiments is the Vizzy robot
[51], developed by the Institute for Systems and Robotics
(ISR-Lisboa/ISR). Vizzy is a 1.3-m-tall, wheeled robot with
a humanoid upper torso and a friendly, marsupial-like design
(Fig. 3). It has a total of 30 mechanical degrees of freedom
(DOF). The two DOFs of the differential drive base allow
it to navigate planar surfaces easily and plan its trajecto-
ries using well-established algorithms [59, 64]. The head
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Fig. 3 The Vizzy robot

can perform pan and tilt movements, and its eyes can do
tilt, vergence, and version movements, for a total of five
DOFs. Vizzy’s arms and torso also have 23 DOFs, such that
it can perform human-like motions. Two laser scanners at
the bottom of the mobile base capture planar point-clouds
of the environment, providing valuable information for the
robot’s safe navigation. Each of Vizzy’s eyes contains a cam-
era, used for object/people detection and tracking. A depth
camera is mounted on Vizzy’s chest, further enhancing the
robot’s sensing capabilities for human movement analysis.
Other components include a loudspeaker and a microphone,
useful for human–robot interactions, and 12 tactile sensors
on each hand [55], mounted on the finger phalanges.

Vizzy’s actuators and controllers allow it to navigate, grasp
objects, perform gestures, and gaze in a biologically inspired
way [1, 63]. The robot also has software that enables it to
detect and follow people in the environment, using an imple-
mentation of the Aggregate Channel Features Detector [22]
with appearance-based tracking using color features [29]. A
set of RVIZ plug-ins allow the remote control of the robot
(head and base) in Wizard-of-Oz (WoZ) experiments, in a
gaming-like way, while visualizing the obstacles gathered
by the laser and the people detected by the cameras. A web
interface (see Fig. 4) allows a “wizard” to select utterances
for the robot to speak while listening through the robot’s
microphone. This approach supports faster replies and inter-
actions, compared with explicitly typing utterances, though
at the cost of speech flexibility.

Fig. 4 Dialogue controlGUI.aDefault viewwith several buttons group-
ing verbal intentions. b One of button pressed, showing several options

5.2 Gaming Platform Description

To perform the exergames with seniors, we used the Portable
Exergames Platform for Elderly (PEPE) [70], an augmented
reality gaming platform that projects exergames on the floor,
while a Kinect sensor captures the person’s movements to
control the game elements. Users can play through PEPE
without requiring any wearable sensor or controller, which
minimizes the burden and complexity for older adults. Two
touchscreens on the top of the platform provide additional
information to staff members monitoring the exercise. The
games currently need to be initiated and terminated by a per-
son, but in the future, the social robot will be able to control
the gameflow. The chosen game for our experiments is Exer-
Pong [16], which requires players to control a green paddle
(Fig. 5a) with their body movements. The objective is to hit
the yellow ball with the green paddle, making sure it does
not leave the game area. Colored boxes populate the gaming
area. When touched by the yellow ball, the colored boxes
are destroyed and yield points to the player. After destroying
all the boxes, the player completes the level. Every time the
player fails to hit the yellow ball, and it leaves the playing
area, a box reappears. During the game, audiovisual stimuli
give performance information to the player, in the form of
a red visual feedback and success and failure sounds. The
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Fig. 5 Experimental conditions. a Scenario 1, human coaches elderly
user in playing the exergame using PEPE. b Scenario 2, Vizzy performs
the coaching role

players can either control the paddle by walking sideways
or with horizontal arm movements. Thus ExerPong can be
played by people with different degrees of mobility.

5.3 Participants

In total, 58 elderly persons (42 female, 16 male) participated
in the study; they ranged in age between 48 and 94 years
(μ � 78.79, σ � 9.85). We excluded people suffering from
severe physical (e.g., full physical immobility) or mental
(e.g., dementia) health problems, as well those incapable of
giving their consent. The target population comprised elderly
persons living autonomously (e.g., in their own home) or
in a nursing home who accept services from a care institu-
tion. Thus, the main inclusion criterion was that they were
clients of the elderly care centers with which we partnered,
which offer a wide range of tailored activities (e.g., card

games, fitness, handcrafts). We randomly divided the overall
sample into two experimental groups: 22 participants in the
human coach group (16 female, 6 male), aged between 65
and 94 years (μ � 75.46, σ � 12.79), and 36 participants in
the robotic coach group (26 female, 10 male), aged between
48 and 91 years (μ � 80.83, σ � 6.98). The human coach
experiments were carried out at two locations (Location A:
10,LocationB: 12 elderly participants), and the robotic coach
experiments were carried out at three locations (Location C:
11, Location D: 10, Location E: 15 elderly participants).

