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Abstract— This paper explores the expressive capabilities of
a swarm of miniature mobile robots within the context of
inter-robot interactions and their mapping to the so-called
fundamental emotions. In particular, we investigate how motion
and shape descriptors that are psychologically associated with
different emotions can be incorporated into different swarm
behaviors for the purpose of artistic expositions. Based on
these characterizations from social psychology, a set of swarm
behaviors is created, where each behavior corresponds to a
fundamental emotion. The effectiveness of these behaviors is
evaluated in a survey in which the participants are asked to
associate different swarm behaviors with the fundamental emo-
tions. The results of the survey show that most of the research
participants assigned to each video the emotion intended to
be portrayed by design. These results confirm that abstract
descriptors associated with the different fundamental emotions
in social psychology provide useful motion characterizations
that can be effectively transformed into expressive behaviors
for a swarm of simple ground mobile robots.

I. INTRODUCTION

Robots have progressively migrated from purely industrial
environments to more social settings where they interact
with humans in quotidian activities such as education [1],
companionship [2], [3], or health care and therapy [4], [5].
In these scenarios, on top of performing tasks related to the
specific application, there may be a need for the robots to
effectively interact with people in an entertaining, engaging,
or anthropomorphic manner [6].

The need for enticing interactions between social robots
and humans becomes especially pronounced in artistic ap-
plications. Robots have been progressively intertwined with
different forms of artistic expression, where they are used,
among others, to interactively create music [7], dance [8],
[9], [10], [11], act in plays [12], [13], [14], support perfor-
mances [15], or be the object of art exhibits by themselves
[16], [17], [18]. As in the traditional expressions of these
performing arts, where human artists instill expressive and
emotional content [19], [20], robots are required to convey
artistic expression and emotion through their actions.

While expressive interactions have been extensively stud-
ied in the context of performing arts, the focus has been
primarily on anthropomorphic robots, especially humanoids
[12], [21], [22]. However, for faceless robots or robots with
limited degrees of freedom for which mimicking human
movement is not an option, creating expressive behaviors can
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pose increased difficulty [23], [24], [25]. We are interested in
exploring the expressive capabilities of a swarm of miniature
mobile robots, for which the study of expressive interactions
is sparse [26], [27], [28]. This can be contrasted with more
anthropomorphic robots, for which there is already a precon-
ceived understanding of emotive expressiveness. This choice
is driven in part by the increased prevalence of multi-robot
applications and the envisioned, resulting large-scale human-
robot teams [29], [30], [31]; and in part by the expressive
possibilities of the swarm as a collective in contrast to the
robots as individuals. While using teams of mobile robots
to create artistic effects in performances is not something
new [15], [32], our aim is to provide a framework to use
these types of robotic teams in performances without the
need for a choreographer to specify the parameters of the
robots’ movements, as in [25].

Social psychology has extensively studied which motion
and shape descriptors are associated with different funda-
mental emotions, e.g. [33], [39], [35], [36], [37]. In this
paper, we study how such attributes can be incorporated into
the movements of a swarm of mobile robots to represent
emotions. In particular, a series of swarm behaviors associ-
ated with the so-called fundamental emotions are designed
and evaluated in a user study in order to determine if a
human can identify the different fundamental emotions by
observing the swarm aggregate behavior and movement of
the individual robots.

The paper is organized as follows: In Section II, we
outline the motion and shape characteristics psychologically
linked to the different fundamental emotions. The behaviors
included in the user study, implemented on the swarm
according to the features described in the social psychology
literature, are characterized in Section III. The procedure
and results of the study conducted with human subjects
are presented in Section IV, along with the discussion.
An implementation of the proposed swarm behaviors on a
real robotic platform is presented in Section V. Section VI
concludes the paper.

II. EMOTIONALLY EXPRESSIVE MOVEMENT

For robotic swarms to participate in artistic expositions
and effectively convey emotional content, the swarm’s be-
havior when depicting a particular emotion should be recog-
nizable by the audience, thus producing the effect intended
by the artist. However, the lack of anthropomorphism in a
robotic swarm can pose a challenge when creating expressive
motions for human spectators. In this section, we present a
summary of motion and shape features that have been linked
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TABLE I
MOVEMENT AND SHAPE ATTRIBUTES ASSOCIATED WITH DIFFERENT EMOTIONS AND EMOTION VALENCES.

Shape Features Size Features Movement Features

Emotion

Happiness roundness, curvilinearity [33] big [34] smoothness [35]
Surprise roundness [33] very big [34]
Sadness roundness [33] small [34] small, slow [36], [37]
Anger large, fast, angular [36]
Fear downward pointing triangles [38] small, slow [36], [37]

Valence
Positive roundness [38], [33] rounded movement trace [38], [33]
Negative angularity [38], [33] angular movement trace [38], [33]

to different emotions in the social psychology literature,
which will serve as inspiration to create expressive behaviors
for swarms of mobile robots.

In this study, we focus on the so-called fundamental
emotions [39], [40]—i.e. happiness, sadness, anger, fear,
surprise and disgust—to produce a tractable set of emotion
behaviors to be executed by the robotic swarm. An emotion
is considered fundamental or basic if it is inherent to human
mentality and adaptive behavior, and remains recognizable
across cultures [41]. In addition, fundamental emotions pro-
vide a basis for a wider range of human emotions, which
appear at the intersection of the basic emotions with varying
intensities [42].

The robotic system considered for this study is a swarm
of miniature differential-drive robots, the GRITSBots [43].
As shown in Fig. 1, the GRITSBots are faceless robots
that do not possess any anthropomorphic features. While
Laban Movement Analysis [44] has been used in robotic
systems to convey emotional content through acceleration
patterns [45], [46], [47], [48], when considering large robot
swarms, the individual robots may be limited in size and
actuation capabilities, thereby restricting their ability to use
acceleration as their expressive means. For this reason,
along with the characteristic non-anthropomorphism of a
swarm and the possibilities of its collective behavior, we
draw inspiration from abstract shape and motion descriptors
associated with different fundamental emotions [34] to create
different swarm behaviors.

