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Abstract
The goal of this work is to describe how robots interact with complex city environments, and to identify themain characteristics
of an emerging field that we call Robot–City Interaction (RCI). Given the central role recently gained by modern cities as
use cases for the deployment of advanced technologies, and the advancements achieved in the robotics field in recent years,
we assume that there is an increasing interest both in integrating robots in urban ecosystems, and in studying how they can
interact and benefit from each others. Therefore, our challenge becomes to verify the emergence of such area, to assess its
current state and to identify the main characteristics, core themes and research challenges associated with it. This is achieved
by reviewing a preliminary body of work contributing to this area, which we classify and analyze according to an analytical
framework including a set of key dimensions for the area of RCI. Such review not only serves as a preliminary state-of-the-art
in the area, but also allows us to identify the main characteristics of RCI and its research landscape.

Keywords Robots · City ecosystems · Robot–City interaction · Smart cities

1 Introduction

Modern cities have become a key element of the strategies
for future investments not only for the important role they
play in the socio-economic growth worldwide, but also for
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the increasing difficulty in being environmentally sustain-
able [31,71]. As a consequence, a considerable number of
efforts have been put by both the academic and industrial
research communities into exploiting techniques from awide
rangeof domains such as ubiquitous computing, data analysis
and knowledge engineering, with the aim of enabling cities to
be more efficient, productive and competitive [4,9,24,52,54].

Robotics has also reached increased maturity in the last
decades, as demonstrated by the amount of efficient open
source hardware and software components, the availabil-
ity of reliable techniques for basic perception, manipulation
and navigation tasks, as well as the increasing number
of cost-accessible robotic platforms [82]. Thanks to these
advancements, robots and autonomous systems have been
identified as one of the most important modern disruptive
technologies [66], i.e. technologies enabling massive eco-
nomic transformations in the near future, and policy makers
worldwide are nowadays investing to support the devel-
opment of urban infrastructures able to integrate robotic
technologies, therefore allowing such transformations [97].

As a consequence, national and local governments have
started experimenting the integration of robots in urban
spaces in the last years, with the goal of showing how such
urban transformations facilitate the citizens’ everyday life
and demonstrate good city governance. If we take the exam-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-019-00534-x&domain=pdf
http://orcid.org/0000-0001-7116-9338


300 International Journal of Social Robotics (2020) 12:299–324

(a) Starship robots deliv-
ering groceries in the cen-
tre of Milton Keynes.

(b) Drones services for
the Flying High Chal-

lenge.

Fig. 1 Civic and commercial uses of robots in UK cities

ple of the UK, several initiatives have been launched to
support cities willing to develop robot and infrastructures to
transform their services, e.g. the Starship delivery services1

or the Nesta Flying Challenge2 (cfr. Fig. 1). Other exam-
ples include cities deploying autonomous cars to enhance
urban mobility,3 drone deliveries employed for commercial
or first-aid emergency scenarios,4 and social robots operat-
ing in public and commercial spaces inmany guises (waiters,
policemen, receptionists5).

Considering this, the main hypothesis of our work is that
the study of how robots can integrate and co-operate with city
environments is emerging as a new area of research, which
we callRobot–City Interaction (RCI). Our challenge there-
fore becomes to assess the current state of this area, and to
identify the main characteristics, the core themes and the
research challenges associated with it. The methodology we
use to achieve this consists in identifying a set of key dimen-
sions for RCI and using them to review a body of relevant
work, which can serve not only as a preliminary state-of-the-
art for further reference, but also to give a more complete
view on what is RCI and which is its research landscape.

The contributions of our paper can therefore be summa-
rized as follows:

• we design a thorough methodology to identify RCI as an
area of research;

• we define a set of dimensions for analyzing works in the
RCI area;

• we provide a review of the state of the art in RCI;
• we give a description of RCI and its main characteristics,
for further reference;

• we present the key research challenges, main areas and
research landscape in RCI.

1 https://www.starship.xyz.
2 http://flyinghighchallenge.org/.
3 https://avsincities.bloomberg.org/.
4 https://www.bbc.co.uk/news/technology-44068637.
5 https://tinyurl.com/ycmehvgr.

In the remainder of the paper, we present the research
methodology that was adopted (Sect. 2), followed by the ana-
lytical framework used to review the state-of-the-art (Sect. 3),
which is then surveyed in Sect. 4. Section 5 summarizes our
findings, draws the main characteristics and challenges of
RCI, and describes its research landscape. Conclusions and
general remarks are presented in Sect. 6.

2 ResearchMethodology

Based on the methodology for literature search described
in [105], our survey consists in defining first the core termi-
nology of ourwork, aswell as the search and selection criteria
to be used (rest of this section), then presenting the analytical
framework (Sect. 3) through which the literature can be ana-
lyzed and synthethized (Sect. 4), and finally describing the
area of Robot–City Interaction with its characteristics and its
research landscape (Sect. 5).

2.1 Core Terminology

Here, themain terminology of our work (the terms city, robot
and interaction) is explained based on the relevant literature.

Cities and modern cities We define a city as “a reason-
ably large and permanent concentration of people within a
limited territory [...] concentrating commercial, administra-
tive, industrial, cultural and other functions” [58]. In such
territory, or urban space, three factors are essential:

• a large, culturally heterogeneous population, which is
densely settled and bound in a municipality [36];

• the relationships held among the population, which
change from being primary (familiar and neighborhood-
related) contacts to being secondary/tertiary (impersonal,
formal and bureaucratic contacts) [111];

• the facilities established by or for the population, i.e.
“the fixed site, the durable shelter, the permanent facili-
ties for assembly, interchange and storage; the essential
social means are the social division of labor, which serves
not merely the economic life but the cultural processes.
[...] The city in its complete sense, then, is a geographic
plexus, an economic organization, an institutional pro-
cess, a theatre of social action, and an aesthetic symbol
of collective unity.” [73].

In this definitionwe also include the smart cities, a new urban
innovation paradigm which has emerged in the last years
driven by the motivation that technology advancement could
enable solutions tomake citiesmore efficient and sustainable.
Smart cities are cities that use networked infrastructures to
improve economic and political efficiency and enable social,
cultural and urban development [43], in which the kind of
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technologies used, the scenarios in which they can be applied
and the high diversity and distribution of data sources is the
main novelty [21].

Autonomous robots A generic definition of robots is
employed in our work, i.e. any active, artificial, physical
agent whose environment is the physical world, whichmakes
decisions on its own, guided by the feedback it gets from
its sensing apparatuses [84]. We aim at investigating which
robots could live in, engage with and benefit from a city
ecosystem. In other words, we consider a robot as an agent
with sensing capabilities, some levels of autonomy, and
operating in a (surrounding) environment.

Interactions In general, interaction can be defined as “an
occasion when two or more people or things communi-
cate with or react to each other”,6 therefore stressing the
importance of a reciprocal effect between its participants.
In computer science, this reciprocal effect is mostly repre-
sented as information flowing from an artefact to a user and
vice versa, e.g. Human–Computer Interaction and Human–
Robot Interaction7 [50]. Based on this, we define interaction
as the reciprocal influence that robots and city systems have
upon each other or, in other words, the set of communica-
tions, connections, actions that exist in scenarios where both
robots and the city infrastructures are involved.

2.2 Search and Selection Criteria

First, the literature was searched according to dates, area and
keyword criteria described in the following.

Apart from a few notable exceptions that were included
in the analysis, there is little work related to robots operating
in modern cities before the year 2000. Hence, the search was
restricted to the time-span between 2000 and 2018.

We then explored areas that we considered could be treat-
ing one or more aspects of Robot–City Interaction. These
can be roughly divided in three big (but not exclusive)
areas, namely Robotics, Information Communication Tech-
nology andComputer Science. In thefirst area,we considered
works on social robotics, cognitive robotics, aerial robotics,
Human–Robot Interaction andCloudRobotics. In the second
area, we found works oriented towards problems of ubiq-
uitous computing, sensors and sensor networks, internet of
things, computer vision or ambient intelligence. In the last
group, we considered work oriented to data management,
artificial intelligence, data mining, machine learning, cogni-
tion and knowledge engineering.

We searched for papers combining words such as “robots/
autonomous systems/autonomous (mobile) agents” with
words such as “city/cities”, “smart city/smart cities”, but

6 http://dictionary.cambridge.org/dictionary/english/interaction.
7 See also Human–Machine Interaction and Animal–Computer Inter-
action.

also any sub-system of a city including, for instance,
“road/crowd”, “urban”, “pedestrian/citizen”, “water/pipes”
etc.

Works were extracted both using Google Scholar and
directly scanning journals and special issues (Intelligent
Assistive Robots, International Journal of Robotic Research,
International Journal of Social Robotics, Sensor Journal, to
name a few) and conferences/workshops proceedings (e.g.
robotics conferences as IROS, ICRA, AAMAS, RSS, HRI,
and ubiquitous computing conferences as UBICOMP, ISC,
SMARTGREENS) related to the areas described above. Both
forward and backward search was used to look for fur-
ther candidates, along with the scan of the bibliographies
and related work of the already selected works. Using this
methodology, we were guaranteed to analyze a sufficiently
large spectrum of work to ground our study.

Finally, the relevance of the works with respect to RCI
was assessed by four judges, i.e. a work was considered if at
least two of the following conditions applied:

(1) Urban robots the work involves robots operating with
some levels of autonomy in a urban space—a social
space including a population involved in commercial,
administrative, industrial or cultural activities (as per
definition of Sect. 2.1);

(2) Smart infrastructures the work focuses on the techno-
logical integration of robots in a city ecosystem, and
more particularly there is an aspect of data exchange
between robots and the city infrastructures;

(3) Open-ended interactions the work studies robots oper-
ating in a highly-dynamic context involving interactions
of different kinds, and where proactivity in decision-
making is necessary to deal with an unforeseeable
number of situations.