5.4 Experimental Setup

The data collection, in collaboration with five elderly care
institutions, took place during July–September 2017. Each
participating elderly care institution provided a spacious
activity area, an adjoining room for surveys/interviews, and
an in-house psychologist. The activity area was essential,
because we needed to fit the gaming platform and secure
enough space for the robot to navigate throughout the area.
We requested an additional room to ensure each informant’s
privacy during the data collection. Finally, the in-house psy-
chologist helped screen elderly clients, to evaluate their fit for
the experiment (exclusion criteria: severe physical or men-
tal health problems). The visits were scheduled during the
regular activities time held by each care center.

5.5 Experimental Procedure

As a part of the study, the exergame platform was installed
in the main activities room of each care institution. During
the regular activities time, when people usually participate
in various activities offered by the institution (e.g., draw-
ing, knitting classes, yoga, card or board games), the seniors
were approached either by a human or the robot, depend-
ing on their assigned experimental group, and invited to try a
new activity that reportedly was being considered as an addi-
tion to the existing activity offers. Because all the activities
took place in a main activities room, peers could observe the
exergame activity, though some remained engaged in their
own activities. To keep the experimental scenarios as con-
stant as possible, we developed a standardized set of steps
for each actor (i.e., human/robot) to follow: (1) Approach an
elderly person who satisfies the inclusion criteria; (2) intro-
duce the new activity (i.e., exergames) and invite the elderly
person to join the game; (3) if the elderly person accepts,
escort her or him to the gaming area; (4) provide instruc-
tions for how to play the game; (5) motivate the elderly
person by words of encouragement and feedback on game
progression; and (6) ask the elderly person whether to con-
tinue or terminate the game. The locations of the coach
during Steps 4–6 were standardized, as depicted in Fig. 5.
Although the “wizards” directing the robots were present in
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the same room, they were described as technicians, available
resolve any problems with the exergame system. Further-
more, they were standing in a non-visible area, out of the
field of view of the participant during the game. The com-
munication was standardized; both human and robot actors
used the same sentence to introduce the exergames, give
instructions, and motivate players. Past studies have shown
that gendered voices can influence perceived trust, likeabil-
ity [48], and competence [18] if the agent is a computer
with no gender-specific characteristics other than the voice.
People tend to give higher ratings to agents whose voice
gender matches their own, and they also apply gender stereo-
types. Therefore, Vizzy had a female voice to match the
gender of the caregivers, who were all women. On aver-
age, the time participants spent playing the exergame was
08:07 min, with a standard deviation of 02:32 min. The min-
imum playing time was 1:58 min, and the maximum was
12:25 min. After the game, a member of the research team
escorted the elderly participants to the separate room to con-
duct the survey and interview. Prior to being surveyed, all
elderly informants signed an informed consent, outlining the
main objectives of the research project and guaranteeing the
anonymity of their responses. We consciously decided not to
ask for informed consent before their interaction with Vizzy
or the exergame platform, because we wanted to mimic a
regular activity at the center, rather than create a research
environment.

5.6 Data Collection

To test whether a robot (i.e., automated social presence) is
comparable to humans in terms of motivating elderly peo-
ple to engage in physical activity, we chose a mixed-method
approach, combining quantitative and qualitative data. The
main instrument was a questionnaire, augmented with prob-
ing questions to elicit more in-depth, qualitative insights.

5.6.1 Quantitative Data Collection

The 58 elderly participants were asked to allocate 10–15 min
of their time and join the first author to discuss their overall
experiencewith the activity. For that purpose, a questionnaire
was constructed to guide the discussion. With the decrease
of their cognitive functioning, elderly people often struggle
with question and rating scales comprehension [68], so we
decided to conduct guided surveys. The researcher read the
question to the elderly person and explained the rating scale
(e.g., totally disagree to totally agree), then asked the elderly
person to indicate her or his response.

