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Abstract
The “Computers are social actors” (CASA) assumption (Nass and Moon in J Soc Issues 56:81–103, 2000.
https://doi.org/10.1111/0022-4537.00153) states that humans apply social norms and expectations to technical devices. One
such norm is to distort one’s own response in a socially desirable direction during interviews. However, findings for such an
effect are mixed in the literature. Therefore, a new study on the effect of social desirability bias in human–robot evaluation was
conducted, aiming for a conceptual replication of previous findings. In a between-subject laboratory experiment, N = 107
participants had to evaluate the robot and the interaction quality after a short conversation in three different groups: In one
group, the evaluation was conducted using (1) the same robot of the former interaction, (2) a different robot, (3) a tablet
computer. According to the CASA assumption, it was expected, that evaluations on likability and quality of interaction, are
higher in the condition with the same robot conducting the evaluation, compared to a different robot or a tablet computer
because robots are treated as social actors and hence humans distort ratings in a socially desirable direction. Based on previ-
ous findings, we expected robots to evoke higher anthropomorphism and feelings of social presence compared to the tablet
computer as potential explanation. However, the data did not support the hypotheses. Low sample size, low statistical power,
lack of measurement validation and other problems that could lead to an overestimation of effect sizes—in this study and the
literature in general—are discussed in light of the replicability crisis.

Keywords Social desirability bias · Social robotics · Anthropomorphism · Replicability crisis · Media equation · Social
presence

1 Introduction

For product improvement and development, user evaluation
is key. Certain technological products such as video games
or robots, can directly inquire about the user’s subjective use
experience without the involvement of a third party, such as a
human interviewer. If human service is evaluated by humans
(for example, a restaurant’s chef asking how the food is),
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psychological research shows that the answer is on average
distorted in a socially desirable direction [43,49] (Most peo-
ple would tell the chef that they like the food, even if it was
not that good.). This distortion of answers is seen as a rule
of politeness, a social norm, that is “jointly negotiated rules
of social behavior” [11, p. 151].

Social desirability bias is an intensively studied psy-
chological phenomenon and “refers to the tendency by
respondents, under some conditions and modes of admin-
istration, to answer questions in a more socially desirable
direction than they would under other conditions or modes
of administration” [55, p. 755]. The level of this distortion
(response bias) can be obtained by the mean difference in
scores on socially sensitive questions. These include ques-
tions in which the answer is distorted toward a prevailing
social norm or value (normative response bias), or questions,
inwhich the answer is distorted towardwhat is expected to be
preferred by the interviewer and thus following social rules
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of politeness (interviewer-based bias) [48]. The latter would
mean to rate a person as attractive or likable independently of
ones actual opinion because offending other people by evalu-
ative statements is perceived as a socially unacceptable form
of interaction. Thus, avoiding this offense can be seen as a
maxim of politeness. One possible solution to avoid these
response biases in interviews is to reduce the “social nature”
of the interview setting. Researchers have tried to obtain
this goal by computerized interviews compared to traditional
ones. Psychological research shows, using a computer might
make the human feel more anonymous and reduce social
pressure [55].

However, scholars have argued, that this social desirabil-
ity bias might also occur in human–technology interaction
scenarios to a certain extent [see 47,48]. In certain contexts,
human users apply social norms such as response biases
(likely unintentionally) and thus treat technology as social
actors. This assumption leads to various implications for
human–robot interaction designs: For instance, robots that
conduct their own user evaluations, would result in distorted
response patterns. This is especially conceivable for social
robots because they display social characteristics and are
implemented in social settings leading to a higher “social
nature” than other devices made for other purposes. Fol-
lowing these assumptions, the evaluation of social robots
should rather be examined by other devices, such as a sep-
arate website that evokes less social attributions. However,
context factors, the characteristics of the evaluator, as well
as the object of evaluation, and consequently underlying
psychological mechanisms that describe how certain factors
are connected and lead to certain observations is still under
research [15,68].

The aim of this article is thus two-fold: first, this arti-
cle aims to contribute toward questions on the robustness
of social desirability effects by adding further insights from
a conceptual replication of a study by Nass et al. [48] and
other replications in different contexts. Social-psychology
has been facing a serious replicability crisis that also affects
social robotics and thus more tests on the robustness of
already established effects need to be performed. The sec-
ond aim is to expand the body of research by applying this
hypothesis to human–robot interaction. While this effect of
social desirability has been tested with different devices such
as computers [48] or smartphones [9], we are not aware of a
study testing thiswith robots. Instead of using computers, this
study tested the social desirability effect on the evaluation of
human–robot interaction. In doing so we test differences in
anthropomorphism and perceived social presence as poten-
tial key factors.

2 Theoretical Background and RelatedWork

In order to understand the motivation to conduct another
study on effects that have already been studied in a simi-
lar way before, an overview of a recent replicability crisis is
needed, that especially affected social psychology in recent
years calling into question many effects that were thought
to be well-established and raising doubt on their robustness.
After a more general discussion, first examples are given that
this is a potential problem in human–robot interaction stud-
ies, too. Second, a brief literature overview is given on the
social desirability effect in human–technology interaction to
show why one would even assume to find such an effect
in human–robot interaction. Therefore, two connected theo-
ries are discussed to explain this effect. The “computers are
social actors” (CASA) hypothesis, or the “media equation”
hypothesis [47] describe the basic idea that technology is
treated similar to social beings, while the body of research on
anthropomorphism [15] delivers more fine grained hypothe-
ses on when to expect larger social desirability effects. Based
on these theories, we go into more detail on what is actually
known upto now on the social-desirability effect concern-
ing technology in a third step—what are weaknesses and
what can be learned for such a social-desirability effect in
human–robot interaction, leading to our research question
and hypotheses.