This guaranteed to clearly limit our selection to cases
relevant to RCI, e.g. robots interacting with the crowds or
operating in crowded environments, service robots in smart
homes/hospitals/public spaces exchanging information with
the city system, security/maintenance robots or driverless
cars deployed by centralised infrastructures, while exclud-
ing hybrid cases such as intelligent environments, surgical
robots, industrial manipulators and robot assisting elderly in
their homes (unless an interaction with a city systemwas ver-
ified).Moreover,multiple references to the same project have
been considered only if presenting a substantial difference,
and discarded in the opposite case.

The final selection, available in Table 3 of Appendix at the
end of this work, consists of 67 papers providing a prelimi-
nary state-of-the-art in the area of Robot–City Interaction.
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Table 1 Summary of the RCI analytical framework

Agent context
Robot type Non-moving Humanoid Wheeled Aerial Marine
Robot actions Navigation Perception Management Manipulation Verbal Communication Acquisition
Level of autonomy Low Medium High

Urban context
City actuators Land Citizens Government Technology
City domains Living Economy Governance Mobility Environment People

Information context
Data volume Megabytes Gigabytes Terabytes Pentabytes
Data velocity Batch Periodic Near-time Real-time
Data variety Unstructured Semi-structured Structured
Data Openness Restricted Open

Interaction context
Robot-Citizens Intimate Personal Social Public
Robot-Land Exhibit Passage Special use Secure Backstage
Robot-Government Yes No
Robot-Data Acquisition Processing Dissemination
Robot-Robot Heterogeneous team Homogeneous team Single-robot team

3 The RCI Analytical Framework

The analytical framework takes inspiration from semiotics
theories aiming at studying how interactions are affected by
the social and physical spaces in which they happen [92].
Main insights behind these approaches are the idea that study-
ing an interaction involvesmore than the players that take part
into it (e.g. the nature of the interaction itself or the scope
of it), and that the physical space is a key element to inter-
pret interactions. This presents an interesting overlap with
the main concepts of RCI, as we have defined in Sect. 2.1.

Inspired by such theories, we identified the key aspects
of works to be analysed (we call these dimensions) in light
of established background literature, and then grouped them
thematically according to four contexts. Such contexts, pre-
sented below, aim at describing not only the three players
of RCI (the robots, the city as a complex ecosystem and the
information they exchange), but also the nature of the inter-
action that is happening between them:

1. Agent context Dimensions describing characteristics
specific to the autonomous agents acting in and with
a city, e.g. the type of robots or their capabilities.

2. Urban context Dimensions characterizing the city as a
set of connected infrastructures providing services to
the citizens.

3. Information context Dimensions describing the infor-
mation exchanged between the autonomous agents and
the city, i.e. the nature of the communicated data.

4. Interaction context Dimensions characterizing the inter-
actions between autonomous agents and single city
systems, e.g. the citizens or the governance.

A summary of this framework is presented in Table 1.

3.1 Agent Context

As previously mentioned, the first analysis concerns aspects
describing the autonomous agents that take part into in RCI
scenarios. We consider here 3 dimensions: robot type, robot
actions, level of autonomy.

Robot type This dimension aims at analyzing the type of
robot that is employed in a Robot–City Interaction scenario.
A reference work on the classification of robot types is [91],
which categorizes robots as:

• ground, non-moving robots platformswithmovable com-
ponents such as the Baxter platforms;8

• ground, moving, human-like robots legged, humanoid or
human-like robots such as Pepper,9 ASI-MO,10 or the
Boston Dynamics suites;11

• ground, moving, wheeled robots robots provided with
wheels, such as the Starship deliverers, the Robotnik

8 https://www.baxter.com/inside-baxter/about/overview/corporate.
page.
9 https://www.ald.softbankrobotics.com/en/robots/pepper/.
10 http://asimo.honda.com/.
11 http://www.bostondynamics.com/index.html.
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Summit suites12 or Komodo,13 which are not necessarily
human-like;

• aerial robots drones provided with rotors, such as the
Erle Robotics’s copters14 or the Parrot drones;15

• marine robots vessels used for underwater activities such
as the Searobotics suite.16

Robot actions Here, we focus on which actions are mostly
performed by robots in Robot–City Interaction scenarios.We
consider high-level actions, re-adapted based on the work
of [98]:

• navigation the fundamental act of moving from point A
to point B;

• perception the act of perceiving and understanding the
environment through sensing and interpreting sensory
data;

• management the act of coordinating and managing the
actions of humans and robots, acting independently or in
groups;

• manipulation the act of interacting with the environment
through body-part movements, hence including body-
part movement;

• verbal communication the act of interacting with the
social world using the past experience, exhibiting social
competencies;

• acquisition the act of interacting with the physical world
acquiring new competencies.17

Levels of autonomy This dimension aims at analyzing
which degree of autonomy the agents taking part to a
Robot–City Interaction scenario exhibit. Defining autonomy
represents a complex problem itself, and many taxonomies
have been presented in the literature [6,35,93]. We chose
therefore to adopt a simplified scale (from low to high) to
describe the autonomy of the agents operating in RCI sce-
narios, and leave as future work the task of providing a more
complete categorization. We invite the reader to refer to the
cited works as further reference for the terminology. The
scale ranges as follows:

• low autonomy includes the lowest levels of robot auton-
omy, e.g. manual, tele-operation and assisted tele-
operation, in which the aspects of a task to achieve (e.g.

12 https://www.robotnik.eu/.
13 http://www.robotican.net/komodo.
14 http://erlerobotics.com/.
15 https://www.parrot.com/uk#drones-fpv.
16 http://www.searobotics.com/.
17 Originally considered as social interaction by [98], we believe that
“verbal communication” and “acquisition” should be considered sepa-
rately due to the variety and complexity of city scenarios.

sensing, planning, acting) are fully or partly performed
by a human;

• medium autonomy includes the range of batch process-
ing, decision support and shared control (with or without
robot initiative). Generally speaking, the robot performs
its tasks autonomously, and the support of an external
agent goes from narrowing the set of tasks, to determin-
ing the goals and to monitoring the execution;

• high autonomy includes the highest levels of robot auton-
omy, e.g. executive control, supervisory control and full
autonomy, where sensing, planning and acting are per-
formed by the robot under or without external control.

3.2 Urban Context

The second context includes aspects describing the city as a
complex system of infrastructures.

City actuators The city actuators are the components
involved in a city system, but not necessarily included in its
actual implementation [19]. This dimension aims at analyz-
ing which actuators of the city are mostly involved in (or are
more benefitting from) a robot–city interaction. We consider
the following actuators:

• land the geographical area where robots are operating;
• citizens the people involved, operatingor benefitting from
a robot–city interaction;

• government the public administration appointed by the
citizens, which will benefit from the interaction e.g.
improving its services;

• technologies the infrastructure and services enabling the
robot–city interaction.

City domains In order to analyze which city components
(e.g. water and energy systems, roads and transportation
networks etc.) are involved in a robot–city interaction, we
categorize these according to a set of city domains, that are
well-established in the smart city literature [32]:

• economy activities promoting to the innovation, entrepre-
neurship, economic growth and productivity to enhance
competitiveness;

• people activities promoting the citizens’ education, plu-
rality, flexibility, creativity, cosmopolitanism, and par-
ticipation in public life to enhance the social and human
capital;

• governance activities enhancing the citizens’ participa-
tion, public and social services and transparent gover-
nance;

• mobility activities to improve the management systems
for urban traffic, local and international accessibility, and
safety to enhance the transports infrastructure;
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• environment activities to improve energy efficiency, sus-
tainable resource management and environmental pro-
tection to protect natural resources;

• living activities to enhance the citizens’ quality of life
through cultural facilities, health conditions, individual
safety, housing quality.

3.3 Information Context

The third context concerns the description of the type of infor-
mation that is exchanged between robots and cities when
interacting. Since the goal of the study is to analyze how
autonomous agents are deployed in cities that rely on mod-
ern technologies, we describe such information in terms of
data exchanged during a robot–city interaction. Due to the
large information needs of robotics systems,we consider here
information produced by the robots’ internal sensors as well
as information produced by external sensors, provided that
these are exchanged as part as the city infrastructure. The
dimensions here considered are selected based on the four
data dimensions typically used in Data Science [12].

Data volume The volume of data refers to its magnitude.
This dimension aims at analyzing the quantity of data gener-
ated, stored or simply involved during an interaction between
robots and cities. We consider:

• megabytes e.g. tables and files;
• gigabytes e.g. transactions;
• terabytes e.g. datasets and records;
• pentabytes e.g. large real-time data collections.

Data variety Variety is referring to the structural hetero-
geneity of the data. This dimension aims at analyzing the type
of data mostly used, namely how diverse is the information
exchanged. Such diversity is categorized as:

• unstructured data such as texts, images or audios;
• semi-structured data unstructured data annotated using
markup languages (e.g. XML);

• structured data i.e. as tabular data, XML files, JSON
streams, or relational databases;

Data velocity The velocity of data refers to the rate at
which data is generated, changed, processed and exchanged.
We study here if robot–city interaction works mostly use:

• batch communication of data;
• periodic communication of data;
• real-time communication of data.

Data openness In the context of RCI, the openness of data
is a crucial aspect and might be preferred to data veracity,
which is often used to determine the data trustworthiness.

With this dimension, we are interested in understanding
the data sharing aspect, i.e. whether knowledge is privately
exploited or rather (fully or partly) shared. We analyze the
RCI scenarios based on two possible values:

• restricted if they only make use of privately accessible
data;

• open if they include some available external information
such as openly accessible data.

3.4 Interaction Context

The last context concerns those aspects which describe the
interaction between robots and the single components of a
city, namely the land, the citizens, the government and the
technologies.

Robot–citizens interactionHere,we aimat describing how
the robots interact with the citizens. For this, we can use
Hall’s proxemic spaces [37], which allow us to identify the
interpersonal distance at which such interactions happen.
Each space is then combined with the operations that can
be performed in that space, as proposed by [47]:

• intimate space (0 to 0.45m ca.) the closest space to the
self. Allowed actions span from approaching to touching.