Table I presents a summary of the shape, movement
and size attributes of abstract objects associated with some
fundamental emotions and emotion valences. Among these
characterizations, those related to shape and size represent
the impact of the form of an object on its emotion attribution.
In particular, angular shape contours are typically associated
with emotions with a negative valence and high arousal1—
i.e. anger, fear and disgust—while round shape contours
are linked to positive emotions (happiness and surprise) or
emotions with very low activation levels (sadness) [38], [33].

1In this context, the term valence designates the intrinsic attractiveness
(positive valence) or aversiveness (negative valence) of an event, object,
or situation [49]. The valence of an emotion thus characterizes its positive
or negative connotation. Among the fundamental emotions, happiness and
surprise have positive valence, while the remaining four—sadness, fear,
disgust and anger—are classified under negative valence [50]. On the other
hand, the term arousal refers the activation or deactivation associated with
an emotion.

Fig. 1. The GRITSBot, a 3cmx3cm miniature mobile differential drive
robot. The robotic swarm considered in this study is composed of 15
GRITSBots. The top view of these robots is used in the simulations shown
to the study participants when evaluating the different swarm behaviors.

The size of a particular object also affects its emotional
perception, with bigger objects being typically associated
with larger emotion arousal (e.g. surprise) and smaller sizes
with emotions with low activation [34]. Table I also presents
how the features of different movement patterns are related
to perceived emotions [36]. Analogously to shape contours,
smoothness of movement is related to the pleasantness of
the motion, thus evoking emotions with positive valence
[35], while an angular movement trace—interpreted as the
trajectory taken by the robot over time—is linked to negative
emotions [36]. Speed of movement also influences the emo-
tion attribution, with higher peak velocities being identified
with angry states [36] and slower movements that integrate
into smaller trajectories over time being connected to fearful
and sad emotional states [36], [37].

While the summary of features related to emotions in
Table I provides a good starting point for generating swarm
behaviors for most fundamental emotions, literature on
motion characterizations of disgust is scarce. In order to
get some intuition about which traits the swarm behavior
should portray when embodying this emotion, we direct our
attention towards characterizations associated with emotion
valence. The shape and motion characterizations of positive
and negative emotion valences in the lower part of Table I
serve as a basis to design the swarm behavior associated with
disgust.

The behavior of a robotic swarm depends on how the
interactions are established between members of the swarm
and what control commands are executed by the individuals



Fig. 2. The behavior of a robotic swarm depends on which interactions
are considered between the robots, which information is exchanged through
those interactions, and how each robot acts on such information. Different
interaction schemes and control laws produce distinctly different swarm
behaviors.

based on the information exchanged in those interactions, as
illustrated in Fig. 2. While the GRITSBots as individuals
cannot change their shape, the collective behavior of the
swarm may embody the shape and size attributes included
in Table I. On the other hand, the movement features in
Table I can be depicted through the movement trace that
each individual robot executes as it progresses towards the
collective shape. In the next section, we describe how all
these attributes are implemented in the controller of the
robots to produce the behaviors that embody the different
fundamental emotions.

III. SWARM BEHAVIOR DESIGN

For our swarm of robots to be expressive, we need to
decide which interactions a robot should establish with the
robots in its vicinity and its environment, and which control
law the robot should execute with the information obtained
through those interactions to produce an appropriate swarm
behavior. In this paper, we draw inspiration from standard
algorithms for multi-robot teams, namely cyclic pursuit [51],
[52], [53] and coverage control [54], [55], to design the
interactions and the control laws for the swarm. This section
describes how the shape and movement features described in
Section II are incorporated into the control laws of a swarm
of 15 GRITSBots in order to create expressive behaviors.

A. Collective Behavior

The attributes presented in Section II characterize how
the motion and shape of an abstract object can convey
emotion. Here we treat the GRITSBots as objects capable
of reconfiguring themselves on a stage in order to generate
an expressive behavior.

Among the attributes presented in Table I, it seems natural
for those related to shape and size to be depicted by the
collective behavior of the swarm, given that the individual
robots can move within the planar environment but cannot
change their individual shape. To this end, the feature of
roundness is incorporated into the behaviors of happiness,
surprise and sadness. Those behaviors are thus based on the
robots following some kind of circular contour, as illustrated
in Figs. 3, 4 and 5, respectively. In the case of the happiness

behavior, a sinusoid is superimposed to the base shape of a
circle, producing ripples on the circle contour to embody the
curvilinearity feature; and the corresponding size attribute—
big—is incorporated through the circle dimensions with
respect to the domain. As for the surprise emotion, the very
big size attribute was included in the behavior by making
the radius of the circle grow with time, thus producing
a sensation of increasing size. Finally, the circular path
dimension was reduced (small attribute) in the case of the
sadness behavior, incorporating also the slowness attribute by
making the robots follow the contour at a very low speed.

The scarcity of shape characterizations for the other three
emotions—fear, disgust and anger—motivates a different
approach for the design of the collective behavior of the
swarm. For these emotions, we choose to specify which areas
of the domain the robots should concentrate around. We do
so by defining a density function, φ, that characterizes the
areas of the domain where we want the robots to group.
In all three behaviors, the robots are initially distributed at
random positions within the domain to then spread according
to the particular density function selected. In the case of
fear, the density function is uniform across the domain, so
that it makes the robots scatter as far as possible from their
neighbors, as shown in Fig. 6. For the disgust motion, Fig.
7, the density is chosen to be high around the boundaries,
making the robots move from the center towards the ex-
terior of the domain—the stage—, giving the sensation of
animosity between robots. Finally, in order to show anger,
the robots are made to stay closer to the center of the domain.
This strategy, combined with the individual robot control that
will be explained in Section III-B, is intended to give the
sensation of a heated environment, a riot.