2.1 A Century of Crisises: Problems of Replicability,
Validity and Theory

Before going into details of the actual phenomenon of
social desirability in human–technology interaction, one
might wonder why it is of great importance to conduct
another experiment on a phenomenon that had been cov-
ered in the past several times such as the social desirability
effect in human–computer interaction [48] or other technol-
ogy such as smartphones [9]. In the last couple of years,
well-established psychological phenomena underwent sev-
eral large-scale attempts to replicate classical psychological
laboratory experiments by different research groups [see
36,50]. However, results showed a substantial decline in
effect sizes compared to the original findings—the findings
could not be replicated. As a consequence, disciplines such
as neuroscience [30] or social psychology [63] faced a huge
crisis, also known as the replicability crisis. Problems were
manifold.

One of the main reasons for this problem are under-
powered studies [42]. Statistical power is the probability of
correctly rejecting the null hypothesis given that the alterna-
tive hypothesis is true. Power is a function of effect size,
sample size and alpha-level [38]. Therefore, if the (true)
effect sizes are small in general, as it is rather the rule for
social-psychological phenomena [58], or the variance of true
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effects is large, the average sample sizes are too small and
thus studies have low power. Low powered studies in turn
have a low probability of finding these true effects, produc-
ing more false positive results [8]. Even worse, effect sizes
in under-powered studies are often overestimated, a problem
also known as the “winner’s curse” [8].

Hence, studies with low power can lead to false conclu-
sions on what is actually “known”. These false conclusions
are additionally distorted by so called questionable research
practices (QPRs) that increase the Type-I error rate dramat-
ically and thus produce more false-positive results. These
practices include, but are not limited to multiple testing of
hypotheses without taking into account the family-wise error
rate, hypothesizing after the results are known (HARKing),
or controlling for variables a posteriori without theoretical
legitimization1 [60,71]. Low statistical power and question-
able research practices can lead to false conclusions. Further,
publication bias (publishing statistically significant results
only or results that are in favor of a certain hypothesis, leav-
ing resultswith no effect or non-expected findings unnoticed)
distorts the results of meta-analyses and reviews leading to
overestimation of effect sizes in the literature.

Besides problems of statistical data analysis, sample size
justification and publication habits, at the core of the repli-
cability crisis are problems of validation and lack of theory.
Before statistical analysis, measurement comes first. Psy-
chological studies mostly deal with variables that cannot be
observed directly, but are latent [for a detailed discussion
see 5]. Measurement methods only reflect a construct in a
probabilistic way and thus methods vary in the degree of
accuracy. That means validity needs to be shown by a val-
idation process [5,12]. However, Hussey and Hughes [29]
show that measures in psychology do not always undergo
a thorough validation process, measures might thus be not
valid or only of poor accuracy (that is, a measure reflects a
big amount of noise compared to the construct in question).
However, even if a measurement method had been shown to
be valid in one situation, that does not mean that it is valid in
others. For example, while a method might have been shown
to be valid in the interaction with a mechanic-looking indus-
trial robot, it might not work so well in interaction-situations
with humanoid robots. Or while some methods might work
today—with many people interacting with a robot for the
first time—it may happen to be a less suitable measure in
50years with more and more people experiencing situations
of human–robot interaction.

1 For example, let’s say a hypothesis could not be accepted based on
a statistical test, but after controlling for several variables, one finds
out that somehow in the data at hand the hypothesis only holds for
left-handed men older than 50 for no reason. Accepting this purely
data-driven result as a “finding” would follow a degenerating research
line in the Lakatosian sense [37].

The basis for validity is a good theoretical grounding. For
a measure to be valid the variation in indices must be caused
by variations in the theoretical construct, and this theoreti-
cal construct must exist in the first place. So there is theory
needed to explain “what happens between the attribute and
the test scores” [6, p. 1067]. Further, these constructs need
to be integrated into a nomological network [12], a system
of laws relating constructs to other constructs, and in theo-
retical frameworks as a body of connected theories [46], that
can help to narrow down the space of numerous potential
influential factors systematically. However, many studies in
psychology seem to be based on guesswork or folk intuitions
[46].

In sum, mixed findings on a certain topic can thus be due
to (1) the absence of a real effect and thus due to random
noise, (2) true differences of effects based on mediating or
moderating factors yet not taken into account, (3) invalid
or insufficiently valid measurements, or (4) varying method-
ological quality concerning research design, sample size, and
statistical analysis, as well as publication bias.

These problems have not gottenmuch attention in the HRI
community, yet. However, the discussion on replicability
problems has been growing in the human–robot interaction
(HRI) community in recent years [see for example 3,31].
For example, Irfan et al. [31] reported two failed attempts
to replicate social facilitation effects from social psychology
in HRI settings and discussed their findings in the context
of the replicability crisis. A recent review and meta-analysis
by Leichtmann and Nitsch [39] revealed similar problems of
low sample size, low statistical power and a lack of theory in
proxemics studies in HRI settings.

These are just first examples of disucssions of such prob-
lems of replicability, validity and theory within the HRI
domain. Effects in HRI contexts need to be tested for robust-
ness more carefully. As shown in this section solution to this
problem is a stronger theoretical stance, justification of sam-
ple size based on power-analysis, more careful validation of
measurement tools, the avoidance of questionable research
practices and stronger transparency in future studies.