• personal space (0.45 to 1.2m ca.) generally reserved
for interactions with friends and family. Allowed actions
include following, approaching and touching.

• social space (1.2 to 3.7m ca.) for interactions among
acquaintances. Allowed actions include passing, follow-
ing and approaching.

• public space (from 3.7m): for public speaking inter-
actions. Allowed actions range from none (robot and
citizens not interacting at all), to avoiding and follow-
ing.

Robot–land interaction We look into analyzing which is
the type of physical spaces in which a robot–city interaction
happens. We consider two basic types of spaces as defined
by [34], namely frontstage (open to the public) and back-
stage spaces (closed to the public). The first ones are then
additionally sub-divided based on the type of activities that
can be performed, resulting in the following classification:

• exhibit spaces frontstage places that are created to be
looked at and passed through without altering them (e.g.
public squares);

• passage spaces frontstage places designed for the move-
ment and passage from a space to another (e.g. streets or
pathways);

• special use spaces frontstage places reserved for a par-
ticular activity (e.g. restaurants, smoking areas);
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• secure spaces public and controlled areas, such as a hos-
pital, a school, an airport;

• backstages private spaces that only allowed people with
a key/pass/password can access (e.g. a house).

Robot–government interaction This dimension aims at
analyzing the level of engagement of the city administration,
e.g. if robots are deployed to demonstrate good city gover-
nance, if they cooperate with the city public services through
data exchange/task allocation, etc. We consider here:

• yes if robots are appointed by the government or its ser-
vices, or are contributing to improving them;

• no in the opposite case.

Robot–data interaction This dimension aims at analyzing
how robots deal with data from the city, which actions they
can perform, how and if they can manage the heterogeneity
of datasets, etc. Common patterns on the activities that can
be performed on data in a urban context can be found in the
literature [18,96]:

• data acquisition all the activities for collecting, checking
the quality, filtering and describing new data.

• data processing activities to process,manipulate and ana-
lyze the collected data, with the aim of generating new
information supporting some data-related tasks;

• data dissemination activities targeted to disseminate,
deliver and share the processed information to external
systems and end-users.

Robot–robot interaction This dimension describes the
interaction that robots can have with other robots. In partic-
ular, we aim at exploring at which level the robot–city inter-
actions involve team cooperation (if any), defined by [114]
as:

• heterogeneous team if a team is composed by different
types of robots;

• homogeneous team if a team involves the same type of
robots;

• single-robot team if only one robot is considered (there-
fore there is no robot–robot interaction).

Given the described framework, the following section
summarizes the selected literature according to each pre-
sented dimension.

4 Literature Synthesis

In this section, we summarize the selected works to provide
an initial state-of-the art in the area of Robot–City Interaction

and to identify the current gaps of the area. After providing
a synthesis based on the four contexts defined in Sect. 3,
we give some conclusions based on the RCI areas that were
identified during the process. As previously mentioned, all
generated data (selected papers and dimensions identified for
each of them) can be examined in Table 3 of Appendix at the
end of this work.

4.1 Synthesis by Context

The RCI dimensions are discussed in this Section from the
perspective of the four analytical contexts (i.e. the agent,
urban, information and interaction context).

4.1.1 Agent Context

In terms of the type of robots employed in RCI works, Fig. 2
shows that wheeled or humanoid robots are mostly involved.

Wheeled non-humanoid platforms are more common, as
these are often built ad-hoc, hence cheaper and more cus-
tomizable; as for humanoid/legged platforms, these tend
to be more specific to group–robot interaction scenar-

Non-moving 1

27Humanoid

33Wheeled

6Aerial

Marine 2

0 25 50

Fig. 2 Most common types of robots in RCI

Navigation

Perception

Management

Manipulation

Verbal Communication

Acquisition

Fig. 3 Robot actions (the nodes) and how frequently they co-occur (the
edges)
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ios [30,33,55,64]. This is likely due to the presence of
the citizens, which might naturally be more inclined to
share the urban space with human-friendly presences. Aerial
platforms—employed both as single units [16,26,28,76] and
in combination with other platforms [60], are less common,
likely due to the rather recent emergence of drones as reliable
platforms, as well as to the regulations currently restricting
their usage in public spaces.

The ability of robots to perform different actions is ana-
lyzed in Fig. 3 using the network partitioning technique,
which allows to analyze the importance of categories in pairs
(i.e. how often they occur together). In the specific, robot
actions are represented as nodes varying in size depending
on their frequency, while the size of the edges indicates a
robot’s ability to perform two actions (i.e. the source and tar-
get of the edge)—for example, a robot that can perceive and
navigate.

Along with the current research trends, navigation and
perception are shown to be prominent in RCI, too. The
strong co-occurrence between them mostly derives from
the fact that perception is naturally required to navigate,
which is a fundamental requirement for most of the applica-
tions. Indeed, many of the selected works focus on advanced
navigation algorithms combined with state-of-the-art sen-
sor technologies [29,38,56,57,62,90].Verbal communication
and acquisition, which are medium-sized in the figure, are
also somewhat common: This happens mostly in contexts
where robots are required to interact with the citizens to
achieve their goals, as in [30,39,45,53,69,87]. The ability of
management is mostly employed in combination with per-
ception and navigation—typically scenarios involving more
than one robot, e.g. such as monitoring spaces for security or
traffic management purposes [5,40,51,60,61,110,112].

Figure 4 shows the robot autonomy level in the analyzed
works. While a rather equal distribution can be observed,
the literature reveals that the level of autonomy very much
depends on the application domain. Robots with medium
to high-level autonomy are mostly required in outdoor sce-

Low (22)

33.3%

Medium (23) 33.4%

High (22)

33.3%

Fig. 4 Autonomy of robots in RCI scenarios. Values of this category
are exclusive

narios where the human presence is not necessary, such
as driverless cars [3,25,40,51,61,110,112] and infrastructure
maintenance [17,41,59,67,76,86,89]; on the contrary, a low
to medium level of autonomy is observed when citizens are
involved, both through public engagement [13,22,30,49,53,
87,88,109] and personal assistance [10,39,45,69,83].

4.1.2 Urban Context

We summarize here the urban dimensions considered in
Sect. 3.2, i.e. the city actuators and the city domains that
mostly take part to the robot–city interactions.

In Fig. 5, we use network partitioning to analyze which
city actuators (i.e. components) are mostly involved in a
robot–city interaction. Nodes are sized according to how
often an actuator was taking part to an interaction—be it
a target, promotor or a mean through which the interaction
happened; edges areweighted according to howoften the two
actuators have been observed together. We observe that tech-
nologies, intended as the ICT infrastructures employed by a
city to better manage its own resources, are largely involved,
as demonstrated by their node size and by the strong (thicker)
connections they have with government, land and citizens.
Interestingly, a large role is also played by the government,
showing that many of the scenarios in RCI are intended to
improve the services offered by the city. Citizens and land
tend to be less involved in RCI, as the weaker connections
with the other city actuators demonstrate.

Similarly, Fig. 6 presents the city domains in which robot–
city interactions mostly take place. Governance has a central
role here, combined with either the people’s well-being, the
environmental infrastructure or the mobility services. This is
also congruent with increasing efforts that governments and
municipalities are putting into technological advancements,
see initiatives such as the smart cities. As for the domain of
living (intended as people’s well-being), few records of an
interaction are reported. This shows that, despite the advance-
ments of areas such as the Internet of Things, Ambient
Intelligence or Ambient Assisted Living, scenarios in which

Land

Citizens

Government

Technology

Fig. 5 The actuators of an interaction in RCI scenarios (nodes), and
how often two actuators interact (edges)

123



International Journal of Social Robotics (2020) 12:299–324 307

Living

Economy

Governance

Mobility

Environment

People

Fig. 6 Domains of a city that are mostly involved in RCI scenarios: a
central role is observed for governance

smart homes interact with city administrations seems yet to
be realized.

4.1.3 Information Context

The dimensions of Sect. 3.3 analyze the nature of the data
exchanged in RCI. Note that categories here are not exclu-
sive, and the robots’ own sensor data are considered only if
exchanged within the city infrastructure.

Figure 7 shows that RCI scenarios involve low quanti-
ties of data, mostly MB and GB (indeed, we reported no
cases of TB or PB of data exchanged). This represents a
considerable difference w.r.t. sensor networks, big data and
smart cities scenarios, in which data infrastructures manage
tera- and petabyte-sized datasets [54]. With that said, such
infrastructures often have difficulties in managing data at
high rates [115], while the data exchange in RCI does hap-
pen at a fast rate, as demonstrated by the large percentage of
systems exchanging data in real-time (cfr. Fig. 8).

Figure 9 shows that unstructured and semi-structured data
are exchanged in the majority of RCI scenarios (vs. few
cases using structured data, e.g. [22,40,65,90,110]). This

45MB

26GB

0 20 40 60

Fig. 7 Volumes of data exchanged in RCI

26Batch

53Real-time

0 20 40 60

Fig. 8 Velocity at which data are exchanged in RCI

63Unstructured

41Semi-structured

Structured 12

0 20 40 60 80

Fig. 9 How diverse are data exchanged in RCI

59Restricted

7Open

0 20 40 60 80

Fig. 10 Usage of open (public) and restricted (private) data in RCI
scenarios

reveals that providing a more semantic representation of
the data exchanged is still of little emphasis in RCI, as
works tend to focus on building ad-hoc cyber-physical sys-
tems [5,10,26,83], where robots are often seen as mobile
sensors rather than knowledge producers [60,62,79,81]. This
also conforms with the fact that robotics lacks of estab-
lished standards and best practices for data representation and
exchange, while these have been proven to be fundamental
in promoting interoperability in applications involving het-
erogeneous systems (e.g. the Internet-of-Things [74]).