The control laws needed to achieve these behaviors are
explained in detail in Appendix I. In each of those laws,
a robot in the swarm is treated as a point that can move
omnidirectionally. However, the GRITSBots (see Fig. 1) are
differential drive robots and, thus, are unable to move per-
pendicularly to the direction of their wheels. This movement
restriction is used to our advantage in the individual control
strategies described in Section III-B, where we exploit the
limitations on the planar movement of the differential drive
robots to implement the movement features in Table I.

B. Individual Robot Control

The swarm behavior strategies and corresponding control
laws introduced in Section III-A and detailed in Appendix
I treat each robot in the swarm as if it could move omnidi-
rectionally. That is, if we denote by p ∈ R2 the position of
a robot, then its movement could be expressed using single
integrator dynamics,

ṗ = u, (1)

with u ∈ R2 denoting the control action given by the chosen
behavior. However, the differential drive configuration of the
GRITSBot implies that it cannot execute single integrator
dynamics. Instead, the motion of a differential drive robot is



(a) t = 0 s (b) t = 1 s (c) t = 4 s

Fig. 3. Sequence of snapshots of the happiness behavior. Each robot follows a point that travels along a circular sinusoid, visually producing a circular
shape with small ripples. The trajectories of five robots have been plotted using solid lines. See the full video at https://youtu.be/q_FenI1DdRY.

(a) t = 0 s (b) t = 1 s (c) t = 4 s

Fig. 4. Sequence of snapshots of the surprise behavior. The robots move along a circle of expanding radius, thus creating a spiral effect. The trajectories
of five robots have been plotted using solid lines. See the full video at https://youtu.be/VYIJ5hBeOIU.

(a) t = 0 s (b) t = 2 s (c) t = 8 s

Fig. 5. Sequence of snapshots of the sadness behavior. The robots move along a small circle at a low speed. The trajectories of five robots have
been plotted using solid lines. After 8 seconds, each robot has only displaced approximately an eighth of the circumference. See the full video at
https://youtu.be/rfHZcFnRFg8.

described by the so-called unicycle dynamics,

ẋ = v cos θ,

ẏ = v sin θ, (2)

θ̇ = ω,

with p = (x, y)T being the robot’s cartesian position and
θ its orientation in the plane. The control inputs, v and ω,
correspond to the linear and angular velocities of the robot,
respectively, as shown in Fig. 2.

In order to convert the input u in (1) into the executable
control commands in (2), we use the near-identity diffeo-
morphism in [56]. The details of this transformation are
described in detail in Appendix II. Using this transformation
between the single integrator and the unicycle dynamics, we
get to tune two scalar parameters, l and K, that regulate how
smooth the movement trace of each robot is and how fast it
travels when executing a certain control input, respectively.
Figure 9 illustrates the differences between directly executing

https://youtu.be/q_FenI1DdRY
https://youtu.be/VYIJ5hBeOIU
https://youtu.be/rfHZcFnRFg8


(a) t = 0 s (b) t = 3 s (c) t = 15 s

Fig. 6. Sequence of snapshots of the fear behavior. The robots spread out uniformly over the domain. As it can be observed from the trajectories, they
displace slowly with a non-smooth, angular movement trace. See the full video at https://youtu.be/jz-5INUd8wc.

(a) t = 0 s (b) t = 5 s (c) t = 12 s

Fig. 7. Sequence of snapshots of the disgust behavior. The robots spread out slowly towards the boundaries of the domain, with a trajectory with a
non-smooth, angular trace. See the full video at https://youtu.be/EprfuCsuuRM.

(a) t = 0 s (b) t = 2 s (c) t = 6 s

Fig. 8. Sequence of snapshots of the anger behavior. The density function is defined as a Gaussian at the center of the domain, causing the robots to
concentrate around this area. However, the fact that the robots move with high speed causes overshoots in their positions, thus producing a significantly
angular movement trace. See the full video at https://youtu.be/kAGBrMkOtyY.

the single integrator dynamics in (1), and performing two
different diffeomorphisms on the single integrator control
value, u. We can observe how choosing a small value for the
diffeomorphism parameter l results in an angular movement
trace, while a smooth trajectory is observed when selecting
a bigger value for this parameter.

Given the ability to regulate the angularity and the speed
of the movement trace of a robot, we are in a position to
implement the movement features included in Table I. The
smoothness feature of the happiness emotion is translated

into a smooth and fast individual control. Analogous dif-
feomorphism parameters are chosen to show surprise, given
the roundness and very big size attributes associated with
this emotion. As for sadness, even though it is a negative
emotion, we focus on its specific characterizations provided
in Table I to characterize the motion as slow and smooth. We
can observe how, indeed, the trajectories depicted in Figs. 3,
4 and 5 are smooth given the choice of a large l in the
diffeomorphism. The speed of the robots is illustrated by the
total distance covered in time: while significant distances are

https://youtu.be/jz-5INUd8wc
https://youtu.be/EprfuCsuuRM
https://youtu.be/kAGBrMkOtyY


Fig. 9. Effect of the diffeomorphism parameter, l, on the movement trace
of an individual robot. In all cases, the controller is following a particle that
moves along the black dashed line—the desired trajectory. The top figure
illustrates how an agent capable of executing the single integrator dynamics
in 1 follows closely the desired trajectory. The other two trajectories, in
blue, illustrate two different diffeomorphisms performed over the control
action of the single integrator. In the middle, a small value of l results in an
angular movement trace that follows quite closely the desired trajectory. In
contrast, at the bottom, a large value of l results on a very smooth movement
trace, at the expense of following more loosely the desired trajectory.

TABLE II
MOTION AND SHAPE ATTRIBUTES SELECTED FOR THE BEHAVIORS

ASSOCIATED WITH THE FUNDAMENTAL EMOTIONS.

