Skip to main content

Advertisement

Log in

Interactive Natural Motion Planning for Robot Systems Based on Representation Space

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Endowing robot with interactive natural motion planning is of great importance, since user has to get more and more involved for better realization with versatile tasks under increasingly complicated environments. In this paper, studies on interactive natural motion planning are summarized and a general theoretic framework for which is presented in triple-folds. Firstly, the motion planning model is formulated based on representation space, and essential guidelines on planning algorithm selection are also proposed. Then user intention inference, which consists of grid-based intention model and Bayesian filtering based inferring algorithm, is investigated to mitigate the impact of network induced imperfections during human–robot interaction. Finally, for further rejecting various uncertainties, \({\mathcal {H}}_\infty \) control theory based disturbance observer is proposed. All three algorithmic design procedures are stated in detail and the efficiency of which are presented via existing results, followed by discussions on the future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tan M, Wang S (2013) Research progress on robotics. Acta Automat Sinica 39(7):1119–1128

    Google Scholar 

  2. Toit NED, Burdick JW (2012) Robot motion planning in dynamic, uncertain environments. IEEE Trans Robot 28(1):101–115

    Google Scholar 

  3. Ikemoto S, Amor HB, Minato T, Jung B (2016) Physical human–robot interaction: mutual learning and adaptation. IEEE Robot Autom Mag 19(4):24–35

    Google Scholar 

  4. Torres LG, Baykal C, Alterovitz R (2014) Interactive-rate motion planning for concentric tube robots, In: IEEE international conference on robotics automation (ICRA), pp 1915–1821

  5. Muhlig M, Gienger M, Steil J J (2010) Human-robot interaction for learning and adaptation of object movements. In: IEEE international conference on intelligent robots and systems (IROS), pp 4901–4907

  6. Calinon S, Sardellitti I, Caldwell DG (2010) Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. Intelligent Robot Syst 6219(1):249–254

    Google Scholar 

  7. Schulman J, Duan Y, Ho J, Lee A, Awwal I, Bradlow H, Pan J, Patil S, Goldberg K, Abbeel P (2014) Motion planning with sequential convex optimization and convex collision checking. Int J Robot Res 33(9):1251–1270

    Google Scholar 

  8. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894

    MATH  Google Scholar 

  9. Lozano-Perez T (1987) A simple motion-planning algorithm for general robot manipulators. IEEE J Robot Autom 3(3):224–238

    Google Scholar 

  10. Ibeas A, De la Sen M (2006) Robustly stable adaptive control of a tandem of master-slave robotic manipulators with force reflection by using a multiestimation scheme. IEEE Trans Syst Man Cybern B Cybern 36(5):1162–79

    Google Scholar 

  11. Ani HM, Vijay K, Luiz C (2008) Decentralized controllers for shape generation with robotic swarms. Robotica 26(5):691–701

    Google Scholar 

  12. Olfati-Saber R (2006) Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Automat Contr 51(3):401–420

    MathSciNet  MATH  Google Scholar 

  13. Hauser K (2014) The minimum constraint removal problem with three robotics applications. Sage Publications Inc, Thousand Oaks

    Google Scholar 

  14. Su J, Xie W (2011) Motion planning and coordination for robot systems based on representation space. IEEE Trans Syst Man Cybern B Cybern 41(1):248–259

    Google Scholar 

  15. Xie W, Su J, Lin Z (2008) New coordination scheme for multi-robot systems based on state space models. J Syst Eng Electron 19(4):722–734

    MATH  Google Scholar 

  16. Zhang L, Gao H, Kaynak O (2012) Network-induced constraints in networked control systems: a survey. IEEE Trans Ind Inf 9(1):403–416

    Google Scholar 

  17. Bemporad A, Heemels M, Johansson M (2010) Networked control systems. Springer, London

    MATH  Google Scholar 

  18. Gupta RA, Chow MY (2010) Networked control system: overview and research trends. IEEE Trans Ind Electron 57(7):2527–2535

    Google Scholar 

  19. Walsh GC, Ye H, Bushnell L (2002) Stability analysis of networked control systems. IEEE Trans Contr Syst Technol 10(3):438–446

    Google Scholar 

  20. Quevedo DE, Nesic D (2011) Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts. IEEE Trans Automat Contr 56(2):370–375

    MathSciNet  MATH  Google Scholar 

  21. Sinopoli B, Schenato L, Franceschetti M, Poolla K (2004) Kalman filtering with intermittent observations. IEEE Trans Automat Contr 1(9):1453–1464

    MathSciNet  MATH  Google Scholar 

  22. Rodriguezseda EJ, Lee D, Spong MW (2009) Experimental comparison study of control architectures for bilateral teleoperators. IEEE Trans Robot 25(6):1304–1318

    Google Scholar 

  23. Janabi-Sharifi F, Hassanzadeh I (2011) Experimental analysis of mobile-robot teleoperation via shared impedance control. IEEE Trans Syst Man Cybern B Cybern 41(2):591–606