2.2 Robots as Social Actors and Anthropomorphism

As mentioned in the introduction of this article, the goals
are to test the robustness of the social desirability effect in
HRI in conducting a conceptual replication of the effect and
to extend the findings to human–robot interaction. However,
the social desirability effect stems from social psychology
and thus is not a genuinely technological phenomenon. In
order to understand why one would expect to find such an
effect in certain situations of human–technology interaction,
two theoretical approaches need to be introduced. More than
20years ago, Nass and colleagues (for an overview see [47])
conducted several experiments to illustrate their claim that
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social and natural rules from interpersonal interaction apply
equally well to media, an assumption named the media equa-
tion [51]. In a row of experiments (i.e. k = 35 studies were
mentioned in [51], many more built upon this idea in the
literature), they thus tested the hypothesis that human users
treat technology such as computers or robots as social actors
that seemed to support this claim. According to this CASA
hypothesis (“computers are social actors”), people subcon-
sciously apply social rules and expectations to computers (or
more generally to technology). This effect is hypothesized to
be moderated by contextual cues that trigger certain scripts
and labels leading to social behavior. Based on this assump-
tion, researchers have conducted various experiments, in
which findings of social psychology about human–human
interaction were used to predict behavior also in human–
robot interaction with the expectation to find similar results
[17,19,45,48,73].One of several examples of themedia equa-
tion assumption was the the social desirability bias that was
claimed to equally occur in human–computer interaction as
in human–human social interaction [47,48].

However, the attempt to test this assumption turned out
not always to be successful [28,31]. Irfan et al. [31] were
not able to replicate social psychological effects in human–
robot interaction that would have been expected if robots
were treated similarly as human beings. Another example is
personal space in HRI, in which comfort distance toward a
robot would be assumed to be similar as toward other humans
under the CASA assumption. However, a recent review and
meta-analysis on personal space in HRI, for example, indi-
cates a more mixed picture [39].

The reader should note that based on these findings, the
CASA assmuption is not proven, but it is not being refuted
either. This just indicates that the CASA assumption might
just be an over-generalization: technology might not be
treated as a social being by every person in every situation.
Thus, it needs to be moved beyond the question if CASA-
based effects exist or not, but rather how strong these effects
are depending on situational characteristics and thus how
practically important such an effect is. Possible reasons for
a mixed picture might be methodological problems such as
small sample sizes (see Sect. 2.1), but also that the CASA
theory does not hold for every situation or that effects are not
equally strong.

Thus more detailed theories and subsequent key factors
need to be identified that can explain such a variance in
effects. Researchers have varied certain context character-
istics in order to identify factors, which cause variation
in applying social norms in human–technology interac-
tion situations. One prominent construct in this context is
anthropomorphism. Although there are differences in defini-
tion [14,57] and the construct seems often vaguely defined,
anthropomorphism in generalmeans “[…] imbuing the imag-
ined or real behavior of nonhuman agents with humanlike

characteristics, motivations, intentions, and emotions” [15,
pp. 864–865]. This includes all nonhuman agents such as ani-
mals, nature, technology or virtual agents. This tendency is
a continuum and varies as a function of dispositional, situ-
ational, developmental, and cultural influences [15]. Thus,
people differ in the degree they anthropomorphize [69], and
some situations evoke more anthropomorphism than oth-
ers [18]. Oftentimes anthropomorphism is portrayed as a
conscious process. Thus, Reeves and Nass [51] excluded
anthropomorphism as a potential explanation for CASA-
related effects by arguing that these CASA-related effects
are sub-conscious. However, there is no need to under-
stand anthropomorphism as a conscious process only [74].
Zlotowski et al. [74] explain this divergent results of low
explicitly reported anthropomorphism on one side and actual
behavior in favor of the CASA theory on the other side using
dual-process models. Such dual process models rooted in
social cognition research differentiate between an implicit
process that is described as fast, unconscious and requir-
ing only little effort resulting in automatic responses, and
an explicit process described as slow, conscious and requir-
ing higher amount of effort resulting in more controlled
responses [74]. Similarly, other general social-cognitive
models can explain such divergent observation using dual-
processes [see for example 22,23] or a more integrated
system, a “single evaluative system in which there are many
functionally discrete computational processes” [13, p. 752]
such as the iterative reprocessing model by Cunningham et
al. [13].

While these models are process-oriented attempts, other
researchers have focused more on the identification of fac-
tors that would lead to more or less anthropomorphism. Such
factors include for example more motivational top-down
factors, such as the three underlying psychological determi-
nants proposed by Epley et al. [15]: According to this, people
anthropomorphize (1) when anthropomorphic knowledge is
accessible and applicable, (2) as a strategy to understand and
predict the behavior of nonhuman agents (effectance motiva-
tion), (3) when the desire for social contact is high (sociality
motivation). Research on these underlying mechanisms is
still in its infancy, but first attempts already seem to support
the theory so far [16,18].

Especially in human–technology interaction, most
researchers, however, have focused on bottom-up design-
oriented features of the robot, that would activate repre-
sentations of human-like features and subsequently lead
to an activation of other related human-like characteristics
such as mind-attribution. Such features serving as social
cues [1] include voice [19,70] or movement [44], but even
more simply, visual characteristics by varying the appear-
ance from mechanic-looking robots up to humanoid robots
[10,27,41,62].Research has shown that varying robot appear-
ance affects whether humans attributed mental states to the
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robot or not (see literature onmind perception [25,62,68,70])
or the degree of other social responses [24].

Thus, human-like appearance, that is anthropomorphism
operationalized through appearance, can create the feeling
of social presence [1,32,35]. Social presence in turn means
the “sense of being with another” [4, p. 456] and is a hint
that humans actually categorize the robot or another artifi-
cial agent not as a tool, but as a social partner with whom
one might interact [14]. However, social presence needs to
be differentiated from physical presence. While these two
concepts are different by definition (since a device or agent
being physically present does not necessarily evoke the feel-
ing of social presence if it is perceived as a tool rather than
a social actor), physical presence might enhance the feeling
of social presence [40].

To sum up, the CASA assumptionwas the starting point in
studying social-psychological phenomena such as the social
desirability effect in human–technology interaction using
computers, smartphones andfinally robots.However, in order
to understand variance in effects, more fine-grained theories
are needed. One key-factor especially in human–robot inter-
action is thus anthropomorphism that is used to explain why
technology is perceived more or less as a social actor. Subse-
quently, different factors were identified that evoke different
levels of anthropomorphism, even unconsciously, including
motivational factors or design features such as a humanoid
appearance. These factors serve as social cues that activate
other concepts such as the feeling of social presence.