Emotion Swarm Behavior Robot Control

Happiness sinusoid over circle fast, smooth
Surprise expanding circle fast, smooth
Sadness small circle very slow, smooth
Fear uniform coverage slow, angular
Disgust coverage on boundaries slow, angular
Anger coverage on center fast, angular

traveled within 4 seconds for the behaviors of happiness and
surprise, the robots in the sadness behavior displace very
little in 8 seconds.

Table I associates an angular movement trace with the
emotions with negative valence. Consequently, a controller
that produces an angular movement trace, corresponding
to a small l in the diffeomorphism, is selected for the
remaining emotions—fear, disgust and anger. The movement
features presented in Table I for anger and fear are translated
into fast and slow control, respectively. Given the lack of
characterization for the speed of disgust, we opt to implement
a slow motion. We can observe how, for Figs. 6-8, the
trajectory traces have sharp turns and angularities, specially
in the case of the anger behavior, which is accentuated by
the proportional gain corresponding to a large velocity.

The swarm behavior selected for each of the emotions
according to the shape characterizations discussed in Section
III-A and the diffeomorphism parameters in this section are
summarized in Table II.

IV. USER STUDY

The behaviors described in Section III were implemented
in simulation on a team of 15 differential drive robots,
producing a video for each of the emotions. Snapshots
generated from each of the videos, along with the URL links,
are included in Figs. 3 to 8.

A. Procedure

A user study was conducted to evaluate if the swarm
interactions and individual robot control strategies selected
in Section III produce expressive swarm behaviors that
correspond to the fundamental emotions. The hypothesis to
test was the following,
H1: Overall Classification. Participants will perform better

than chance in identifying the fundamental emotion
each swarm behavior is intended to represent.

A total of 45 subjects (32 males and 13 females) par-
ticipated in the study, with 29 of them not having any
academic or professional background in robotics. As for
the age of the participants, the distribution was as follows:
31.1% between 18 and 24 years old, 60.0% between 25
and 34 years old, 6.7% between 35 and 44 years old, and
2.2% between 45 and 54 years old. After responding to the
demographic questions, each subject was shown 6 videos,
each of them corresponding to the behaviors designed for
each of the fundamental emotions. The videos were shown
sequentially, one behavior at a time, and in a random order.
The human subjects were instructed to watch each video
in full, after which they were presented with a multiple
choice (single answer) question to select the emotion that
best described the movement of the robots in the video, with
the possible answers being the 6 fundamental emotions. The
participants had no time limit when classifying the videos
and were allowed to rewatch them as many times as desired.
Furthermore, at any point, the participants were allowed to
navigate to previous questions in the survey and modify their
answers, if desired, before submitting the survey responses.

B. Results and Discussion

The responses of the survey were collected and summa-
rized in Table III. The columns are labeled signaled emotion
and each of them contains the responses given to the video
of the behavior designed for a fundamental emotion. In
the confusion matrix in Table III, the emotions are ordered
counterclockwise from positive to negative valence according
to the circumplex model in Fig. 10.

The diagonal terms of the confusion matrix, boldfaced
in Table III, correspond to the percentage of responses that
identified the emotion in the video as the one intended by
the authors. For all the diagonal values, the percentage is
much higher than the one given by chance (16.67%), and
in most cases—happiness, sadness, anger and surprise—this
value reaches the absolute majority (greater than 50%). In the
cases of fear and disgust, while the relative majority of the
responses identified the emotion according to our hypothesis
(40% for both emotions), the values are lower than 50%. This
can be potentially caused by the proximity of such emotions



TABLE III
CONFUSION MATRIX CALCULATED WITH THE SURVEY RESPONSES.

Signaled Emotion
Happiness Surprise Anger Fear Disgust Sadness

Happiness 64.44 17.78 8.89 4.44 4.44 13.33
Surprise 11.11 57.78 8.89 2.22 0.00 0.00
Anger 8.89 0.00 55.56 13.33 15.56 4.44
Fear 6.67 13.33 20.00 40.00 35.56 15.56
Disgust 6.67 4.44 4.44 26.67 40.00 2.22

R
es

po
ns

e
(%

)

Sadness 2.22 6.67 2.22 13.33 4.44 64.44

happiness

surprise

anger
fear

disgust

sadness

arousal

valence

Fig. 10. Representation of the survey responses in the valence-arousal
plane. The location of each emotion is represented with a color-coded cross
according to the circumplex model of affect [57], [50]. Next to each emotion,
a sequence of color-coded circles represent how the human subjects identify
each behavior, with the diameter of each circle being proportional to the
amount of responses given to the corresponding emotion. We can observe
how, in general, the majority of users labels the behavior according to
the signaled emotion, with most variations occurring generally with those
emotions closest in the plane. In the cases of fear and disgust, while the
relative majority of subjects still labels their behaviors according to the
hypothesis, we observe a significant amount of confusion among them,
which may be due to the proximity of such emotions in terms of valence
and arousal.

0.00

25.00

50.00

75.00

100.00

Happiness Surprise Anger Fear Disgust Sadness

With Robotics Background No Robotics Background

Validation of Hypothesis (%) by Robotics Background

Fig. 11. Percentage of subjects that identified each emotion in the video
according to the hypothesis, classified according the robotics background of
the subjects. There is no substantial difference between the responses given
by the subjects that had experience studying or researching in robotics and
those who did not.

in terms of valence and arousal, as illustrated in Fig. 10. A
Pearson’s chi-squared test goodness of fit was performed for
the responses given to each swarm behavior, confirming that,
at p < 0.0001, the frequency distributions for each emotion
differ significantly with respect to a uniform distribution
where all the emotions are considered equally likely to be
chosen. Therefore, the assignment of an emotion to each of
the videos was not made at random by the participants, but
rather the movement and shape features incorporated in the
swarm behaviors were effectively identified as the intended
emotions.