To measure the experience with playing exergames (i.e.,
emotional and cognitive reactions), we adopted two bipo-
lar scales [17, 52]. Specifically, we employed a five-item
measure (α � .85) to assess their hedonic value percep-

tions (i.e., users’ enjoyment of the physical activity of using
the exergame platform). We assessed utilitarian value per-
ceptions (i.e., users’ perceptions of the effectiveness of the
physical activity of using the exergame platform) with a
three-item measure (α � .85). The responses were on seven-
point bipolar scales. To add a component of behavioral
intentions, we also measured elderly participants’ future
intentions to play exergames with a two-item measure (α
� .91).

Furthermore, we gathered the elderly participants’ eval-
uations of whether the human/robotic coach was good- or
ill-intended (i.e., warmth) and competent to perform the task.
In line with prior conceptualizations of social cognition [20],
we adopted a three-item measure for perceived warmth (α �
.76) and three-item measure for perceived competence (α �
.88). Participants responded to all items on five-point Likert
scales (“totally disagree” � 1 to “totally agree” � 5).

Finally, to evaluate the experience of sensing a social
entity when interacting with the robot, we developed a four-
item measure (α � .7) of automated social presence [2, 37].
Again, all items were measured on five-point Likert scales.
Tables 1 and 2 contain the constructs and items used in the
questionnaire.

5.6.2 Qualitative Data Collection

We chose to employ a convergent parallel mixed methods
design [19], inwhichwe collected both quantitative and qual-
itative data at the same time, with the goal of determining
whether the findings associated with both types of data sup-
port each other. During the survey process, the researcher
probed particular items as appropriate, using either “tell me
more” probes [4] or a laddering technique [61]. For exam-
ple, after elderly participants indicated their enjoyment level
(from “I hated it” � 1 to “I enjoyed it” � 7), the researcher
would ask what in particular they found enjoyable or not.
After they indicated their intentions to use the exergame plat-
form again (scale from 1 to 5), the researcher would ask why
and thereby potentially uncover the core values that guide
their behavioral intentions.

All collected narratives were digitally audio-recorded and
then transcribed, translated, and reviewed. The analysis pro-
ceeded in the following order: First, the authors all read the
transcripts independently to form their own understanding
of each participant’s narratives [62]. Second, four co-authors
met for a joint analysis session to share emerging codes
and develop a more focused coding scheme. Third, the first
two authors coded the remaining narratives according to
the coding scheme. Due to the exploratory nature of the
study, codes and thematic descriptions emerged from the
data rather than from preconceived categories or theories
[40].
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Table 1 Items related to the
exergame Hedonic value (α � .85)

1: I hated it (1) ... I enjoyed it (7)

2: I felt bored (1) ... I felt interested (7)

3: I disliked it (1) ... I liked it (7)

4: I found it unpleasurable (1) ... I found it pleasurable (7)

5: It was not fun at all (1) ... It was a lot of fun (7)

Utilitarian value (α � .85)

1: I find it harmful for my physical health (1) ... I find it useful for my physical health (7)

2: I find exergames ineffective (1) ... I find exergames effective (7)

3: I feel like it cannot improve my physical
health (1)

... I feel like it can improve my physical health (7)

Intention to use (1–5 Likert scale, α � .91)

1: I think I will play exergames during the next few days

2: I will use the exergame platform in the future

Table 2 Items related to the
human/robotic coach Perceived warmth (1–5 Likert scale, α � .76)

1: I feel the human/robotic coach understands me

2: I think the human/robotic coach is well-intentioned

3: I think the human/robotic coach is friendly

Perceived competence (1–5 Likert scale, α � .88)

1: I think the human/robotic coach is competent

2: I think the human/robotic coach is reliable

3: I think the human/robotic coach is an expert/knowledgeable

Automated social presence (1–5 Likert scale, α � .70)