2.3 Social Desirability Bias in Human–Technology
Interaction

On the basis of the theoretical background in Sect. 2.2 it
can thus be argued that human users apply social norms
toward technology. While the CASA assumption would
expect this to be the case for all kind of technology,
anthropomorphism-related theories would expect this to be
higher with technology showing more social cues and thus
evoke anthropomorphism and subsequently the feeling of
social presence. This in turn is argued to cause humans to
apply social norms.

These assumptions built the basis for research on effects
of social desirable responding in human–technology inter-
action. While psychological research had argued for lower
social desirability bias in computerized interviews compared
to interviews between two humans [55], Nass et al. [48] was
upon the first to study the social desirability effect under the
assumption to find distortion also in human–computer inter-
action.

In Nass et al.’s [48] classic experiment, participants first
worked with a computer on a task and had to rate the per-
formance of the computer afterwards. For the performance
rating, participantswere grouped into oneof three conditions:

The interviewwas conducted by (1) the same computer, (2) a
different computer, or (3) a paper-pencil questionnaire. The
researchers then compared the ratings of the latter two groups
to the ratings of the condition with the same computer and
hypothesized that ratings should be more positive as an indi-
cator for social desirability distortion. The interviewer-based
bias would affect the condition in which the computer eval-
uates itself the most, and less the situations in which another
computer device evaluates the interaction, since in the lat-
ter situation no “one” is offended directly. However, under
assumption of the CASA theory, another computer would
still be perceived as a being and thus distortion would be
greater compared to the paper-pencil condition. They tested
this in two experiments and found significant differences
in comparison to both of the other groups in the predicted
direction—for both experiments. Effect sizes were largewith
Cohen’s d ranging from 1.07 up to 2.06 (!)—however, with
extremely large confidence intervals. This findings need to
be interpreted with caution as many problems that we dis-
cussed in light of the replicability crisis, can be identified
here. First, the study only had a very small sample size of just
n = 10 per group. Considering that in social-psychological
studies one should expect only rather small effect sizes on
average [58], this study is most likely underpowered mak-
ing it more likely to be a false-positive finding. Tourangeau,
Couper, and Steiger [65] sharply criticized Nass et al.’s find-
ings because of this small sample size, the sample being
a student sample, and the laboratory setting. Several other
experiments [9,28,33,65] thus built upon these results. They
tried to conceptually replicate the effect of social desirability
distortions, but also expand the findings by using differ-
ent technological devices such as virtual characters [28],
websites [33,65], or smartphones [9], and by adding further
concepts to explain differences such as variations in social
cues [65, i.e.]. However, opposed to Nass et al.’s [48] original
study, these experiments did not find such strong effects of
social desirability.

In a laboratory experiment by Hoffmann et al. [28] the
social desirability effect was tested by comparing the eval-
uation of an interaction with a male life-sized virtual agent
MAX, instead of a computer, on four scales (competence,
friendliness, naturalness, activity/dominance). The evalua-
tion was examined (1) by MAX himself, (2) on a question-
naire in the same room, or (3) on a questionnaire outside
the room. However, the authors found only one significant
effect: Participants rated MAX’s competence significantly
higher compared to the questionnaire in the same room with
amedium effect size of d = .66, and no significant difference
for all the other scales (although such an effect would have
been expected for all mentioned variables based on CASA).
However, although sample size was larger compared to Nass
et al.’s [48] study and thus power was higher, sample size
for this design was rather small (N = 63), indicating that
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the study was potentially underpowered. In addition to this,
several dependent variables were used leading to problems
of multiple testing and the effect was much smaller than
expected based on the findings of Nass et al. [48].

Very similarly to Nass et al. [48], Karr-Wisniewski and
Prietula [33] tested the social desirability distortion using
different computers. As an extension to the original experi-
ment, the researchers tested different websites as additional
manipulation, leading to a 2 × 2 experiment with N = 72
participants. However, they did not find a significant main
effect for computers, contradicting the results of Nass et al.
[48]. The data showed only a difference between websites
with a moderate effect size of d = .49 but a large confidence
interval of 95%CI = [.02, .96]. Again, although sample size
was higher, the study could still be considered underpowered
regarding the 2× 2 between-subject design.

In a more recent study by Carolus et al. [9] smartphones
were used instead of desktop computers to replicate Nass
et al. [48] results of the social desirability effect in human–
technology interaction. Since technologyhas evolved, aswell
as technology usage has changed since the original CASA
studies, the authors call for the need of a replication with dif-
ferent devices. For example, smartphone usage differs from
desktop computer, as most people carry a smartphone con-
stantly with them and use it independently from time and
place for different applications. Therefore, involvement with
the device should also differ, leading to different social per-
ceptions [9]. In their study N = 108 participants evaluated
a smartphone after an interaction phase in three different
evaluation groups: The evaluation was conducted using (1)
the same smartphone, (2) a different smartphone, (3) by the
participants own smartphone. However, evaluations did not
significantly differ when evaluation was conducted by the
same smartphone (with which they interacted before) or by
a different smartphone (p = .82, with a very small effect
size d = .015; 95% CI = [−.31; .62]), contradicting the
CASA assumption. However, the difference was significant
when the evaluation rating using the same smartphone for
evaluation was compared to the rating using ones own smart-
phone (p = 04; d = .57; 95% CI = [.10; 1.04], confirming
the hypothesis that participants would rate the smartphone
more negatively when using their own phone for evaluation
because of feeling closer to their own device and thus lead-
ing to a less distorted answer (a more honest one). Thus,
results in this study were quite mixed concerning the CASA
hypothesis although having higher statistical power.