    Google Scholar 

  24. Niemeyer G (2004) Telemanipulation with time delays. Int J Robot Res 23(9):873–890

    Google Scholar 

  25. Mitra P, Niemeyer G (2008) Model-mediated telemanipulation. Int J Robot Res 27(2):253–262

    Google Scholar 

  26. Su J (2014) Representation and inference of user intention for internet robot. IEEE Trans Syst Man Cybern Syst 44(8):995–1002

    Google Scholar 

  27. Andreft N, Horaud R, Espiau B (2001) Robot hand-eye calibration using structure-from-motion. Int J Robot Res 20(3):228–248

    Google Scholar 

  28. Su J (2007) Camera calibration based on receptive fields. Pattern Recognit 40(10):2837–2845

    MATH  Google Scholar 

  29. Gao Z (2014) On the centrality of disturbance rejection in automatic control. ISA Trans 53(4):850–857

    Google Scholar 

  30. Li S, Yang J, Chen WH, Chen X (2014) Disturbance observer-based control: methods and applications. CRC Press Inc, Boca Raton

    Google Scholar 

  31. Guo L, Cao S (2014) Anti-disturbance control theory for systems with multiple disturbances: a survey. ISA Trans 53(4):846–849

    Google Scholar 

  32. Silva GJ, Datta A, Bhattacharyya SP (2002) New results on the synthesis of PID controllers. IEEE Trans Automat Contr 47(2):241–252

    MathSciNet  MATH  Google Scholar 

  33. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, New Jersey

    MATH  Google Scholar 

  34. Aström KJ (2012) Introduction to stochastic control theory. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  35. Aström KJ (2013) Adaptive control. Courier Corporation, Chelmsford

    Google Scholar 

  36. Utkin V, Guldner J, Shi J (2009) Sliding mode control in electro-mechanical systems. CRC Press Inc, Boca Raton

    Google Scholar 

  37. Lewis FW, Jagannathan S, Yesildirak A (1998) Neural network control of robot manipulators and non-linear systems. CRC Press Inc, Boca Raton

    Google Scholar 

  38. Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Trans Syst Man Cybern B Cybern 20(2):419–435

    MathSciNet  MATH  Google Scholar 

  39. Han J (2009) From pid to active disturbance rejection control. IEEE Trans Ind Electron 56(3):900–906

    Google Scholar 

  40. Ohnishi K, Shibata M, Murakami T (2002) Motion control for advanced mechatronics. IEEE/ASME Trans Mechatron 1(1):56–67

    Google Scholar 

  41. Su J (2015) Robotic uncalibrated visual serving based on ADRC. Control Decis 30(1):1–8 (in Chinese)

    MathSciNet  Google Scholar 

  42. Elfes A, Matthies L (2007) Sensor integration for robot navigation: combining sonar and stereo range data in a grid-based representataion. In: IEEE conference on decision and control, pp 1802–1807

  43. Su J, Wang L, Yun JN (2015) A design of disturbance observer in standard \({\cal{H}}_\infty \) control framework. Int J Robust Nonlinear Control 25(16):2894–2910

    MathSciNet  MATH  Google Scholar 

  44. Yun JN, Su J, Yong IK, Yong CK (2013) Robust disturbance observer for two-inertia system. IEEE Trans Ind Electron 60(7):2700–2710

    Google Scholar 

  45. Yun JN, Su JB (2014) Design of a disturbance observer for a two-link manipulator with flexible joints. IEEE Tran Control Syst Technol 22(2):809–815

    Google Scholar 

  46. Wang L, Su J (2015) Robust disturbance rejection control for attitude tracking of an aircraft. IEEE Trans Control Syst Technol 23(6):2361–2368

    Google Scholar 

  47. Ma Z, Su J (2015) Robust uncalibrated visual servoing control based on disturbance observer. ISA Trans 59:193–204

    Google Scholar 

  48. Shim H, Jo NH (2009) An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer. Automatica 45(1):296–299

    MathSciNet  MATH  Google Scholar 

  49. Jo NH, Joo Y, Shim H, Son YI (2014) A note on disturbance observer with unknown relative degree of the plant. Automatica 50(6):1730–1734

    MathSciNet  MATH  Google Scholar 

  50. Yang J, Li S, Yu X (2012) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169

    Google Scholar 

  51. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489

    Google Scholar 

  52. Lake BM, Salakhutdinov R, Tenenbaum JB (2015) Human-level concept learning through probabilistic program induction. Science 350(6266):1332–1338

    MathSciNet  MATH  Google Scholar 

  53. Lewis FL, Vrabie D, Vamvoudakis KG (2012) Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers. IEEE Control Syst Mag 32(6):76–105

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NFSC) under Grants 61533012, 91748120 and 61521063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, G., Su, J. Interactive Natural Motion Planning for Robot Systems Based on Representation Space. Int J of Soc Robotics 12, 345–354 (2020). https://doi.org/10.1007/s12369-019-00552-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-019-00552-9

Keywords

Navigation