Based on the demographic data collected, the validation of
hypothesis H1 was not affected significantly by the robotics
background of the subjects. As shown in Fig. 11, for the 4
emotions for which the majority of the aggregate responses
in Table III aligned with the hypothesis—i.e. happiness,
surprise, anger and sadness—all subjects, regardless of their
background in robotics, identified the emotions according to
the hypothesis in more than 50% of the cases. In fact, the
Pearson’s chi-square test discards, at p < 0.01, the random
assignment of emotions from the responses of participants
both with and without robotics background. For the emotions
of fear and disgust—those with the lowest accuracies in Table
III—the responses aligned better with hypothesis H1 for
those subjects without a robotics background, for which the
Pearson’s chi-square test discards the fitting of the data under

0.00

25.00

50.00

75.00

100.00

Happiness Surprise Anger Fear Disgust Sadness

Male Female

Validation of Hypothesis (%) by Gender

Fig. 12. Percentage of subjects that successfully assigned the emotion
to the corresponding video, according to the hypothesis, according to the
gender of the participants. We can observe how the responses of the female
subjects are consistently more aligned with the hypothesized behavior for
each of the videos.



(a) Happiness
https://youtu.be/HQ6YkoADMBg. (b) Surprise

https://youtu.be/xhPTQg4iLvM. (c) Sadness
https://youtu.be/i7cLP_GcL54.

(d) Fear
https://youtu.be/6xqb-sQck6I. (e) Disgust

https://youtu.be/RgPyXVuprX8. (f) Anger
https://youtu.be/VGlLPJGlwvo.

Fig. 13. Snapshots of the swarm behaviors implemented on a team of 12 GRITSBot X, taken in the Robotarium with an overhead camera that provides
an analogous perspective to the one used in the simulations (Figs. 3 to 8). The trajectories of four robots have been plotted using solid lines. A link to the
full video of each behavior is provided below each snapshot.

a uniform distribution at a significance level of p < 0.01.
While the subjects with robotics background still validated
hypothesis H1 for these two emotions, the significance levels
for the test are slightly higher (p < 0.05 for fear and p < 0.1
for disgust), possibly due to the fact that there were only 16
subjects with robotics background.

In contrast, when performing an analysis by gender, the
validation of hypothesis H1 was consistently larger in the
case of female subjects, as shown in Fig. 12. While the male
participants still validated hypothesis H1 for all emotions, the
accuracy was higher among the female subjects, being in 5
out of the 6 emotions higher than 50%. Only in the case
of fear the accuracy for the female participants was slightly
under the majority threshold (46.15%). As for the statistical
significance of the responses, the frequency of distributions
for each emotion differs from a uniform distribution at
p < 0.05 for the male participants and at p < 0.01 for the
female ones. Thus, while neither of the populations assign
emotions to the behaviors at random, the motion and shape
characterizations selected for the swarm behaviors were more
clearly identified by the female participants in the study.

In conclusion, the data collected in the user study unan-
imously supports hypothesis H1, thus confirming that the
swarm behaviors and individual robot control paradigms
designed in Section III effectively depict each of the funda-
mental emotions. Therefore, the behaviors considered in this
study provide a collection of motion primitives for robotic
swarms to effectually convey emotions in artistic expositions.

V. ROBOTIC IMPLEMENTATION

The swarm behaviors proposed in Section III and sim-
ulated for the user study in Section IV were implemented
on a real robotic platform to evaluate their efficacy. Each
behavior was executed by a team of 12 GRITSBots X
on the Robotarium, a remotely accessible swarm robotics
testbed at the Georgia Institute of Technology [58]. Similarly
to the GRITSBot (images/Fig. 1), the GRITSBot X has a
differential-drive configuration, but with a bigger size: a
10cm×10cm footprint. The robots move on the Robotarium
arena, a 4.3m×3.6m surface. The setup is shown in Figs. 13
and 14.

The transition from the simulated behaviors in Section III
and Appendices I and II to their implementation on a real
robotic platform involved the tuning of the parameters of the
shapes and density functions associated with the behaviors,
in accordance to the changes in size of the individual
robots as well as of the Robotarium arena. Furthermore, the
diffeomorphism parameters (l and K in Section III-B), while
still reflected the specifications in Table II qualitatively, were
adjusted to accommodate the dynamics and actuator limits
of the GRITSBot X.

The resulting robotic behaviors are illustrated in Figs. 13
and 14. Figure 13 presents a top view, analogous to the
perspective used in the simulations (Figs. 3 to 8), with the
purpose of showing the similarity between the simulated
behaviors and the real behaviors. As can be observed in the
snapshots and linked videos, for most emotions the simulated
and real behavior do not present significant differences. The

https://youtu.be/HQ6YkoADMBg
https://youtu.be/xhPTQg4iLvM
https://youtu.be/i7cLP_GcL54
https://youtu.be/6xqb-sQck6I
https://youtu.be/RgPyXVuprX8
https://youtu.be/VGlLPJGlwvo


(a) Happiness.
https://youtu.be/EeEyIGn2BV0. (b) Surprise

https://youtu.be/hHMjYMv6Ojo. (c) Sadness
https://youtu.be/jFWMtu5oYEo.

(d) Fear
https://youtu.be/j72EXA14Scs. (e) Disgust

https://youtu.be/py_cUXCkgZM. (f) Anger
https://youtu.be/Thj5s1vQvYA.