1: I can image the robot to be a living creature

2: When interacting with the robot I felt I’m talking with a real person

3: Sometimes the robot seems to have real feelings

4: I felt like the robot was actually looking at me throughout the interaction

6 Results

6.1 Automated Social Presence

To investigate H1, we ran a one-sample t test to determine
whether the mean value of automated social presence is sta-
tistically different from a neutral value, that is, the midpoint
(� 3) on the 5-point Likert scale. In support of H1, the mean
score of 3.5 (SD� .97) is significantly different from 3, t(35)
� 2.97, p � .005 (Fig. 6). That is, elderly people experience
some sort of automated social presencewhen interactingwith
the robot. When we complement these quantitative findings
with the qualitative data, we identify the emergence of a
thematic paradox that we label “We know it’s a machine,
but it feels like a human.” From the narratives, we recog-
nize that the elderly participants experience some conflicting
thoughts, as captured in the following quotes:

It’s almost the same thing [as talkingwith a real person].
(Female, 80)

Fig. 6 Automated social presence

No, I mean… we can see that it’s a robot, right? But
we can see that it’s something intelligent… but it’s not
a person… but it’s as if it is a person. (Female, 89)

It’s a robot but… I imagined it as a person there talking
to me. (Female, 94)
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Fig. 7 Perceptions of warmth and competence

It felt like talking to an adult person. It’s like the grown-
ups. (Male, 71)

The comparison of quantitative and qualitative data thus
reveals similarities and support for H1.

6.2 Social Cognition

To test H2, we ran an independent-samples t-test and deter-
mine if the means of two groups (human vs. robot) differ
statistically. We find a significant difference in the mean
scores for perceived warmth when the coach is a human (M
� 4.82, SD � .37) or a robot (M � 4.45, SD � .73), t(54.40)
� 2.517, p < .05. Similar results emerge for the perceived
competence of the coach, as a human (M � 4.84, SD � .47)
or robot (M � 4.50, SD � .67), t(54.88) � 2.431, p < .05
(Fig. 7).

These results support H2, the difference for both per-
ceived warmth and perceived competence is statistically
significant. Elderly people perceive the robot to be friendly,
well-intentioned, and understanding of their needs, but to a
lesser extent than the human coach. Perceiving the robot as
high on the warmth dimension is in itself an important find-
ing, which we also can affirm with the qualitative data. In
coding the narratives, we identified another, broader theme,
which we label “It’s a machine, but it’s kind and gentle.” As
emphasized by the participants:

The robot spoke very politely to us [laughs].He is really
friendly. (Female, 86)

The robot seems gentle to me. (Female, 64)

If he has revealed all of his intentions… they are good.
(Male, 72)

I was very loyal to the robot and it became my friend.
(Male, 90)

Similarly, the elderly participants perceive the robot as
competent, reliable, and a knowledgeable expert for the par-

Fig. 8 Hedonic and utilitarian value perceptions of exergames

ticular task at hand. They assign it an average of 4.5 on a
5-point scale, slightly lower than the human coach. The qual-
itative data yield similar results, in further empirical support
of the high perceived competence of the robotic coach, as in
the following quotes:

For what he is programmed, he is competent. He
seemed smart to me. He did not say that much. If he
had spoken about football… [laughs] (Male, 72)

Wasn’t it intelligent? It is more intelligent than I am.
(Female, 84)

It is well-informed. If it wasn’t well informed it
wouldn’t come here. (Female, 80)

It’s smart to the max! (Male, 81)

6.3 Hedonic and Utilitarian Value

To investigate H3, we ran another independent-samples t-
test, to determine whether the different types of coaches
(human vs. robot) affect elderly participants’ value percep-
tions regarding their enjoyment and the effectiveness of
exercising using the exergame platform. As hypothesized,
we find a significant difference in the mean scores, for both
hedonic and utilitarian value perceptions, across the experi-
mental groups. In particular, themean for hedonic valuewhen
the coach is a human is 6.83 (SD� .33), whereas when it is a
robot, the mean is 6.50 (SD� .73), t(52.67)� 2.313, p < .05.
For utilitarian value, the means again are higher for a human
coach (M � 6.40, SD � .78) compared with a robotic one
(M � 5.56, SD � 1.31), t(55.99) � 3.051, p < .05 (Fig. 8).