Finally, Fig. 10 shows that, besides the ongoing efforts of
openly sharing knowledge from different sources, very few
works in RCI [5,17] have indeed explored the potential of
open data to solve their problems.

4.1.4 Interaction Context

Here, we aim at understanding how and how much robots
interact of the city ecosystem in terms of its single compo-
nents (i.e. citizens, land, government, technologies).

From the perspective of the relationships between citizens
and robots, Fig. 11 reveals that a majority of interactions
happen in public spaces, typically in works tackling plan-
ning and navigation issues [3,25,40,41,51,61,86,110,112].
In this sense, citizens are mostly seen as variables of a
highly dynamic environment, which have to be considered
equally to other obstacles. With that said, closer interac-
tions of a social or personal nature are also common, namely
in scenarios involving citizens for private or public assis-
tance [10,13,30,49,53,83,87,88,109].

Figure 12 show how robots interact with their surrounding
geographical space (the land). Expectedly, backstage spaces
are less common in RCI scenarios, followed by secure spaces
and special spaces such as hospitals [39,103], construction
sites [76,86,89] and underground city infrastructures [48,75].
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Publicly available passage and exhibit spaces are overall
more common, specifically in outdoor scenarios.

Figure 13 reports that fewworks have some formof robot–
government interaction, typically in cases in which robots
are employed by the public administration as a support for
security or maintenance [16,26–28,79,81,107].

Figure 14 shows that robots mainly acquire and process
data from the city, while dissemination (being more time-
consuming) is less common [16,17,79,81,107], and mostly
employed when teams of robots are involved.

Finally, Fig. 15 shows how a large amount of RCI works
employ robots as single units. This is mostly due to the task-
allocation difficulties arising when integrating several robots
in a large-scale scenario. Indeed, teams of robots seems to
be used in more controlled contexts, such as road navigation,
city infrastructure maintenance or city security.

Intimate 1

12Personal

25Social

43Public

0 25 50

Fig. 11 Types of interaction between robots and citizens

32Exhibit

29Passage

20Special use

13Secure

Backstage 8

0 25 50

Fig. 12 Spatial nature of the robot–city interaction in the observed
works

Yes (18)

26.9%

No (49)

73.1%

Fig. 13 Interaction between robots and government. Values of this cat-
egory are exclusive

63Acquisition

44Processing

Dissemination 10

0 25 50 75

Fig. 14 Actions performed on city data by robots

Heterogeneous team 6

Homogeneous team 8

54Single robot

0 25 50 75

Fig. 15 How robots interact between each other in urban scenarios

4.2 Synthesis by RCI Area

One of the main considerations to be drawn from the previ-
ous section is that a series of patterns have emerged during
the analysis, which allow us to group the reviewed papers
according to the aspects and characteristics they share. We
grouped the literature in six macro-areas, which we have
identified as: Urban Security (us), Citizen Assistance (ca),
Public Space Engagement (pse),Mobility in UrbanDynamic
Environments (de), Autonomous Urban Transportation (au)
and Urban Maintenance (um). These areas are helpful not
only to have a better view over the main RCI themes, but
also to understandmore precisely specific characteristics and
open challenges. We invite the reader to use Figs. 16, 17, 18
and 19 as support and reference for the description of each
area.Also, it isworthmentioning here thatmanyworksmight
naturally overlap but, for the sake of simplification, they are
presented as belonging to one area only.

4.2.1 Urban Security

Urban Security is the area focusing on techniques and
methodologies to embed robotics systems into the city’s
security infrastructures. Examples of urban security appli-
cations can be, for instance, urban search&rescue (USAR),
crime prevention, emergency/parkingmanagement andmon-
itoring. These require state-of-art sensor technologies (e.g.
radars, laser scanners), advanced management of data infras-
tructures, visual techniques for object detection, and perfor-
mant algorithms for autonomous navigation, task allocation
and planning.

We found in this area works focusing on the collabo-
ration between robots and city services with the aim of
supporting the citizens during an emergency [26,44,107],
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(a) (b)

(c)

Fig. 16 Agent context organized by RCI area

intelligent designs of networked infrastructures that inte-
grate robots [27,28,78,81], and planning/ decision-making
solutions for monitoring situations such as parkings or road
networks [16,79].

As reported in Figs. 16, 17, 18 and 19, works in urban
security present the following characteristics:

• highly mobile platforms such as UAVs and wheeled
robots, which are able to precisely perform outdoor navi-
gation, environmental perception andmanage a situation;

• robots operating mostly autonomously, sometimes par-
tially supervised by humans;

• central role of the government as an actor w.r.t. land/
citizens, as well as the governance and the citizens’ well-
being representing the city aspects mostly studied;

(a) (b)

Fig. 17 Urban context organized by RCI area
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(a)

(c) (d)

(b)

Fig. 18 Information context organized by RCI area

• low quantities of (mostly) raw and semi-structured sensor
data communicated;

• communication of data both in batch and periodically,
e.g. if an emergency is detected;

• some usage of open data, e.g. OpenStreetMap18 in [28];
• personal to public interactions between robots and citi-
zens, generally in public spaces such as exhibit or passage
places;

• high cooperation between robots and the city municipal-
ity;

• robots able to acquire, process and share knowledge, gen-
erally operating in a team rather as a single element.

4.2.2 Citizen Assistance

This area comprehends applications of robots employed to
carry out public assistive services for the citizens. Methods
and technologies from Ambient Assisted Living, sensor net-
works, Cloud Robotics and HRI are combined in order to
present solutions that aim at improving the citizens’ quality
of life, either in their homes or in spaces providing assistive
services (e.g. hospitals).

Works in this area range from intelligent systems and
software architectures testing and simulating how robots
communicate with intelligent environments [55,103] and
perform assistive-specific tasks [10,83], to real-world appli-

18 https://www.openstreetmap.org.

cations where mobile platforms are continuously operating
autonomously [39,45,69].

The main characteristics observed in this area are:

• wheeled and humanoid platforms with a medium auton-
omy, both due to the close contact with the citizens;

• basic capabilities of navigation and perception, essential
verbal communication, partial acquisition capabilities
aiming at a more personalized interaction with the cit-
izens;

• involvement of the government as an actor, in combina-
tion with the citizens and technologies, while the land
actuator is of secondary importance;

• focus on the people and living city domains, and lower
interest in the economical, environmental and mobility
ones;

• exchanged data low in volume (mostly MB), communi-
cated both in batch (when receiving a user input) and
real-time (through the perceiving sensors);

• employment of unstructured, semi-structured and struc-
tured data, but no usage of open data;

• essentially personal interactions between citizens and a
single mobile agent, mainly happening in spaces with
restricted access (backstage places such as houses, and
secure/special use spaces such as hospitals);

• no robot–government interaction;
• data acquisition and processing capabilities, and little
ability to disseminate (and share) data.
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(a) (b)

(c) (d)

(e)

Fig. 19 Interaction analysis organized by RCI area

4.2.3 Public Space Engagement

Public Space Engagement is the area focusing on employing
robots in everyday social environments (for example, pub-
lic squares, museums and shopping malls) and on studying
how robots socially and ethically interact with the citizens.
Techniques from ubiquitous computing, wireless sensor net-
works, HRI and social science are employed to study both a
wide range of aspects, from infrastructure and networking,
to ethical and social acceptance.

Works here can be divided into architectures and frame-
works allowing interaction between robots, humans and
ubiquitous sensors [33,68,94], and works aiming at analyz-
ing the public engagement and social acceptance, either on
demand [30,53,87,109], or through personalization [22], or
directly using the robots’ proactivity [13,49,88].

We observe here the following characteristics:

• wheeled and humanoid platforms, where navigation, per-
ception and communication abilities are essential. In

some cases, manipulation or acquisition are also sup-
ported (as in [13,88]);

• a low level of autonomy, due to the employment of robots
in much larger, dynamic, and uncertain environments;

• large involvement of citizens, government and technolo-
gies in the interactions, andminor importance of the land;

• usage of autonomous agents to support the economical,
municipal and well-being aspect of the city;

• low quantities of unstructured/semi-structured data
exchanged, both in batch (if the system is queried) or
in real-time (sensor data);

• some usage of open data in public contexts, as in [22,30];
• mostly social or public interactions, rare personal inter-
actions;

• interactions happening in front spaces, both exhibit and
special use spaces (e.g. public squares and museums);

• no robot–government interaction.
• mostly single robots are employed;
• data acquisition and processing capabilities, less investi-
gation of data dissemination and knowledge sharing.
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4.2.4 Mobility in Urban Dynamic Environments

In this area, we find research investigating how robots can
interact with urban dynamic environment for pedestrian-
like autonomous navigation. A wide range of techniques,
spanning from perception, navigation and planning to image
processing, are investigated here.

Works in this area focus on robot navigation in highly
constrained indoor environments (e.g. a museum or an exhi-
bition) [11,29,95,99] or outdoor areas, both autonomously [1,
56,57], through interaction with the citizens if the space is
unknown [23,64].Otherworks focus on improving the simul-
taneous localization and navigation through the integration
of some a priori knowledge, e.g. some pre-analyzed human
behaviors [63,70,77,102] or knowledge from some external
sources [7,65,80].

Observed characteristics here are:

• wheeled platforms (both humanoid and non), equipped
with navigation, perception and (less often) verbal com-
munication abilities;

• higher levels of autonomy;
• a larger (w.r.t. the previous areas) involvement of the land
and citizens as actuators of the interactions, lower pres-
ence of the government;

• mobility and well-being of people being the most con-
cerned city domains;

• low quantities of unstructured/semi-structured data
exchanged, mostly in batch;

• little usage of open data (with exception of [11]);
• mainly social and public robot–citizens interactions;
• mostly social or public interactions, happening in exhibit,
passage and special use spaces;

• little robot–government interaction (only reported
in [63]);

• employment of mostly single robots, which do not neces-
sitate data dissemination, due to the focus on performing
advanced navigation.