Fig. 14. Snapshots of the swarm behaviors implemented on a team of 12 GRITSBot X in the Robotarium, from a perspective point of view. The snapshots,
taken with a camera located 1.70m over the Robotarium surface, provide a similar angle view to that of a human spectator. A link to the full video is
provided for each behavior.

biggest contrast emerges for the anger emotion, where the
actuator limits and safety constraints of the GRITSBot X
prevent an exact replication of the simulated behavior, where
very high peak velocities were executed by some individuals.
Nevertheless, the behavior still portrays its characteristic
features as described in Section III. A perspective view of
the experiments taken at 1.70m over the Robotarium surface
is presented in Fig. 14. Despite changing the angle of view to
that of an average person, the behaviors are still identifiable
and highly distinctive.

VI. CONCLUSIONS

In this paper, we investigated how motion and shape
descriptors from social psychology can be integrated into
the control laws of a swarm of robots to express funda-
mental emotions. Based on such descriptors, a series of
swarm behaviors were developed, and their effectiveness in
depicting each of the fundamental emotions was analyzed
in a user study. The results of the survey showed that, for
all the swarm behaviors created, the relative majority of
the subjects classified each behavior with the corresponding
emotion according to the hypothesis, being this ratio over
50% for 4 of the 6 fundamental emotions.

Some confusion was observed in the classification of the
behaviors of fear and disgust, which can be attributed both
to the similarity between both emotions in terms of valence
and arousal, as well as to the lack of descriptors existent
in the literature for the disgust emotion, which complicated
the characterization of its associated swarm behavior. Further
analysis of the results showed that the robotics background
of the participants had no influence on the classification of
the behaviors, while the responses of the female participants

were more aligned with the hypothesis in comparison to their
male counterparts.

The proposed behaviors were implemented on a team of
differential drive robots with the objective of illustrating the
feasibility of the proposed behaviors on real robotic plat-
forms. While some differences arose between the simulated
and the physical implementation due to the dynamics of
the robots, each behavior still displayed its characteristic
features. This suggests that the control laws proposed for
the different emotions are potentially transferable to other
ground robotic systems or even to aerial swarms.

In conclusion, the motion and shape descriptors extracted
from social psychology afforded the development of distinct
expressive swarm behaviors, identifiable by human observers
under one of the fundamental emotions, thus providing a
starting point for the design of expressive behaviors for
robotic swarms to be used in artistic expositions.

APPENDIX I
SWARM BEHAVIORS

In Section III-A, a series of swarm behaviors were de-
signed based on the movement and shape attributes associ-
ated with the different fundamental emotions. This appendix
includes the mathematical expressions of the control laws
used to produce the different swarm behaviors. Note that all
the control laws included here treat each robot in the swarm
as a point that can move omnidirectionally according to
single integrator dynamics as in (1). The transformation from
single integrator dynamics to unicycle dynamics is discussed
in detail in Appendix II.

https://youtu.be/EeEyIGn2BV0
https://youtu.be/hHMjYMv6Ojo
https://youtu.be/jFWMtu5oYEo
https://youtu.be/j72EXA14Scs
https://youtu.be/py_cUXCkgZM
https://youtu.be/Thj5s1vQvYA


(a) Happiness: The robots follow points moving
along a circle of radius R with a superposed
sinusoid of amplitude A.

(b) Surprise: The robots follow points moving
along a circle of expanding radius. Two snapshots,
corresponding to R(t) = {Rmin, Rmax}, are
shown here.

(c) Sadness: The robots follow points that move
slowly along the contour of a small circle with
respect to the dimensions of the domain.

Fig. 15. Shapes selected for the happiness, surprise and sadness swarm behaviors. Each agent—here depicted as a red circle—follows a point (black
circle) that moves along the dashed trajectory. The go-to-go controller that makes each agent follow the corresponding point is illustrated with blue arrows
for 3 of the agents.

(a) Anger: the Gaussian density makes the robots
concentrate around the center of the domain.
This choice, along with the selection of a large
proportional gain in the diffeomorphism in (18),
makes the robots stay in each other’s vicinity and
react to each others movement, producing a jarring
movement trace.

(b) Disgust: the density function presents high
values along the boundaries of the domain. This
choice allows the team to spread along the bound-
ary, giving the sensation of animosity between
robots.

(c) Fear: the density function is chosen to be
uniform across the domain. With this choice, the
robots scatter evenly over the domain from their
initial positions.

Fig. 16. Density functions associated to represent the emotions of anger (a), disgust (b) and fear (c). The higher the density (darker color), the higher
the concentration of robots will be in that area. The red circles represent the position of the agents once the control law in (13) has converged.

A. Happiness

The swarm movement selected for the happiness behavior
consists of the robots following the contour of a circle with
a superimposed sinusoid. This shape is illustrated in Fig. 15a
and can be parameterized as

xh(θ) = (R+A sin(fθ)) cos θ,

yh(θ) = (R+A sin(fθ)) sin θ,
θ ∈ [0, 2π), (3)

where R is the radius of the main circle and A and f are
the amplitude and frequency of the superposed sinusoid,
respectively. For the shape in Fig. 15a, the frequency of the
superimposed sinusoid is f = 6.

If we have a swarm of N robots, we can initially position
Robot i according to

pi(0) = [xh(θi(0)), yh(θi(0))]
T , i = 1, . . . , N, (4)

with
θi(0) = 2πi/N. (5)

Then the team will depict the desired shape if each robot
follows a point evolving along the contour in (3),

ṗi = [xh(θi(t)), yh(θi(t))]
T − pi, (6)

with θi a function of time t ∈ R+,

θi(t) = atan2(sin(t+ θi(0)), cos(t+ θi(0))). (7)

B. Surprise

In the case of the surprise emotion, each robot follows a
point moving along a circle with expanding radius, as in Fig.
15b. Such shape can be parameterized as,

xsur(θ, t) = R(t) cos θ,

ysur(θ, t) = R(t) sin θ,
θ ∈ [0, 2π), (8)

with

R(t) = mod(t, Rmax −Rmin) +Rmin, t ∈ R+, (9)

to create a radius that expands from Rmin to Rmax.