These results support H3 but do not explain the source
of these differences. When we integrate the qualitative data,
we realize that the elderly people had fun and enjoyed the
experience with the exergames while in the company of a
robot:
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Table 3 Descriptive statistics
and correlations Correlations 1 2 3 4 5 6

1. Coach (Human vs. Robot) 1

2. Perceived warmth − .28* 1

3. Perceived competence − .29* .61** 1

4. Hedonic value − .25 .56** .63** 1

5. Utilitarian value − .34** .42** .59** .54** 1

6. Intention to use − .13 .43** .55** .56** .53** 1

Descriptive statistics

Minimum 0 3 3 4 2 1

Maximum 1 5 5 7 7 5

Mean .62 4.59 4.64 6.62 5.87 4.52

SD .49 .64 .62 .63 1.20 .85

I loved it. I found it very interesting… and believe me,
I don’t participate if I don’t enjoy the activity…. I had
the maximum score. It was very funny. And the robot
was a good lad. (Male, 72)

I liked it a lot, lot, lot, lot, lot! The robotwas always say-
ing:’Excellent, excellent’. Thatmotivatedme. (Female,
84)

Yet they enjoyed the experience slightly less than they did
with a human coach, as indicated by their narratives:

I was a bit shy and anxious, right? Without knowing
what to say, or what to do… the movements I should
do. (Female, 89)

I found it funny [enjoyable]. But I almost can’t hear, so
I couldn’t understand most things that the robot said.
(Female, 91)

Similarly, when asked to share their narratives of whether
they found the exergames effective (i.e., utilitarian value
perceptions) for improving their physical condition, some
participants shared concerns:

Robot’s explanations were not enough! I was there
doing something that I didn’t know if it was right or
wrong. And if I really was… as the robot was saying
“Excellent”, but those are the words it has inside and
we cannot trust that very much. (Female, 81)

Let’s see… if the robot only does that exercise, that
isn’t much more than moving left and right, I think it’s
insufficient. So it shouldhavemore,more advantages…
(Female, 81)

6.4 Regressions

Table 3 contains an overview of the descriptive statistics and
correlations. To test H4 and H5 (Fig. 2) we estimate a sys-

tem of five linear equations (see Table 4 for an overview of
the dependent and independent variables in each equation),
using the seemingly unrelated regressions (SUR) procedure
in STATA. The SUR method is based on generalized least
squares and is more efficient than ordinary least squares
regression when the independent variables differ across a
system of equations, because it accounts for correlated errors
[78]. The significant Breusch–Pagan–Lagrange multiplier
test for error independence (χ2(10) � 28.306, p < .01) indi-
cates correlated errors in the five equations, and the R-square
for each individual equation is statistically significant at p
< .01 (see Table 5. Therefore, using SUR is appropriate [15,
23]. The first two equations have perceived warmth and per-
ceived competence as dependent variables and the type of
coach as the independent variable. These two equations con-
trol for the influence of the coach on social cognition. The
third equation includes hedonic value as the dependent vari-
able and perceived warmth and competence as independent
variables; the fourth equation features utilitarian value as the
dependent variable and perceivedwarmth and competence as
independent variables. These two equations test H4. Finally,
the fifth equation includes intention to use as the dependent
variable and hedonic and utilitarian value as the independent
variables, to test H5.

The unstandardized coefficients and their standard errors,
obtainedwith the SUR estimator (sureg command) in STATA
14.2, are in Table 5. The perceived warmth of the coach has
a positive, significant coefficient for hedonic value (.29; p
< .05), in support of H4a.i; its impact on utilitarian value does
not produce a significant coefficient though (.23; p > .05),
so we cannot confirm H4a.ii. The perceived competence of
the coach indicates a positive, significant coefficient for both
hedonic (.46; p < .01) and utilitarian (1.08; p < .01) value, in
support of both elements of H4b. Finally, hedonic value has
a positive, significant coefficient for intention to use (.52; p
< .01), as does utilitarian value (.22; p < .05). Therefore, we
find support for H5a and H5b.
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Table 4 Overview of Seemingly Unrelated Regressions (SUR) Equations