Other research focused more on the controlled manipu-
lation of social cues as a potential explanation why social
desirability might differ between situations. Early psycho-
logical research shows, that the effect of computerization
depends on how the interface makes the respondent feel. For
example, Richman et al. [55] found that year of publica-
tion moderated the effect of computerization compared to

paper-pencil questionnaires and conclude that this modera-
tion might be due to the improvements in interface design
becoming more like the paper-pencil-versions in appear-
ance. Thus, it seems that the effect of social desirability
might depend on interface design. This means computeri-
zation effects changed across the history and this difference
in effects is explained by differences in design.

More directly Tourangeau et al. [65], for example, varied
the social cues such as pictures or voice resulting in dif-
ferent administration modes, in two web experiments and
one telephone study. As dependent variable, the researchers
used an impression management scale in order to measure
social desirability distortions. It was expected that interfaces
with more social cues should result in more social desirable
responses. Although using a very large sample size (more
than 1000 participants in each of the three studies) their
attempt to humanize the interface had low effects. They only
found one significant effect across three trials with a very
small effect size. A very similar study by Schmidt-Catran
and Hörstermann [59] showed also no effect of a picture as
social cue. Thus, the results showed little support for the
effect of social cues on social desirability although (1) hav-
ing large sample size and thus high power, (2) using strong
humanizing cues (and thus it was expected to lead to higher
effects in applying social norms), and (3) using established
measurement methods.

In sum, studies on social desirability effects in human–
technology interaction were not able to confirm the large
effects found byNass et al. [48] although using higher sample
sizes. The CASA hypothesis was thus only partly supported.
Participants showed not always a social desirable distor-
tion in responses toward technology [9,28,33]. Additionally,
the hypothesis that more social cues would lead to more
social desirable behavior cannot be considered as confirmed,
either [65]. In general, effect sizes varied from large to
small including zero effects. However, the studies differed in
many aspects such as stimulus, the amount/strength of social
cues, sample diversity, contexts and measurement methods
(response bias in disclosure of sensitive information, or in
the evaluation of the stimulus). It is thus possible that many
other influential factors could have led to different results.
In addition to these differences, many problems discussed in
the replicability crisis can be identified. Most of the studies
only used a small sample size and thus are likely underpow-
ered. Additionally, analyses were not always controlled for
multiple-testing and used several measures [28] making the
significant results less convincing. So one cannot disentan-
gle how much variation in results is due to variation in true
effects or due to noise based on variation in methodological
and theoretical quality. There are more studies needed for a
meta-analytic analysis. In conclusion, the social desirability
effect in human–technology interaction is still unclear and
needs further investigation.
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3 Research Question and Hypotheses

In order to test the overall robustness of the social desirabil-
ity effect in human–technology interaction and to test the
social desirability effect in human–robot interaction (instead
of computers, smartphones or virtual agents) it was decided
to conduct another experiment. This study is clearly not a
direct replication, but it tries to replicate the basic idea and
can thus be considered a conceptual replication of the social
desirability effect (see [67] for a definition): a short interac-
tion with a technological device is followed by an evaluation
phase in which the evaluation is conducted in different exper-
imental groups by using the same device additionally to two
or more other devices. Social desirability is thus tested by a
difference in ratings between groups. Instead of computers
[48], smartphones [9] or other devices, we use robots. Addi-
tionally, we study anthropomorphism and social presence as
potential variables to explain the differences.

Because the true effect is believed to vary substantially
based on context characteristics such as social cues, concep-
tual replications allow to incorporate other contexts that can
be controlled for in meta-analyses or that can be discussed in
reviews when a greater body of research is achieved. These
in turn would then allow to estimate the variance of the effect
across situations and to test theories that can account for these
differences.

This goes along with the second aim to test this effect
for social robotics. While the social desirability distortion
was tested in situations where a computer, a smartphone or a
virtual agent were used, this study tries to test the same theo-
retical idea in human–robot interaction. (Humanoid) robots
differ fundamentally from computers, as they can display
stronger social cues merely by their physical appearance or
movements, or differ from virtual agents by their physical
presence. Therefore, it can be assumed, that the true social
desirability distortion differs from distortions in contexts
depending on the interaction-device.Based on this reasoning,
robots should evoke stronger feelings of social presence and
thus the social desirability distortion should be even greater
than in other studies such as Nass et al. [48].

The basic idea is that variation in social cues and thus vari-
ation in perceived social presence should cause variations in
response patterns. Social presence was manipulated on three
levels: After a short conversation (a form of interaction) with
a humanoid robot, an evaluation of this conversation was
conducted by (1) the same humanoid robot, (2) a different
humanoid robot, and (3) a tablet computer. Note that the vari-
ation in social presence is not during the actual conversation,
but the evaluation of it since social desirability distortion
occurs in evaluative situations (interviewer-based bias). The
evaluation was conducted via ratings including the likability
of the robot leading the conversation, and the quality of the
interaction. We hypothesized, that social presence should be

perceived more strongly in the robot groups compared to the
tablet group. This differencewould be attributable to a higher
anthropomorphic perception of (especially humanoid) robots
compared to computers as they provide more social cues.

H1User ratings of social presence and anthropomorphism
are higher for robots compared to a tablet computer.

3.1 Confirmatory Hypotheses

Based on this design, two effects would be expected. First,
there would be a distortion toward a more socially desirable
response in the condition using the same humanoid robot
compared to another humanoid robot because (1) concerning
social norms, it is considered to be more okay to tell another
being an honest evaluation if it is not as positive, compared to
telling the person directly, and (2) the longer interaction dura-
tionwith robot 1 could have additionally enhanced emotional
involvement and thus social pressure to answer in a polite
fashion. This would follow the argument of Nass et al. [48]
and others where a more positive rating was expected using
the same device compared to a different one. Additionally,
based on finding on anthropomorphism, it was hypothesized
that the manipulation in anthropomorphic appearance and
thus the feeling of social presence (with the robots causing a
higher social presence compared to a tablet computer) would
cause human participants to distort their responses to a more
positive value (interviewer-based bias), as social presence
would evoke norms of politeness. These effects should be
true for both ratings, interaction quality and the likability of
the conversation robot. Interaction quality refers to the quali-
tative evaluation of the interaction as positive or negative and
the conformity of the robotic confederate’s behavior to users
expectations, while likability means feeling comfort being
with another and the positive association with another per-
son or object. For both ratings it is assumed to be more polite
and thus socially desirable to obtain a positive evaluation (in
western culture).