4.2.5 Autonomous Urban Transportation

Autonomous Urban Transportation is the area concerned
with using robot agents to monitor, control and manage the
traffic andmobility of the city. Theworks in this area combine
techniques for image processing, data collection, navigation
and planning, with the aim of improving the performance
of intelligent vehicles which can navigate in dynamic and
uncertain environments.

We find here both works tackling problems of perception
and sensing, e.g. how to navigate in hard conditions such
as obstacles, rain, or fog [38,62,90,113], and works tackling
problems issuing from coordination and knowledge sharing,
including multi-vehicle coordination [3,40,51,110], citizen-

vehicle coordination [25,112] or traffic-based coordination
[61].

More specific characteristics are as follows:

• highly autonomous wheeled platforms (typically, auto-
nomous car-like), equipped with highly developed per-
ception, navigation and (sometimes, see [25,40]) man-
agement capabilities;

• centrality of the land and technologies actuator, less pri-
ority given to both government and citizens;

• large focus on the mobility aspect of the city;
• data exchanged in low quantities, privately and in real-
time;

• some efforts put in exchanging structured data [40,90,
110];

• public robot–citizens interactions in passage spaces
(roads and crossings);

• occasional robot–government interaction;
• data acquisition and processing are fundamental actions,
dissemination of data is yet to be employed;

• mostly teams of the same kind of robots (e.g. vehicles)
employed.

4.2.6 Urban Maintenance

UrbanMaintenance is the area focusing on applying robotics
solutions to maintain the city’s distributed infrastructures.
Enabling techniques in this case come from machine learn-
ing, ubiquitous computing, wireless sensor networks and
motion planning.

We find in this area works focusing on the data acquisition
problem to improve autonomous planning and navigation
of outdoor machineries [17,41,76,86,89], works for envi-
ronmental recognition [42,48,59,67,75] and works aiming
at optimizing cooperation and resource consumption [5,60].

This area has the following characteristics:

• heterogeneous platforms types, from non-humanoid
wheeled robots to marine/aerial robots;

• essential navigation, perception and management, some-
times paired with the capability of acquiring new infor-
mation of the surrounding environment [5,17,59,67] or
manipulating it [41,86,89];

• high level of autonomy;
• land, government and technologies as core participants
of an interaction, less involvement of the citizens;

• governance and environments as the most concerned
city domains, few cases considering the people’s well-
being [17] and economical aspects [41,86];

• low quantities of raw and semi-structured data exchanged
generally privately and in real-time, few cases of struc-
tured or open data [5,17,89];

• mostly public robot–citizens interaction;
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Fig. 20 Research areas of RCI

• robots operating essentially in front spaces, either as sin-
gle units or homogeneous teams;

• some interactions between robots and government [17,
60];

• acquisition and data processingmore employed than data
dissemination.

The research areas of RCI here presented are shown in
Fig. 20 based on the most evident characteristics, namely
howmuch the government or citizens are involved, and what
is the autonomy level of robots in the area and whether they
operate mostly as teams of single units. An overall summary
of the dimensions can also be seen in Table 2.

5 The RCI Research Landscape

Based on the analysis we conducted, we characterize in this
section RCI as a multidisciplinary field, while providing a
discussion on its research landscape.

5.1 Summary

Here, we look at answering the question: what did we dis-
cover from our literature review, and how has our view
changed since the beginning our work?

The literature review confirmed our hypothesis that inte-
grating robotics platforms into modern city systems is a
complex problem, as induced by the variety of research areas
involved. However, the growing interest on research topics
involving robots in cities calls for an identification of the
open problems under a unified perspective.

From our first analysis (the agent context of Sect. 4.1.1),
we learnt how cities are currently integrating robots with
advanced perception and navigation capabilities, thanks to
the modern motion planning algorithms and sensing tech-
nologies. While the autonomy of the agents tends to vary
depending on the research area, the type of robots which are
mostly employed are ground robots. This is mostly due to
three reasons: first, robust off-the-shelf ground robots are
nowadays common, while highly performing non-ground
robots are still prohibitive in costs, and therefore only

employed in controlled scenarios; second, the techniques at
the state-of-the-art for ground robot mobility are much more
advanced with respect to aerial and marine robots; third, cur-
rent regulations limit the deployment of aerial robots and
therefore experimenting with those in concrete settings is
still problematic.

The analysis of the urban context (Sect. 4.1.2) confirmed
our idea that the interest in integrating robot technologies in
the city’s ecosystems is growing, and showed how much the
city actors and domains are being involved in the robot–city
interactions. Advanced data and communication technolo-
gies, which are largely involved in RCI scenarios, allow the
creation of solid city infrastructures, guaranteeing efficient
robot–city interactions. Public institutions and governments,
at the same time, encourage investments and initiatives in
this area with the aim of improving their offer and services.
The lack of balance in the way city actuators take part in
robot–city interactions (e.g. citizens or land having a lower
priority), as well as the small number of scenarios involving
the economical and people well-being aspects, suggest what
new directions can be undertaken in the near future.

Some interesting conclusions about the nature of the infor-
mation exchanged between robots and city systems can also
be drawn from the analysis of the information context in
Sect. 4.1.3. Robots in RCI deal with small amounts of real-
time, unstructured (sensory) data, which do not impose any
model constraints. This constitutes a remarkable discrepancy
w.r.t. how information in managed within modern city sys-
tems (see, for instance, the smart cities initiatives), where a
high degree of organization is required to manage the het-
erogeneous information (both sensory and common-sense
knowledge) gathered from different sources. Similarly, while
one of the main aspects of smart cities is the usage of open
data to promote knowledge sharing, the surveyedworks seem
to make mostly usage of proprietary or closed data.

The difficulty of sharing knowledge in RCI scenarios also
emerges from the analysis of the interaction dimensions (see
Sect. 4.1.4). Indeed,we learnt that robots are extensively used
as mobile agents for data acquisition and processing (also)
thanks to the cities’ advanced network technologies, while
less efforts are put in improving the cooperative aspects—as
demonstrated by the few literature involving intimate-to-
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Table 2 Summary of the characteristics for each RCI area

Dim.

Area

Urban Citizen Public space Mobility in Autonomous Urban

security assistance engagement Urban dynamic Urban maintainance

environments transportation

Robot type
Highly mobile Humanoid

Wheeled Wheeled

Robot
Perception,
Navigationactions

Autonomy Medium to Medium

level High

Medium Low

to High

High High

City Government, Government, Government, Land, Land Land

actuators Citizen Citizen Citizen Government

City People,
Living

Mobility,
People

Mobility,
Environment

Governance,

domains Environment

Data volume MB, GB MB, GB MB, GB MB, GB MB, GB MB, GB

Data Batch/ Batch/

velocity periodic real-time
Real-time Real-time Real-time

Data Mostly Un-/semi-/ Mostly Mostly Few struc- Mostly

variety un-/semi- structured un-/semi- un-/semi- tured un-/semi-

Data Mostly Only Some Some Some Mostly

openness restricted restricted open open open restricted

Robot-citizens Personal to Personal Social to Social to Public to Public

interaction laicoscilbupcilbupcilbup

Robot-land Front Front Front

interaction spaces spaces spaces

Robot-gov.
High None None Some None None

interaction

Robot-data

interaction

Robot-robot Homo-
Heterogeneous 
teams

Single Single Mostly single 
teams

Mostly single 
teams

Single teams,
Homogeneous 
teams

interaction teams teams

Acquisition,
Processing

Acquisition,
Processing,
Dissemination

Exhibit spaces,
Passage spaces

Backstage spaces, 
Exhibit spaces,
Passage spaces

Exhibit spaces,
Special spaces

Economy,
People,
Governance

Government,
Living

Perception,
Navigation,
Management

Perception,
Navigation,
Management

Perception,
Navigation,
Acquisition

Perception,
Navigation,
Verbal 
Communication

Wheeled,
Humanoid

Wheeled, Aerial,
Marine

real-time

Acquisition,
Processing

Acquisition,
Processing

Acquisition,
Processing

Acquisition,
Processing

Perception,
Navigation,
Verbal 
Communication

Batch/

personal robot–citizens interaction, multi-robots coopera-
tion (both heterogeneous and homogeneous teams), robot–
governance interaction, and data sharing/dissemination.

5.2 Main Characteristics of RCI

Here, we aim at answering the following question: which are
the main characteristics and challenges of the Robot–City
Interaction, based on our findings?
First, we saw throughout the analysis how RCI has an
interdisciplinary nature, due to the number of different dis-
ciplines contributing to it. Based on this, we say that:

Robot–City Interaction is a cross-disciplinary field of
study, combining cutting-edge methods and technolo-
gies from a wide range of areas such as Robotics,
Information and Communication Technologies, Arti-
ficial Intelligence, Knowledge Representation, Ethics,
Security and Privacy, to design and implement systems
in which autonomous agents are integrated in complex
urban environments.

Second, the analysis helped in better assessing the char-
acteristics of RCI, featuring aspects specific to both modern
cities and highly autonomous robots, namely:
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• urban robots which act autonomously in city contexts,
both as data producers and data consumers of the city
knowledge;

• smart infrastructures that centralize and digitalize the
urban knowledge from a number of heterogeneous
sources, e.g. such as power, water, transports and, ulti-
mately, autonomous robots;

• open-ended interactions between robots and the sur-
rounding environment, where proactivity in decision-
making is necessary to deal with an unforeseeable
number of situations to be dealt with;

• assistive services i.e. robots are deployed by and for the
city to improve its own services and, consequently, the
quality of life of its citizens.