Equation Hypothesis Independent variable Dependent variable RMSE R2 χ2 p

(1) NA Coach (Human vs. Robot) Perceived warmth .61 .08 5.64 .02

(2) NA Coach (Human vs. Robot) Perceived competence .59 .08 6.21 .01

(3) H4.i Perceived warmth Hedonic value .47 .44 48.11 .00

Perceived competence

(4) H4.ii Perceived warmth Utilitarian value .96 .35 37.09 .00

Perceived competence

(5) H5 Hedonic value Intention to use .66 .39 36.16 .00

Utilitarian value

Sample size � 58; NA � not applicable

Table 5 Overview of Seemingly Unrelated Regressions (SUR) Results

(1) Perceived warmth (2) Perceived competence

Coefficient Standard error Coefficient Standard error

Intercept 4.83** .13 4.89** .12

Coach (Human vs. Robot) − .39* .16 − .39* .16

(3) Hedonic value (4) Utilitarian value

Coefficient Standard error Coefficient Standard error

Intercept 3.15** .51 − .20 1.04

Perceived warmth .29* .12 .23 .25

Perceived competence .46** .12 1.08** .26

(5) Intention to use

Coefficient Standard error

Intercept − .19 .91

Hedonic value .52** .16

Utilitarian value .22* .08

Sample size: 58; Breusch–Pagan–Lagrange: χ2(10) � 28.306, p < .01
Number in parentheses above each dependent variable refer to the equations in Table 4
∗p < .05; ∗ ∗ p < .01

7 Discussion

This research evaluates the application of robots (i.e., SARs)
in social contexts, formerly exclusively reserved for human
agents. Motivated by the importance of physical activity for
healthy aging, and the shortages of elderly care staff [54],
our aim is to examine if SARs can take a coaching role and
motivate elderly people to undertake physical activity, aswell
as potentially expand their social networks. In particular, we
test whether SARs, which are not inherently social entities
but are programmed to exhibit social behaviors, can give rise
to social perceptions in elderly people and affect them inways
similar to those induced by human agents [36]. With the idea
that SARs equipped with social capabilities are comparable
to human agents,we also seek to investigate their efficiency in
motivating elderly people to engage in a new kind of physical
activity (i.e., exergames), relative to the impact of human
coaches.

7.1 Automated Social Presence and Social Cognition

Our findings suggest that elderly people sense that they
are in the company of social entities when they interact
with SARs [72]. Our mixed-method empirical tests affirm
that they struggle to classify the robot as a “machine,”
because of its expressiveness, friendly voice, politeness,
and considerateness. In their narratives, we detect evidence
that they see the robot as a “metal box,” but due to the
robot’s social dexterity, they humanize the machine in their
imagination. This evidence implies that SARs potentially
could extend elderly people’s social networks and support
human caregivers in not just mechanical tasks but also tasks
of a social nature (e.g., motivational coaches, playing games,
conversational partners).

In these quasi-social interactions, in which elderly people
perceive SARs as social entities, they also tend to evalu-
ate SARs using the social cognition mechanisms they apply
to humans. Our experiments shed light on social percep-
tions of automated agents [60]. Elderly people activate their

123



International Journal of Social Robotics (2020) 12:867–882 879

warmth and competence judgments when interacting with
SARs. However, when we compare human and robot actors,
performing the same (coaching) task, we find that they eval-
uate humans as superior to the robot. We explain this slight
difference with qualitative data, which reveal that the human
coaches are better at responding to elderly persons’ individ-
ual needs. Even though they find Vizzy cute and funny, some
elderly participants complained that they could barely hear
what it was saying. Unlike Vizzy, for which the voice pace
and pitch remained the same, and the volume could not be
adjusted (i.e., it was already set at its maximum), human
coaches could adjust their voices to the needs of hearing-
impaired participants. This difference likely affected both
warmth and competence judgments.

7.2 Hedonic and Utilitarian Values

By conducting these experiments in a real-life context, we
could test whether elderly people enjoy and appreciate this
new type of gamified workout, depending on their coach-
ing partner (human vs. robot). We demonstrate that seniors’
hedonic and utilitarian value perceptions of exergames are
driven by the social cognition they develop of their coaches.
Elderly participants both enjoy and find the exergame more
effective if they are instructed and motivated by a human,
rather than a robot. The reason for this difference might be
the slightly higher levels of anxiety that we find expressed in
the narratives, due to interacting with the robot. For many of
the elderly participants, this experiencewas the first time they
had seen or engaged with an automated agent. Some noted
their nervousnesswhen the robot first approached them (“Ini-
tially, Iwasn’t very relaxed, but I endedupbeingmore relaxed
as we continued,” Male, 86). Some seniors also lacked the
information they needed to enjoy playing exergames (“I did
not quite understand the purpose of the game, because I could
not hear well what the robot was saying,” Female, 87). These
quotes provide insights into the participants’ psychological
states and physical (e.g., hearing) impairments, which hin-
der their full enjoyment of the exergames. These important
inputs for technology developers and service designers can
help them design robotic platforms to ensure the best expe-
rience for senior users.