H 2 The likability rating of the robot is higher if the same
robot is conducting the evaluation, compared to a different
robot or a tablet computer.

H 3 The interaction quality rating of the conversation is
higher if the same robot is conducting the evaluation, com-
pared to a different robot or a tablet computer.

3.2 Exploratory Research Question

Additionally, the influence of other closely related constructs
was tested such as the tendency to anthropomorphize (as
an interindividual predisposition) and participants’ general
tendency to give socially desirable answers as traits of the
participants, and two additional scales on participants self-
reported rather situational perceptions of the devices. These
additional scales on perception were aimed to measure how
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Fig. 1 Picture of robot 1 during the conversation with a participant (left
side), and pictures of robot 2 and the tablet computer, both used during
the evaluation (right side)

animated/alive and how responsive the devices were per-
ceived to be. The exploratory analysis aimed to give further
possibilities to explore the validity of measures and manip-
ulation and to make it possible to test hypotheses in future
attempts.

4 Method

4.1 Study Design and Sample Size Justification

The study (laboratory experiment) manipulated social pres-
ence in a between-subject design with 3 levels varying
whether the evaluation was conducted by (a) the same robot
with which the participants had the conversation before
(robot 1), (b) a different robot (robot 2), and (c) a tablet com-
puter (tablet). Participants were randomly assigned to one of
the three conditions (see Fig. 1). As dependent variables, the
evaluation included ratings of the likability of robot 1 and the
quality of the interaction. The study took about 40min and
participants were rewarded with AC5. The study took place in
two periods in 2017 and 2018, and was examined by 6 differ-
ent examiners (2 female, 4 male), which helped conducting
the experiment as part of a practical training in empirical
research methods.

Sample size for this experiment was calculated in a power
analysis using G*Power [20]. For the calculation, a medium
to large effect size was assumed of f = .35 and α error prob-
ability was set to .05. In order to achieve a power (1 − β)

of 80% (that is the probability of finding an effect under
the assumption that there is a true effect) a minimum total
sample size of N = 84 is needed. A total of N = 107
participants (36 participants in each of the robot conditions

and 35 in the tablet condition) were recruited at the Bun-
deswehr University Munich, Germany. All participants were
German speaking students with a military background. 28
Participants identified themselves as female, 79 as male, and
no person as any other gender. Ages ranged from 19 to 46
(M = 23.28; SD = 3.57; Med = 23). Only 5 participants
indicated having participated in a robot experiment before.

4.2 Dependent, Mediating and Control Variables

Dependent variables As indicators of a social desirability
effect (the distortion of an evaluative rating toward a more
positive value), likability of the conversation robot and the
quality of the interaction were assessed. For the likability of
the robot, an adapted version of the Reysen likability scale
[53] including 11 items (such as “Robot 1 is likable” or “I
would like to be friends with robot 1”) was used. For assess-
ing the quality of the interaction a 9-item questionnaire was
used [72] (e.g. “The interaction with robot 1 was fun”, “I
would have loved to interact with robot 1 longer”). All items
had to be rated on a 5-point Likert scale.
Additional mediating, moderating and control variables The
following variables were assessed for further analysis:

1. Demographic questions including gender, age, job /
major, and if the participants had taken part in a robot
experiment before (for the purpose of sample descrip-
tion)

2. Manipulation check items (12 items including different
aspects, e.g.“During the evaluation (phase 2) I thought of
the programmer, that could potentially see my ratings”,
or “I evaluated robot 1 honestly”)

3. Social presence during the evaluation phase defined as
“the sense of being with another” measured with a 6-
item scale developed by the authors (e.g. “How much
did you feel connected to the device?”, see Appendix A)

4. “Animation” of the device in the evaluation phase mea-
sured with a 5-item scale developed by the authors (e.g.
rating how much the device was “artificial” or “natural”,
see Appendix A)

5. Responsiveness of the device in the evaluation phase
with a 9-item scale developed by the authors (rating how
much the devicewas “distanced”, “involved”, or “absent-
minded”, see Appendix A)

6. Anthropomorphism (situational) in the sense as how
much the device in the evaluation phase was anthropo-
morphized by the participant with a 6-item scale devel-
oped by the authors (e.g. how much the device “…has
emotions”, or “…has a personality”, see Appendix A)

7. Social desirability tendency using 16 items of the SES-17
social desirability scale [61] (e.g. “I occasionally speak
badly of others behind their back.”)
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8. Tendency to anthropomorphize (general interpersonal
tendency as opposed to a situational attribution), that
is participants’ general tendency to attribute human-like
characteristics to non-human agents, as an individual pre-
disposition with the 15-item IDAQ scale [69] (e.g. “To
what extent does a tree have amind of its own?”, “Towhat
extent does the average robot have consciousness?”)