Third, we could then depict the ideal RCI scenario, where:

(i) robots are enabled with the main cognitive abilities,
e.g. they are able to fully observe (through sensors and
feedbacks), reason (through integration, analysis and
decision-making) and act (through collaborative data
sharing);

(ii) all the actuators of a city (land, citizens, technologies
and governance) are involved, i.e. they should all be
playing a role in the scenario and benefit from it;

(iii) a two-way interaction between robot and the city
ecosystem happens, in which robots contribute to the
city knowledge as mobile data collectors (through data
acquisition), but also benefit from the heterogenous
knowledge provided by the city (through data dissemi-
nation and sharing).

In this view, the main challenge for RCI is to understand
how robots can interact with these large-scale dynamic envi-
ronments in a way that such an interaction respects the three
constraints of involving fully autonomous cognitive robots,
the whole of the city actuators and a bi-directional data com-
munication. As a consequence, works in RCI should focus on
designing, implementing and evaluating methods to enable
robots to flexibly act in city contexts, namely through the
technological advancement of both robots and infrastruc-
tures, and through solutions to exploit the large amount
of knowledge available nowadays. Although scenarios like
these are yet to be achieved, there is a number of efforts that
can be put or are being put towards their realization, that we
present in the next section.

5.3 RCI: A Research Landscape

Finally, based on our findings and the characteristics of RCI,
which directions can be undertaken, so to facilitate the design
and implementation of systems in which robots and cities can
better interact with each other?

The answer to this question finds its origins in the
areas directly contributing to RCI. In the rest of the sec-
tion, some directions which could shape RCI in the future
are presented based on three perspectives: infrastructure
and data challenges, aiming at improving the integration
of robots in city ecosystems; knowledge-related challenges
aiming at improving how robots can reason and get con-
clusions about their surrounding environment; and ethical
and policy challenges aiming at determining new norms and
regulations to allow the actual implementation of RCI sce-
narios.

5.3.1 Smart Infrastructures

A major issue arising from the works analyzed is the diffi-
culty in facing the high dynamism, heterogeneity and scale of
modern cities. Factors such as monitoring sensors, subject to
deterioration, or the presence of citizens, whose actions are
unpredictable, bring uncertainty and contradictions, which
are difficult to handle even by the most advanced cognitive
robots. Planning in uncertain environments is still a chal-
lenge for robotics and, for this reason, few projects have
been reported as actually being deployed at large-scale (e.g.
cities, buildings, streets); an attempt is currently being held
within the European Robotics League, aiming at running a
number of “robots in smart city challenges” under the ERL
in Smart Cities tournaments.19 Without a way to allow robots
to understand how to interact with the surrounding environ-
ment, it is clearly difficult to envision an efficient robot–city
interaction.

One way to go is to look at it from an IoT and sensor
networks perspective, therefore finding ways to guaran-
tee robust and maintainable infrastructures for a reliable
collection, communication and exchange of data. Sensor
technologies currently work in small-scaled environments
(smart offices, smart homes) but are often not scalable to
the cities, as demonstrated by the little effort put in bring-
ing Ambient Intelligence solutions into RCI scenarios. On
the other hand, it is evident that a major challenge is on
the difficulty of experimenting with such a large, diverse
and physically distributed environment like a city. Issues
like deployment, testing and simulation of RCI systems
are critical to the development of robust research contribu-
tions.

In parallel to this, RCI requires efforts towards rethink-
ing robots not as standalone units, but as part of a larger
and complex infrastructure. This means not only improving
the platforms’ computational and connectivity capabilities,
but also to design and implement methods and approaches
for reliable data communication and processing, hence guar-
anteeing the seamless integration of robots with dynamic

19 https://www.sciroc.eu.
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interconnected environments. While this would naturally
empower robots with the ability of managing the large
amounts of data they produce for and they are provided by
the city (the data quantity problem), an important aspect that
needs to be better investigated is for them to better deal with
the variety of information sources (the data heterogeneity
problem) [20].

This also opens an interesting challenge from an ICT
perspective, in terms of the capabilities offered by data
infrastructures provided by the cities. Data infrastructures
are a crucial element in modern cities, since they provide
the adequate support for the interaction of the different
city systems, robots included. Within the smart cities initia-
tives, central data management infrastructures have emerged
as innovative solutions to build a common facility to effi-
ciently manage, integrate and re-deliver the heterogeneous
data from the urban environment. These “city data hubs”
[21] are centralized nodes that control and monitor the
heterogeneous information provided by the different city
systems (e.g. government services, transport and traffic con-
trol, water, health care, energy, waste), and whose aim is to
reduce the development costs for the applications relying on
such services, as well as enabling intelligent data process-
ing mechanisms (mining, analytics, aggregation, alignment,
linking) at the scale of the entire city, in a common data
infrastructure.

A robust infrastructure for data communication is the
necessary condition for the interaction of robots with city
environments, and it would allow them to better model the
environment and better plan for goal achievement. In order
to do this, such infrastructures require new algorithms to pro-
cess, compute, secure and privatize the informationflow from
robots to the city, and new mechanisms that clearly expose
how to make sense of the available data. In other words,
the Data Science techniques that have been employed so far
only in highly restricted scenarios (see the RoboEarth [108]
framework), have to be adapted to allowmore flexible online
data processing and sharing mechanisms. Using data with a
high degree of organization, or delegating the computation
to the main reasoning engine of the data hubs are solu-
tions which would allow the robots’ workload to be relieved,
facilitating their management capabilities, their cooperation
and their integration in the city infrastructure. By empow-
ering robots with the ability to mine and exploit knowledge
from the data hubs, they would be able to filter, prune and
restrict their reasoning, therefore improving the performance
in achieving their tasks. At the same time, robots should
integrate in the city data hubs the knowledge they collected
continuously, so that consistent information about objects,
people and activities in the environment is always provided
to other agents and uncertainty and knowledge gaps are
reduced.

In summary, the first research challenge that we can
identify is the need of integrating robots in smart city
infrastructures, which more specifically requires:

• more robust sensors and network communications to
guarantee reliable data exchange;

• increase computation and connectivity capabilities for
robots to cope with data volume issues;

• extend and improve the capabilities offered to robots by
the city data infrastructures;

• new Data Science solutions to mine and exploit city
knowledge and deal with data heterogeneity.

5.3.2 Knowledge-Based Environments for Robots

Assuming the symbolic integrationbetween robots and cities,
the second direction to take rather concerns the ability of
robots to understand and reason with data available from the
city. As seen, the lack of structure in the robots’ knowledge
representations makes the compilation and data processing
a time and energy-consuming task. In this view, semantic
technologies [8] have an interesting role to play as means to
structure knowledge.

Successfully applied in scenarios aggregating knowledge
from heterogeneous sources, semantic technologies provide
support both to the representation, integration and curation of
data across sources, as well as to the interaction between data
and domain experts, towards what can be defined as multi-
domain, browsable and accessible conceptual “knowledge
city graphs”.

Semantic technologies have proven to have utility in
robotics for high-level planning and understanding, and
could be exploited as a layer for knowledge representation
and exchange in order to facilitate the integration of mobile
agents in the cities [101]. Such technologies could hence rep-
resent the key that enable robots to behave both as actuators
and contributors of a city knowledge base, to better under-
stand the surrounding environment, to reason upon multiple
heterogeneous knowledge sources and to improve the per-
formance of their tasks. More specifically:

(i) without imposing specific data-model constraints, such
technologies can intensively facilitate the robots’ high-
level reasoning, but also their interoperability, cooper-
ation, and knowledge sharing;

(ii) thanks to their standards for representing heterogeneous
knowledge, semantic technologies could help in better
representing the many types of information required for
successfully accomplishing robotics tasks (e.g. exact
times, 3D geometric information, kinematic structures
and appearance models), whose representation is cur-
rently very challenging;
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(iii) in the same way, semantic technologies could also sup-
port robots in dealing with the diversity of cognitive
abilities and of types of knowledge (hybrid reasoning)
that is needed to perform their tasks;

(iv) their flexibility facilitates the representation dynamic
environments subject to unexpected and frequent
changes, therefore allowing robots to act with more
awareness in uncertain and unfamiliar environments.

A further opportunity developed by knowledge-based data
management is the use of external knowledge to improve
the achievement of robotic tasks. The last decade has seen
a huge amount of domain-specific knowledge being openly
published in the form structured data, with the objective of
encouraging information sharing, reuse and discovery. With
this phenomenon of data deluge, building intelligent sys-
tems that are able to explore, integrate, and exploit large
amounts of heterogeneous data gathered from a variety of
distributed sources has become a priority [20,72,100]. Our
survey revealed that there is still a long way to go before
themachine-readable and accessible knowledge available for
reuse and redistribution is exploited by autonomous agents to
their full extent. External knowledge could support robots in
improving their tasks: for example, a more robust navigation
could be performed by relying on open sources representing
the geometry of the environment; object search and recog-
nition could be improved through integrating the domain
knowledge available in existing ontologies into the robots’
semantic maps; while a better understanding of the environ-
ment could be achieved if also relying on domain ontologies,
rather than relying only on ad-hoc designed robot knowledge
representations.

From an AI perspective, more effort has to be put in repre-
senting knowledge which is relevant to robotics. There is an
urgent need for designing and developing symbolic represen-
tations for robots to be more robust and reliable, and efforts
focused on representing more common domain knowledge
are required (as opposed to the widely-spread instance-based
knowledge representations), as this is highly relevant for
robots to achieve their tasks. Methods for the evaluation and
validation robot knowledge bases are also required. From
the institutional perspective, this also means extending and
encouraging open data initiatives, through engaging citizens
and data providers towards the integration and acceptance of
robots acting in smart city environments.

We can define the second research challenge for RCI as
the need of empowering robots with the ability of reason-
ing with the knowledge from the city, addressing problems
such as:

• leveraging semantic technologies to increase interoper-
ability between robots and city ecosystems;

• exploiting the large amounts ofmachine-accessible exter-
nal (and open) knowledge to improve robot tasks;

• enlarging, extending and refining the representations of
domain knowledge that can be relevant to robots (and
robotics in general);

• encouraging and exploiting open data initiatives.