Our analysis also demonstrates that perceived competence
has a positive impact on both hedonic and utilitarian value
perceptions. The effect of competence on hedonic value is
even stronger than that of perceived warmth. We explain the
effect by taking the exercise context into account. That is,
the activity the participantswere evaluating involvedphysical
exercise, so they were particularly interested in the reliability
and ability of the coach to react flexibly. Thus, it makes sense
that competence judgments exhibit primacy over warmth
judgments. Furthermore, for those with the robotic coach,
the participants were being exposed to a new and unfamiliar

agent,which increased their need to trust in its abilities before
being able to enjoy the activity.We argue that human coaches
might seem to perform better because they are able, if neces-
sary, to demonstrate themovement. That is, some seniors had
difficulty understanding the requirements of the exergame.
In such cases, the robot could only repeat the instructions,
in the hope that the participant would understand what was
expected; human coaches could augment their voice instruc-
tionswith amovement demonstration,which likely improved
the evaluations of their competence. Despite the robots’
affective capabilities (e.g., kindness, care, emotional sen-
sitivity), which enhance warmth judgments, their lack of
competence might hinder the adoption of robotic coaches.

7.3 Contributions and Implications

With these findings, we primarily contribute to the theory
of social presence and explain cognitive mechanisms acti-
vated by interacting with artificial minds [8]. We advance
current knowledge on the ways SARs, through their social
resemblance to humans, allow people interacting with them
to feel as if they are in a presence of social entities [72].
In turn, by demonstrating that elderly people sense a social
presence when interacting with SARs and develop social
perceptions about them,we offer insights for further develop-
ments and designs of social robotics and systems. Including
robots in people’s social networks, as exercise coaches, could
improve both physical and psychosocial well-being. How-
ever, in contexts that require high social engagement, humans
still perform better than SARs. Social robots need contin-
ued improvements, in terms of their empathy, flexibility, and
spontaneity, to adjust their behavior to the heterogeneity of
human needs.

Still, SARs can be used to enhance elderly people’s expe-
rience and assist human caregivers in certain tasks. Assisted
living facility managers should make well-considered deci-
sions about which tasks to automate and which to leave in
human hands. Reflecting on our coaching tasks, SARs can
be used to motivate seniors to be more active, but human
caregivers should make sure the elderly users perform the
exercises correctly and assist them if necessary.

7.4 Limitations and Further Research

This study provides an interesting and necessary perspective
on ways in which SARs can support human caregivers in
motivating elderly people to engage in physical activity, but
it also contains some limitations. First, none of the elderly
care institutions we collaborated with houses as many phys-
ically active clients as would be ideal for our experiments.
Therefore, we conducted the study across several locations.
Second, the participating care institutions, though located in
the same region in the same country, feature heterogeneous
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elderly populations andvarying conditions for thefield exper-
iments. Additional research might find other ways to expand
the sample but also tominimize the differences across elderly
populations and care institutions.

Third, the short-term nature of the study (i.e., single
session) introduces a novelty effect, for both the robot and
exergames. To rule out the effect of novelty, a longitudinal
study might measure the same constructs in different phases
of the experiment. Researchers then could track not only
behavioral intentions but also actual behavior (i.e., whether
elderly people keep playing the exergames in the future).
Fourth, the robot’s speech abilities were controlled with a
WoZ method, which limits the spontaneity of dialog. Con-
tinued research could provide for more flexibility, moving
beyond preset utterances to allow for more natural social
interactions (e.g., typing responses that exactly address the
questions/statements raised by the elderly participants),
at least until we reach the point that the human granting
agency to the robot can be eliminated and the robot can
interact completely autonomously. Although the volume of
the robot’s speech was already at its maximum, it seemed
insufficient for some elderly participants. Robot developers
thus should find ways to enhance robots’ volume and
produce sounds on a range of frequencies that older adults
can hear more easily [56].