Analogously to the procedure described in Section I-A, in
this case the robots can be initially located at

pi(0) = [xsur(θi(0), 0), ysur(θi(0), 0)]
T , i = 1, . . . , N,

(10)
with θi(0) given by (5). The controller for each robot is then
given by,

ṗi = [xsur(θi(t), 0), ysur(θi(t), 0)]
T − pi, (11)

with θi(t) as in (7).

C. Sadness

For the case of the sadness emotion, the robots move along
a circle of small dimension as compared to the domain. The
strategy is analogous to the ones in (6) and (11), with the
parameterization of the contour given by,

xsad(θ) = R cos θ,

ysad(θ) = R sin θ,
θ ∈ [0, 2π), R > 0. (12)

D. Anger, Fear and Disgust

For the remaining emotions—anger, disgust and fear—the
swarm coordination is based on the coverage control strategy,
which allows the user to define which areas the robots should
concentrate around.

If we denote by D the domain of the robots, the areas
where we want to position the robots can be specified by
defining a density function, φ : D → [0,∞), that assigns
higher values to those areas where we desire the robots to
concentrate around. We can make the robots distribute them-
selves according to this density function by implementing a
standard coverage controller such as [54], where

ṗi = κ(ci(p)− pi), (13)

where p = [pT1 , . . . , p
T
N ]N denotes the aggregate positions of

the robots and κ > 0 is a proportional gain. In the controller
in (13), ci(p) denotes the center of mass of the Voronoi cell
of Robot i,

ci(p) =

∫
Vi(p)

qφ(q)dq∫
Vi(p)

φ(q)dq
, (14)

with the Voronoi cell being characterized as,

Vi(p) = {q ∈ D | ‖q − pi‖ ≤ ‖q − pj‖, j 6= i}. (15)

Fig. 16 shows the densities selected for each of the emotions,
where the red circles represent the positions of the robots
in the domain upon convergence, achieved by running the
controller in (13).

APPENDIX II
INDIVIDUAL ROBOT CONTROL

The swarm behaviors described in Appendix I assume
that each robot in the swarm can move omnidirectionally
according to

ṗi = ui, (16)

with pi = (xi, yi)
T ∈ R2 the Cartesian position of Robot

i in the plane and ui = (uix, uiy)
T ∈ R2 the desired

Fig. 17. Parameters involved in the near-identity diffeomorphism in (18),
used to transform the single integrator dynamics in (16) into unicycle
dynamics (17), executable by the GRITSBots. The pose of the robot is
determined by its position, p = (x, y)T , and its orientation, θ. The single
integrator control, u, is applied to a point p̃ located at a distance l in front
of the robot. The linear and angular velocities, v and ω, that allow the robot
to track p̃ are obtained applying the near-identity diffeomorphism in (18).

velocity. However, the GRITSBot (Fig. 1) has a differential-
drive configuration and cannot move omnidirectionally as
its motion is constrained in the direction perpendicular to
its wheels. Instead, its motion can be expressed as unicycle
dynamics,

ẋi = vi cos θi,

ẏi = vi sin θi, (17)

θ̇i = ωi,

with θi the orientation of Robot i and (vi, ωi)
T the linear

and angular velocities executable by the robot, as shown in
Fig. 17.

In this paper, the single integrator dynamics in (16) are
converted into unicycle dynamics, as in (17), using a near-
identity diffeomorphism [56],(

vi
ωi

)
= K

 cos θi sin θi

− sin θi
l

cos θi
l

(ux
uy

)
, K, l > 0. (18)

A graphical representation of this transformation is included
in Fig. 17: the input u = (ux, uy)

T is applied to a point
located at a distance of l in front of the robot, p̃, which can
move according to the single integrator dynamics in (16).
The effect of this parameter in the movement of the robot is
illustrated in Fig. 9. The parameter K acts as a proportional
gain.
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L. Cañamero, A. Hiolle, M. Lewis, I. Baroni, M. Nalin, P. Cosi,
G. Paci, F. Tesser, G. Sommavilla, and R. Humbert, “Multimodal child-
robot interaction: Building social bonds,” J. Hum.-Robot Interact.,
vol. 1, no. 2, pp. 33–53, Jan. 2013.



[3] G. Hoffman, “Dumb robots, smart phones: A case study of music
listening companionship,” in 2012 IEEE RO-MAN: The 21st IEEE
International Symposium on Robot and Human Interactive Communi-
cation, Sept 2012, pp. 358–363.

[4] J.-J. Cabibihan, H. Javed, M. Ang, and S. M. Aljunied, “Why robots?
a survey on the roles and benefits of social robots in the therapy of
children with autism,” International Journal of Social Robotics, vol. 5,
no. 4, pp. 593–618, Nov 2013.

[5] H. Kozima, M. P. Michalowski, and C. Nakagawa, “Keepon,” Interna-
tional Journal of Social Robotics, vol. 1, no. 1, pp. 3–18, Jan. 2009.

[6] C. Breazeal, “Toward sociable robots,” Robotics and Autonomous
Systems, vol. 42, pp. 167–175, 2003.

[7] G. Hoffman and G. Weinberg, “Gesture-based human-robot jazz
improvisation,” in 2010 IEEE International Conference on Robotics
and Automation, May 2010, pp. 582–587.

[8] T. Bi, P. Fankhauser, D. Bellicoso, and M. Hutter, “Real-time dance
generation to music for a legged robot,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Madrid,
Oct. 2018, pp. 1038–1044.

[9] A. LaViers, L. Teague, and M. Egerstedt, Style-Based Robotic Motion
in Contemporary Dance Performance. Cham: Springer International
Publishing, 2014, pp. 205–229.

[10] A. Nakazawa, S. Nakaoka, K. Ikeuchi, and K. Yokoi, “Imitating
human dance motions through motion structure analysis,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, vol. 3,
Oct. 2002, pp. 2539–2544.