5.3.3 Ethical Regulations and Policies

The last point of the previous section also relates to the third
direction that we have identified in the RCI landscape—
namely, how to regulate a robot–city interaction.

Our survey has revealed that several societal and ethi-
cal barriers exist, which prevent robots to be extensively
employed in cities (see flying drones mostly being used
in secure spaces, or driverless systems only used as driv-
ing assistants or pedestrian pods). Research areas such as
robot ethics, social science, data security and privacy have
therefore the opportunity to investigatewhichmethodswould
allow robots to be more ethically, socially and legally accept-
able. HRI approaches are needed to study how to establish
fruitful robot–citizens interactions at an intimate and per-
sonal distance. When coming to social and public distances,
trust issues are to be addressed, as robots in RCI need to
operate in environments with citizens that might not have
consented to the interaction with them. Social acceptance of
robots bynaive users is a key issue, and ethicalmethodologies
are needed to guarantee the safety of non-experts creating
dynamisms in the environments where robots act, therefore
improving the willingness of citizens to share the urban
space with robotics platforms. AI trust and transparency
tools to explain the logics of robotic behavior and decision-
making are also needed [106]. Clear regulations and policies
establishing the transparency of data exchange and commu-
nication are needed, in order for robots to be respectful of
the fundamental laws and rights. By improving policy con-
texts and by focusing on the citizens’ needs, public entities
and local authorities could in fact understand what robotics
technologies can be offered in response to their urban needs,
therefore facilitating the interaction of robotics technologies
with political and institutional components.

The last research challenge for theRCI is to establishmore
robot-aware societal regulations, i.e.:

• increase of the robots’ social acceptability;
• transparency tools enabling robots to explain their behav-
ior;

• safety dispositions for the citizens when robots operating
nearby;

• data protection policies when communicating and
exchanging data.
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Based on the discussion above, we can conclude that RCI
must combine knowledge-based urban environments with
modern data infrastructure technologies and robot-aware reg-
ulations.

5.4 Relation of RCI to Other Fields

We acknowledge that Robot–City Interaction stands at the
crossing of many fields, from robotics and autonomous and
intelligent systems to knowledge and information manage-
ment.We conclude by presenting howRCI relates and differs
to its closely related areas.

Ambient Intelligence Ambient Intelligence is mainly con-
cerned with the application of advanced technologies in
private spaces [15]. Although many results from Ambient
Intelligence can be inherited by RCI, the latter considers pri-
vate spaces a part of a larger city system, and highlights
therefore how the intelligence of urban structures can con-
tribute to use cases of wider scope, e.g. from buildings to
towns [2,14].

Urban Robotics Urban Robotics has been defined as
robotics in the service of cities and citizens [85]. While this
is very pertinent to RCI, Urban Robotics research appli-
cations focus only on exploiting robots to address societal
challenges, while omitting the interaction and infrastructure
aspects between robots and cities—namely, how these two
components can benefit from each other.

Human–Robot InteractionAs opposed toUrbanRobotics,
the main focus of HRI is the interaction between humans and
robots (and the ethical and psychological implications of it).
HRI studies the different forms of interaction, depending on
factors such as the proximity of the participants or the type
of robots engaged. RCI and HRI have commonalities, e.g. a
solid body a work in HRI finds application in urban spaces,
while the proxemics studies help RCI to assess how robots
are perceived and received by citizens. The main difference
lies in the fact that RCI studies how city services and the
citizens’ quality of life can be improved by deploying robots
as part of an interconnected digital infrastructure.

Roboethics Roboethics also deals with the interaction
between robots and humans, but rather focuses on the the
human ethical implications of designer, manufacturers, and
users of robots [104]. This area overlaps with RCI in what
they both address social and ethical issues of the application
of robots to our daily lives. Roboethics however focuses on
more bio-ethical issues, while RCI addresses ethical impli-
cations from a Urban Policy perspective: in other words, in
order for robots to operate in a smart city ecosystem, gover-
nance measures have to be undertaken too.

Networked Robotics, Cloud RoboticsNetworkedRobotics
focuses on the challenges inherent the physical constraints
(limited computing and storage capabilities) onboard groups
of robot devices connected via wired or wireless com-

munication [46]. Cloud Robotics was then promoted to
enable networked robotics with cloud computing technolo-
gies. Cooperating robots are expected to operate intensively
in a city environment, hence these areas can certainly con-
tribute to RCI with a number of solutions and protocols using
existing networks not only for decision making, but also
for fast knowledge and data sharing. However, Networked
Robotics and Cloud Robotics are rather focused on the hard-
ware, networks and scalability aspects with respect to RCI.

6 Conclusions

Motivated by the advancements of modern technologies
in city systems, here we have presented a first attempt
to characterize the field of Robot–City Interaction, its key
themes, gaps, guidelines and challenges, and to provide a
perspective on how robots can interact in and with complex
city environments. In order to do so, we used a literature
review methodology that allowed us to identify a set of key
dimensions of Robot–City Interactions and a body of works
contributing to this emerging area, which we then analyzed
and classified according to the defined dimensions. The liter-
ature review not only served as a ground field for the RCI, to
be used for further reference and extension, but also helped
us in the following aspects:

• define RCI as the cross-disciplinary field of study, which
combines cutting-edge methods and technologies from a
wide range of areas such as Robotics, Information and
Communication Technologies, Artificial Intelligence,
Knowledge Representation, Ethics, Security and Privacy,
to design and implement systems in which autonomous
agents are integrated in complex urban systems;

• identify the main characteristics of RCI, namely the
infrastructure aspect (robots as part of a digitalised
infrastructuremanaging the city services), the interaction
aspect (robots behaving as data producers and data con-
sumers of the city knowledge) and the city service aspect
(robots are deployed by and for the city to improve its
own services);

• identify the main challenges for RCI, designed with the
goal of establishing an interaction between robots and
complex environments, where the constraints of involv-
ing (1) fully autonomous cognitive robots, (2) the four
city actuators and (3) a bi-directional data communica-
tion are respected;

• identify the six RCI areas, consisting in Citizen Assis-
tance, Public Space Engagement, Mobility in Urban
Dynamic Environments , Autonomous Urban Trans-
portation, Urban Security and Urban Maintenance, and
their own characteristics;
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• outline a vision for future RCI research, emphasising
the need for combining knowledge-based urban environ-
ments with modern data infrastructures technologies and
robot-aware regulations.

Future work can go in several directions. First, we intend
to explore several aspects of the RCI landscape—namely,
the use of semantic technologies as a knowledge repre-
sentation layer and the creation of robot–city scenarios at
a reduced-scale. Second, we envision to further refine the
RCI framework, by providing more detailed analyses of
techniques, technical issues (environments, time and costs),
impact and key insights specific to each RCI and to single
framework dimensions (e.g. robots autonomy or the robot–
government interaction). Finally, we intend to include a
temporal aspect in the survey, through analyzing how RCI
and the different dimensions evolved in time.
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77. Park C, Ondřej J, Gilbert M, Freeman K, O’Sullivan C (2016) Hi
robot:Human intention-aware robot planning for safe and efficient
navigation in crowds. In: 2016 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE, pp 3320–3326

78. Petriu EM, PatryGG,Whalen TE,Al-DhaherA,GrozaVZ (2002)
Intelligent robotic sensor agents for environment monitoring. In:
2002 IEEE international symposium on virtual and intelligent
measurement systems VIMS’02. IEEE, pp 14–19

79. Petsch K, Dotzlaf P, Daubenspeck C, Duthie N, Mock A (2012)
Automated parking space locator: Rsm. In: ASSE North central
section conference

80. Radwan N, Tipaldi GD, Spinello L, Burgard W (2016) Do you
see the bakery? Leveraging geo-referenced texts for global local-
ization in public maps. In: 2016 IEEE international conference on
robotics and automation (ICRA). IEEE, pp 4837–4842

81. Rahman A, Jin J, Cricenti A, Rahman A, Palaniswami M, Luo
T (2016) Cloud-enhanced robotic system for smart city crowd
control. J Sens Actuator Netw 5(4):20

82. Rajan K, Saffiotti A (2017) Towards a science of integrated AI
and robotics. Artif Intell 247:1–9

83. Röning J, Holappa J, Kellokumpu V, Tikanmäki A, Pietikäinen
M (2014) Minotaurus: a system for affective human–robot inter-
action in smart environments. Cognit Comput 6(4):940–953

84. Russell S, Norvig P, Intelligence A (1995) A modern approach.
Artif Intell 25:27

85. Salvini P (2017) Urban robotics: towards responsible
innovations for our cities. Robot Auton Syst (2017).
https://doi.org/10.1016/j.robot.2017.03.007. ISSN 0921-
8890. http://www.sciencedirect.com/science/article/pii/
S0921889016303505

86. Sandy T, Giftthaler M, Dörfler K, Kohler M, Buchli J (2016)
Autonomous repositioning and localization of an in situ fabri-
cator. In: 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, pp 2852–2858

87. Sarabia M, Le Mau T, Soh H, Naruse S, Poon C, Liao Z, Tan KC,
Lai ZJ, Demiris Y (2013) icharibot: design and field trials of a
fundraising robot. In: International conference on social robotics.
Springer, pp 412–421

88. Satake S, Hayashi K, Nakatani K, Kanda T (2015) Field trial
of an information-providing robot in a shopping mall. In: 2015
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS). IEEE, pp 1832–1839

89. Schmidt D, Proetzsch M, Berns K (2010) Simulation and con-
trol of an autonomous bucket excavator for landscaping tasks. In:
2010 IEEE international conference on robotics and automation
(ICRA). IEEE, pp 5108–5113

90. Schneemann F, Heinemann P (2016) Context-based detection of
pedestrian crossing intention for autonomous driving in urban
environments. In: 2016 IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE, pp 2243–2248

91. Scholtz J (2003) Theory and evaluation of human robot inter-
actions. In: Proceedings of the 36th annual Hawaii international
conference on system sciences. IEEE, p 10