Fifth, in addition to speech, we controlled the robot’s
navigation and gaze, so our experiment does not involve
fully autonomous robot behavior. Efforts to endow the robot
with autonomous navigation, perception, speech, and deci-
sion making could reduce the degree of human intervention
needed to ensure appropriate functioning.However, this level
of autonomous behavior is rare and difficult to achieve, con-
sidering the currently limited capabilities of social robots
[12]. Sixth, another limitation is the robot’s inability tomimic
humans’ nonverbal communication, such as facial expres-
sions and gestures. It would be interesting to investigate
how robots endowed with nonverbal capabilities, in addi-
tion to verbal ones, affect users’ perceptions of their warmth
and competence. We expect that facial expressiveness (e.g.,
smile, eye contact) influences warmth judgments, and ges-
tures (e.g., use of the limbs to demonstrate the exercise)might
affect competence judgments.

Acknowledgements This project received funding from the Euro-
pean Unions Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie Grant Agreement No. 642116,
AHA project [CMUP-ERI/HCI/0046/2013], and Portuguese FCT
[SFRH/BD/133098/2017]. The information and views set out in this
study are those of the authors and do not necessarily reflect the official
opinion of the European Union. Neither the European Union institu-
tions and bodies nor any person acting on their behalf may be held
responsible for the usewhichmay bemade of the information contained
therein. The authors acknowledge the elderly care units of LATI—
Centro Comunitário du Bocage, Residência Sénior de Belverde, and
Cáritas Diocesana de Coimbra, including both Centro Rainha Santa

Isabel andCentro Social S. Pedro. The authors particularly thankRobert
Ciuchita, Andreia Cordeiro, Ana Luísa Jegundo, Ana Mendes, Flávia
Rodrigues, Carla Cortes, Gonçalo Martins, Hugo Simão, Luis Santos,
Plinio Moreno, Ricardo Nunes, Ricardo Ribeiro, and Rui Figueiredo.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Avelino J, Figueiredo R, Moreno P, Bernardino A (2016) On
the perceptual advantages of visual suppression mechanisms for
dynamic robot systems. Procedia Comput Sci 88:505–511

2. Bailenson JN, Blascovich J, Beall AC, Loomis JM (2001) Equi-
librium theory revisited: mutual gaze and personal space in
virtual environments. Presence: Teleoperators Virtual Environ
10(6):583–598

3. Bauman A, Merom D, Bull FC, Buchner DM, Fiatarone Singh
MA (2016)Updating the evidence for physical activity: Summative
reviews of the epidemiological evidence, prevalence, and interven-
tions to promote “active aging”. Gerontology 56(2):S268–S280

4. Bernard HR, Bernard HR (2012) Social research methods: quali-
tative and quantitative approaches. Sage, Thousand Oaks

5. BernsteinMS,MorabiaA, SloutskisD (1999)Definition and preva-
lence of sedentarism in an urban population. Am J Public Health
89(6):862–867

6. Biocca F, Harms C (2002) Defining and measuring social pres-
ence: contribution to the networked minds theory and measure.
Proc Presence 2002:7–36

7. Biocca F, Nowak K (2001) Plugging your body into the telecom-
munication system: mediated embodiment, media interfaces, and
social virtual environments. In: Lin C, Atkin D (eds) Communi-
cation technology and society. Hampton Press, Waverly Hill, pp
407–447

8. Biocca F, Harms C, Burgoon JK (2003) Toward a more robust the-
ory and measure of social presence: review and suggested criteria.
Presence: Teleoperators Virtual Environ 12(5):456–480

9. Boyle EA, Hainey T, Connolly TM, Gray G, Earp J, Ott M, Lim
T, Ninaus M, Ribeiro C, Pereira J (2016) An update to the sys-
tematic literature review of empirical evidence of the impacts and
outcomes of computer games and serious games. Comput Educ
94(Supplement C):178–192

10. Breazeal C (2003) Toward sociable robots. Robot Auton Syst
42(3–4):167–175

11. Breazeal C (2004) Social interactions in hri: the robot view. IEEE
Trans Syst Man Cybern C (Appl Rev) 34(2):181–186

12. Broadbent E (2017) Interactions with robots: the truths we reveal
about ourselves. Annu Rev Psychol 68:627–652

13. Broekens J, Heerink M, Rosendal H et al (2009) Assistive social
robots in elderly care: a review. Gerontechnology 8(2):94–103
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