[11] K. Shinozaki, A. Iwatani, and R. Nakatsu, “Construction and eval-
uation of a robot dance system,” in RO-MAN 2008 - The 17th
IEEE International Symposium on Robot and Human Interactive
Communication, Aug. 2008, pp. 366–370.

[12] D. Lee, S. Park, M. Hahn, and N. Lee, “Robot actors and authoring
tools for live performance system,” in 2014 International Conference
on Information Science Applications (ICISA), May 2014, pp. 1–3.

[13] M. Perkowski, T. Sasao, J. H. Kim, M. Lukac, J. Allen, and S. Gebauer,
“Hahoe KAIST Robot Theatre: learning rules of interactive robot
behavior as a multiple-valued logic synthesis problem,” in 35th In-
ternational Symposium on Multiple-Valued Logic (ISMVL’05), May
2005, pp. 236–248.

[14] M. Sunardi and M. Perkowski, “Music to motion: Using music
information to create expressive robot motion,” International Journal
of Social Robotics, vol. 10, no. 1, pp. 43–63, Jan 2018.

[15] E. Ackerman, “Flying LampshadeBots Come Alive in Cirque du
Soleil,” IEEE Spectrum, 2014.

[16] M. Dean, R. D’Andrea, and M. Donovan, Robotic Chair. Vancouver,
B.C.: Contemporary Art Gallery, 2008.

[17] B. J. Dunstan, D. Silvera-Tawil, J. T. K. V. Koh, and M. Velonaki,
“Cultural robotics: Robots as participants and creators of culture,” in
Cultural Robotics, J. T. Koh, B. J. Dunstan, D. Silvera-Tawil, and
M. Velonaki, Eds. Cham: Springer International Publishing, 2016,
pp. 3–13.

[18] E. Vlachos, E. Jochum, and L. Demers, “Heat: The harmony exoskele-
ton self - assessment test,” in 2018 27th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), Aug
2018, pp. 577–582.

[19] A. Camurri, B. Mazzarino, M. Ricchetti, R. Timmers, and G. Volpe,
“Multimodal analysis of expressive gesture in music and dance per-
formances,” in Gesture-Based Communication in Human-Computer
Interaction, A. Camurri and G. Volpe, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 20–39.

[20] P. Juslin, From mimesis to catharsis: expression, perception, and
induction of emotion in music. Oxford: Oxford University Press,
2005.

[21] J. Or, “Towards the development of emotional dancing humanoid
robots,” International Journal of Social Robotics, vol. 1, no. 4, p.
367, Oct. 2009.

[22] M. Perkowski, A. Bhutada, M. Lukac, and M. Sunardi, “On synthesis
and verification from event diagrams in a robot theatre application,” in
2013 IEEE 43rd International Symposium on Multiple-Valued Logic,
May 2013, pp. 77–83.

[23] M. Bretan, G. Hoffman, and G. Weinberg, “Emotionally expressive dy-
namic physical behaviors in robots,” International Journal of Human-
Computer Studies, vol. 78, pp. 1 – 16, 2015.

[24] G. Hoffman, R. Kubat, and C. Breazeal, “A hybrid control system
for puppeteering a live robotic stage actor,” in RO-MAN 2008 - The

17th IEEE International Symposium on Robot and Human Interactive
Communication, Aug 2008, pp. 354–359.

[25] A. P. Schoellig, H. Siegel, F. Augugliaro, and R. D’Andrea, So
You Think You Can Dance? Rhythmic Flight Performances with
Quadrocopters. Cham: Springer International Publishing, 2014, pp.
73–105.

[26] G. Dietz, J. L. E, P. Washington, L. H. Kim, and S. Follmer, “Human
perception of swarm robot motion,” in Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing
Systems, Denver, Colorado, 2017, pp. 2520–2527.

[27] F. Levillain, D. St-Onge, E. Zibetti, and G. Beltrame, “More than the
sum of its parts: Assessing the coherence and expressivity of a robotic
swarm,” in 2018 IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), Aug 2018, pp. 583–588.

[28] D. St-Onge, F. Levillain, Z. Elisabetta, and G. Beltrame, “Collective
expression: how robotic swarms convey information with group mo-
tion,” Paladyn, Journal of Behavioral Robotics, vol. 10, pp. 418–435,
12 2019.

[29] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: A
survey,” Found. Trends Hum.-Comput. Interact., vol. 1, no. 3, pp. 203–
275, Jan. 2007.

[30] A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and M. Lewis,
“Human interaction with robot swarms: A survey,” IEEE Transactions
on Human-Machine Systems, vol. 46, no. 1, pp. 9–26, Feb. 2016.

[31] T. B. Sheridan, “Humanrobot interaction: Status and challenges,”
Human Factors, vol. 58, no. 4, pp. 525–532, 2016.

[32] J. Alonso-Mora, R. Siegwart, and P. Beardsley, “Human-Robot swarm
interaction for entertainment: From animation display to gesture
based control,” in Proceedings of the 2014 ACM/IEEE International
Conference on Human-robot Interaction, ser. HRI ’14. New York,
NY, USA: ACM, 2014, pp. 98–98.

[33] G. L. Collier, “Affective synesthesia: Extracting emotion space from
simple perceptual stimuli,” Motivation and Emotion, vol. 20, no. 1,
pp. 1–32, 1996.

[34] A. de Rooij, J. Broekens, and M. H. Lamers, “Abstract expressions of
affect,” International Journal of Synthetic Emotions, vol. 4, no. 1, pp.
1–31, 2013.

[35] J.-H. Lee, J.-Y. Park, and T.-J. Nam, Emotional Interaction Through
Physical Movement. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 401–410.

[36] F. E. Pollick, H. M. Paterson, A. Bruderlin, and A. J. Sanford,
“Perceiving affect from arm movement,” Cognition, vol. 82, no. 2,
pp. B51 – B61, 2001.
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