92. Scollon R, Scollon SW (2003) Discourses in place: language in
the material world. Routledge, Abingdon

93. Sheridan TB, Verplank WL (1978) Human and computer control
of undersea teleoperators. Technical report, DTIC Document

94. Shiomi M, Sakamoto D, Kanda T, Ishi CT, Ishiguro H, Hagita N
(2011) Field trial of a networked robot at a train station. Int J Soc
Robot 3(1):27–40

95. Siegwart R, Arras KO, Bouabdallah S, Burnier D, Froidevaux G,
Greppin X, Jensen B, Lorotte A, Mayor L, Meisser M et al (2003)
Robox at expo. 02: a large-scale installation of personal robots.
Robot Auton Syst 42(3):203–222

96. Sinaeepourfard A, Garcia J, Masip-Bruin X, Marin-Tordera E,
Yin X, Wang C (2016) A data lifecycle model for smart cities. In:
2016 international conference on information and communication
technology convergence (ICTC). IEEE, pp 400–405

97. SPARC (2013) Strategic research agenda for robotics in 2014–
2020. https://www.eu-robotics.net/cms/upload/topic_groups/
SRA2020_SPARC.pdf. Accessed Sept 2018

98. Steinfeld A, Fong T, Kaber D, Lewis M, Scholtz J, Schultz A,
Goodrich M (2006) Common metrics for human–robot interac-
tion. In: Proceedings of the 1st ACM SIGCHI/SIGART confer-
ence on human–robot interaction. ACM, pp 33–40

99. Thrun S, Bennewitz M, Burgard W, Cremers AB, Dellaert F, Fox
D,HahnelD,RosenbergC,RoyN, Schulte J, et al (1999)Minerva:
a second-generation museum tour-guide robot. In: 1999 IEEE
international conference on robotics and automation. Proceed-
ings, vol 3. IEEE

100. Tiddi I (2016) Explaining data patterns using knowledge from the
web of data. Ph.D. thesis, The Open University

101. Tiddi I, Bastianelli E, Bardaro G, d’Aquin M, Motta E (2017)
An ontology-based approach to improve the accessibility of ros-
based robotic systems. In: Proceedings of the knowledge capture
conference (K-CAP2017). ACM, p 13

102. Trautman P, Ma J, Murray RM, Krause A (2013) Robot nav-
igation in dense human crowds: the case for cooperation. In:
2013 IEEE international conference on robotics and automation
(ICRA). IEEE, pp 2153–2160

103. Tsuji T, Mozos OM, Chae H, Pyo Y, Kusaka K, Hasegawa T,
Morooka K, Kurazume R (2015) An informationally structured
room for robotic assistance. Sensors 15(4):9438–9465

104. Veruggio G, Operto F (2006) Roboethics: a bottom-up interdisci-
plinary discourse in the field of applied ethics in robotics. Int Rev
Inf Ethics 6(12):2–8

105. Vom Brocke J, Simons A, Niehaves B, Riemer K, Plattfaut R,
Cleven A et al (2009) Reconstructing the giant: on the impor-
tance of rigour in documenting the literature search process. ECIS
9:2206–2217

106. Wachter S, Mittelstadt B, Floridi L (2017) Transparent, explain-
able, and accountable ai for robotics. Sci Robot 2(6):eaan6080

107. Wagoner A, Jagadish A, Matson ET, EunSeop L, Nah Y, Tae KK,
Lee DH, Joeng J-E (2015) Humanoid robots rescuing humans
and extinguishing fires for cooperative fire security system using
harms. In: 2015 6th international conference on automation,
robotics and applications (ICARA). IEEE, pp 411–415

108. Waibel M, Beetz M, Civera J, d’Andrea R, Elfring J, Galvez-
Lopez D, Häussermann K, Janssen R, Montiel J, Perzylo A et al
(2011) Roboearth. IEEE Robot Autom Mag 18(2):69–82

109. Weiss A, Igelsböck J, Tscheligi M, Bauer A, Kühnlenz K,
Wollherr D, BussM (2010) Robots asking for directions: the will-
ingness of passers-by to support robots. In: Proceedings of the 5th
ACM/IEEE international conference on human–robot interaction.
IEEE Press, pp 23–30

110. Wellhausen L, Jacob MG (2016) Map-optimized probabilistic
traffic rule evaluation. In: 2016 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, pp
3012–3017

111. Wirth L (1938) Urbanism as away of life. Am J Sociol 44(1):1–24
112. Wulfmeier M, Wang DZ, Posner I (2016) Watch this: Scalable

cost-function learning for path planning in urban environments.
In: 2016 IEEE/RSJ international conference on intelligent robots
and systems (IROS). IEEE, pp 2089–2095

113. Yamauchi B (2010) All-weather perception for man-portable
robots using ultra-wideband radar. In: 2010 IEEE international
conference on robotics and automation (ICRA). IEEE, pp 3610–
3615

123

http://www.sciencedirect.com/science/article/pii/S0921889016303505
http://www.sciencedirect.com/science/article/pii/S0921889016303505
https://www.eu-robotics.net/cms/upload/topic_groups/SRA2020_SPARC.pdf
https://www.eu-robotics.net/cms/upload/topic_groups/SRA2020_SPARC.pdf


324 International Journal of Social Robotics (2020) 12:299–324

114. Yanco HA, Drury J (2004) Classifying human-robot interaction:
an updated taxonomy. In: 2004 IEEE international conference on
systems, man and cybernetics, vol 3. IEEE, pp 2841–2846

115. Zicari RV (2014) Big data: challenges and opportunities. BigData
Comput 564

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Dr. Ilaria Tiddi is a Research Associate at Knowledge Representa-
tion and Reasoning group of the the Vrije Universiteit Amsterdam.
She was previously Research Associate at the Knowledge Media Insti-
tute of the Open University in the UK, where she also obtained her
PhD. Her research focuses on the creation of transparent, explainable
systems in e-Science and robotics scenarios through a combination of
machine learning, semantic technologies, open data and cognitive the-
ories. https://kmitd.github.io/ilaria/.

Dr. Emanuele Bastianelli is a Research Associate at the Interaction
Lab of the Heriot-Watt University, Edinburgh, UK. He got his PhD
in Computer Science from the University of Rome Tor Vergata. He
previously worked as a Research Associate at the Knowledge Media
Institute of the Open University, and as a Research Assistant at the
Cognitive Cooperating Robots Lab (Lab Ro.Co.Co.) of Sapienza Uni-
versity of Rome. His research mostly focuses on Machine Learning
applied to Natural Language Processing, with a specific target on
Language Understanding for robotic applications and conversational
AI. During his career, he covered also other areas such as Informa-
tion Retrieval and Urban Data Mining. https://www.hw.ac.uk/staff/uk/
macs/Emanuele-Bastianelli.htm.

Dr Enrico Daga has a strong technical background being involved in
the development of large data management systems since 2008, first
at the Italian National Research Council and then with the Knowledge
Media Institute of The Open University. His research area is Knowl-
edge Graphs and their applications, with a focus on the traceability of
reuse through intelligent processing of metadata applied to licences,
policies, and privacy. Current domains of interest are Smart Cities and
the Humanities. http://kmi.open.ac.uk/people/member/enrico-daga.

Prof. Mathieu d’Aquin is a Professor of Informatics specialised in
data analytics and semantic technologies at the Insight Centre for
Data Analytics of the National University of Ireland Galway. He was
previously Senior Research Fellow at the Knowledge Media Insti-
tute of the Open University, where he led the Data Science Group.
His research focuses on sharing and exploiting distributed information
using Semantic Web/Linked Data technologies, in domains including
medicine, education, smart cities and the Internet of Things. http://
mdaquin.net/.

Prof. EnricoMotta has a Ph.D. in Artificial Intelligence from The Open
University, where is currently a Professor in Knowledge Technologies
and Head of the Intelligent Systems and Data Science research group.
His work spans a variety of aspects at the intersection of big data,
semantic and language technologies, intelligent systems, and human-
computer interaction. In particular much of his current work focuses
on developing innovative approaches that integrate large-scale data
mining with semantic and language technologies, to assist users in
making sense of large-scale data and support decision-making in com-
plex scenarios. Application domains include scholarly analytics, smart
cities, and digital humanities. http://people.kmi.open.ac.uk/motta/.

123

https://kmitd.github.io/ilaria/
https://www.hw.ac.uk/staff/uk/macs/Emanuele-Bastianelli.htm
https://www.hw.ac.uk/staff/uk/macs/Emanuele-Bastianelli.htm
http://kmi.open.ac.uk/people/member/enrico-daga
http://mdaquin.net/
http://mdaquin.net/
http://people.kmi.open.ac.uk/motta/

	Robot–City Interaction: Mapping the Research Landscape—A Survey of the Interactions Between Robots and Modern Cities
	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Core Terminology
	2.2 Search and Selection Criteria

	3 The RCI Analytical Framework
	3.1 Agent Context
	3.2 Urban Context
	3.3 Information Context
	3.4 Interaction Context

	4 Literature Synthesis
	4.1 Synthesis by Context
	4.1.1 Agent Context
	4.1.2 Urban Context
	4.1.3 Information Context
	4.1.4 Interaction Context

	4.2 Synthesis by RCI Area
	4.2.1 Urban Security
	4.2.2 Citizen Assistance
	4.2.3 Public Space Engagement
	4.2.4 Mobility in Urban Dynamic Environments
	4.2.5 Autonomous Urban Transportation
	4.2.6 Urban Maintenance


	5 The RCI Research Landscape
	5.1 Summary
	5.2 Main Characteristics of RCI
	5.3 RCI: A Research Landscape
	5.3.1 Smart Infrastructures
	5.3.2 Knowledge-Based Environments for Robots
	5.3.3 Ethical Regulations and Policies

	5.4 Relation of RCI to Other Fields

	6 Conclusions
	Appendix
	References