9. Technology affinity using the 19-item TA-EG question-
naire [34] (e.g. “Electronic devices cause stress”)

Note that the scales tomeasure “social presence”, “anima-
tion”, “responsiveness”, “anthropomorphism (situational)”
are developed by the authors and did not undergo a specific
validation process. All the newly developed scales can be
obtained in Appendix A. In order to measure “social pres-
ence” according to the definition of “social presence” in this
article as “the sense of being with another” questions were
formulated that were semantically close to this definition
such as questions on how much the participant feels alone
or how much they feel that “someone” else is in the room.
Items of the “anthropomorphism (situational)” scale were
very closely formulated to the established IDAQ question-
naire and included the ascription of intentions, freewill,mind
and others also found in the IDAQ [69]. “Animation” and
“responsiveness” included several adjectives to describe the
devices as such and were used only for exploratory analysis.
Wedonot claim that the scalesmeasure entirely different con-
structs, overlapping sub-factors of a higher-order construct
or just different aspects of the same construct, since—to
our knowledge – no nomological net exists that incorporates
these aspects properly yet. However, we do state, that these
aspects are connected to each other derived from their seman-
tic meaning. For example, based on the reasoning in 2.3, the
attribution of human-like traits such as intentions or a mind
would lead to a higher feeling of social presence. Thus these
concepts are closely related, but we do not indicate a more
detailed factor structure.

4.3 Procedure

The experiment consisted of three parts: In the first part
of the experiment, the conversation phase, participants had
a short conversation with robot 1. In the second part, the
evaluation phase, this conversation and robot 1 as conver-
sation partner were evaluated accordingly. The third part
consisted of various questionnaires. Before the experiment,
as a cover story, participants were told that a newly devel-
oped algorithm—enabling robots to have short conversations
with humans—had to be tested. They gave informed consent
and agreed on data collection. Afterwards, participants were
seated 88 cm in front of a robot (a humanoid “Pepper” robot
from Aldebaran Robotics SAS and SoftBank Mobile Corp;
called “robot 1” in the experiment) for having a short con-

versation with the robot in the first phase (see Fig. 1). Before
the interaction in the conversation phase, the examiner left
the room, so the participant was alone with the robot. During
the conversation, the robot was operated via a Wizard-of-Oz
(WoZ) setup. WoZ is an experimental technique in which the
robots behavior includingmovement and speech are remotely
controlled by a human operator without awareness of the
participants (in this experiment the operator was seated in
another room). This technique ensured full control over the
robot behavior, and thus experimental rigor,while at the same
time giving the participants the feeling of a realistic interac-
tion. For the interaction, the operator used a pre-programmed
set of behaviors and phrases to keep the interaction the same
for every participant. The conversation was led by the robot
asking questions. The outline of the conversation was largely
similar for every participant since everyone was asked the
same questions. A set of possible reactions was available to
the operator in order to react toward users’ answers to the
questions and toward comments properly. Operators were
trained in operating the robot prior to data collection. In
the conversation, the robot introduced itself and asked some
personal questions (for example on favorite color or if the
participant owns a robot or has a pet), and shared short
“personal” stories (for example, that it feels uncomfortable
because of the bare walls in the laboratory and thus plans
to paint the walls in glitter-pink). The full script of the con-
versation can be seen in Appendix B. Note, that the answers
during this conversation were not recorded or used for fur-
ther analysis—as indicators for social desirability distortion
only answers in the evaluation phase were used. During the
conversation, the robot moved its arms / hands (gesturing),
its head and the upper body, in order to make the conversa-
tion more socially appealing. These movements include, but
are not limited to, showing the palm of the hands toward the
participant while asking a question to indicate their turn to
answer, opening-up the arms as awelcoming gesture,moving
the head from side to side as an orienting movement, slightly
nodding with its head as an affirmation signaling that the par-
ticipant’s answer was understood, or pointing toward itself
with a hand when talking about itself. The conversation was
about 1.5 minutes long (this was similar for all participants
because the questions required only short one-word answers
such as “yes” or “no” or naming a color). After the con-
versation, the examiner returned and introduced the second
phase of the experiment: The evaluation of the interaction.
Hereby, the participants were randomly assigned to one of
three conditions: in the three conditions, the evaluation was
conducted (a) by the same Pepper-robot used for the conver-
sation (robot1), (b) by a different robot (a humanoid “NAO”
robot from Aldebaran Robotics SAS and SoftBank Mobile
Corp; called “robot 2” in the experiment), and (c) a tablet
computer (see Fig. 1). The evaluation took place in the same
room, in which the conversation took place. For condition
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(b) and (c), the Pepper-robot was removed from the room.
Before evaluation, the examiner again left the room leaving
the participant alone with the evaluation-device. An impres-
sion of the conversationwith Robot 1, aswell as the other two
devices used in the evaluation phase (robot 2 and the tablet
computer) are depicted in Fig. 1. In all of the conditions, the
participants had to rate the likability of “robot 1” and the
quality of the human–robot interaction as dependent vari-
ables. All items were presented visually on the devices and
read aloud by the devices using a computer voice. A wizard
in the other room operated all evaluation devices. Partici-
pants’ ratings were given verbally and were recorded. In the
conditions with the robots, the robots did not move during
this phase (to ensure that the devices only differed in appear-
ance). After this evaluation phase, the participants filled out
computerized final questionnaires as listed under Sect. 4.2.
For this purpose, a different computer was used (none of the
devices in the evaluation phase).

5 Results

For data analysis, the open source statistic software RStudio
was used [56] with packages “psych” [52], “lawstat” [21],
“MASS” [66], “lm.beta” [2], and “effsize” [64].

5.1 Descriptive Statistics and Internal Consistency

Before inferential statistical analysis, internal consistency as
an estimate for reliability was calculated for each scale. Sin-
gle items were excluded, if exclusion led to an increase in
internal consistency based on a standardized Cronbach’s α.
Quality of interaction. The initial reliability of all 9 items of
the scale was questionable (α = .63). Through exclusion of
3 items, reliability could be improved to an acceptable level
(α = .73).
Likability. For the Reysen likability scale 10 of 11 itemswere
included in the following analyses in order to improve relia-
bility (α = .81).
Social presence. Similarly, for the social presence scale all
6 items were included in the following analyses because of
good reliability (α = .80).
Animation. For the animation scale all 5 items were included
in the following. Cronbach’s α was good to excellent (α =
.85).
Responsiveness. The responsiveness scale also reached good
reliability (α = .84) and thus no item was excluded.
Anthropomorphism (situational). After exclusion of one
item, the scale on howmuch participants anthropomorphized
the robot reached excellent internal consistency (α = .91).
Social desirability tendency.Although the authors [61] report
good internal consistency, in our study, internal consistency
was rather poor with α = .32 and could only improved to

α = .43 by excluding one item. All but one items were
included in the following analyses.
Anthropomorphism (tendency). The IDAQ showed good
internal consistency (α = .82) and thus none of the 15 items
had been excluded.

Based on these analyses, the sum of each scale was cal-
culated reflecting the latent construct in question to a certain
extent (note that the true amount ofwhich the real construct is
reflected in themeasurements is not known, it is just assumed
to reflect the true construct sufficiently enough). The correla-
tions of all variables, aswell asmeans and standard deviations
are presented in Table1.

5.2 Manipulation Checks: Social Presence and
Anthropomorphism

As manipulation check, ratings of social presence and the
anthropomorphism of the evaluation-devices in each group
were compared. It was hypothesized that social presence is
perceived to be stronger in the robot conditions compared
to the tablet condition, and that anthropomorphism ratings
are higher in the robot conditions compared to the tablet
(many-to-one comparisons). For each comparison, a non-
parametric Brunner–Munzel test [7] was performed, and for
the two comparisons (φrobot1−tablet φrobot2−tablet ) on each
variable, a global α level of .05 was set. However, because of
multiple testing, the local α level had to be adjusted in order
to control the family-wise error rate (FWER). Therefore, the
step-down Bonferroni–Holm method was used. For social
presence, the difference between the evaluation using robot
1 (M = 2.91, SD = .78) and the evaluation using the tablet
device (M = 2.33, SD = .80) was significant (WB(69) =
−3.28, p = .003, Cohen’s d = .72, 95%C.I. = [.23; 1.21]).
In contrast, the difference between the evaluation using robot
2 (M = 2.59, SD = .74) and the evaluation using the tablet
was not (WB(65) = −1.40, p = .17, Cohen’s d = .33,
95%C.I. = [−.15; .81]).

None of the comparisons for the anthropomorphism rat-
ings were significant: neither the comparison between the
group with robot 1 (M = 1.98, SD = .89) and the tablet
group (M = 1.57, SD = .68) (WB(64) = −1.75, p = .17,
Cohen’s d = .52, 95% C.I. = [.04; 1.00]). Nor between the
group with robot 2 (M = 1.59, SD = .73) and the tablet
group (WB(66) = .20, p = .84, Cohen’s d = .03, 95% -
C.I. = [−.44; .51]). Thus, hypothesis H1 has to be rejected,
as only one difference turned out to be significant (difference
in social presence between robot 1 and tablet computer).

5.3 Confirmatory Results: Group Differences

The confirmatory analysis included the comparison (many-
to-one comparison) of the likability of robot 1 and on the
evaluation of the quality of the interaction between
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Table 1 Correlations, means (M) and standard deviations (SD) for all variables (sum scores)

Quality of
interaction

Likability Social presence Animation Res-ponsiveness Anthropo-
morphism

Social desir-
ability

IDAQ

Quality of interaction 1

Likability 0.48 1

Social presence 0.11 0.28 1

Animation 0.09 0.39 0.69 1

Responsiveness −0.22 −0.25 −0.60 −0.59 1

Anthropomorphism 0.19 0.30 .57 0.50 −0.44 1

Social desirability 0.16 0.19 0.01 −0.01 0.02 0.01 1

IDAQ 0.22 0.07 0.06 −0.01 −0.07 −0.23 0.01 1

M 4.21 2.97 2.61 2.02 2.67 1.71 0.60 2.85

SD 0.50 0.65 0.80 0.78 0.77 0.79 0.13 0.72

All significant correlations (with a global a level of .05) are highlighted in bold. Note that the local alpha-levels were adjusted using the Bonferroni-
procedure

1. the condition, in which robot 1 conducted the evaluation
by itself (“robot1”), with

2. the condition, in which robot 2 conducted the evaluation
(“robot2”; φrobot1−robot2), and

3. the condition, in which the tablet computer conducted the
evaluation (“tablet”; φrobot1−tablet ).

As before, for each comparison a non-parametric Brunner–
Munzel test [7] was performed, and for the two comparisons
(φrobot1−robot2 φrobot1−tablet ) on each variable, a global α

level of .05 was set. The local α level was adjusted using the
step-down Bonferroni–Holm method in order to control the
FWER.

For the likability rating, neither the difference between
“robot1” (M = 3.05, SD = .74) and “robot2” (M = 2.78,
SD = .58) was significant (WB(65) = −1.74, p = .17,
Cohen’s d = .41, 95% C.I. = [−.07; .88]), nor the differ-
ence between “robot1” and “tablet” (M = 3.09, SD = .60)
(WB(67) = .13, p = .90, Cohen’s d = −.06, 95% C.I. =
[−.54; .41]). Thus, hypothesis (H2) had to be rejected: no
difference between the groups was found for the likabil-
ity ratings. For the rating on the quality of the interaction,
results were similar: No significant difference emerged. Nei-
ther between “robot1” (M = 4.16, SD = .54) and “robot2”
(M = 4.13, SD = .45) (WB(66) = −.63, p = .53,Cohen’s
d = .07, 95%C.I. = [−.40; .54]), nor between “robot1” and
“tablet” (M = 4.36, SD = .48) (WB(67) = 1.68, p = .19,
Cohen’s d = −.38, 95% C.I. = [−.86; .10]). The hypoth-
esis for the quality of interaction rating (H3) was rejected:
no difference between the groups was found. It should also
be noted, that besides non-significant differences, effect sizes
are also rather low and the 95%confidence intervals are large,

thus indicating a considerable amount of uncertainty of the
estimation.2

5.4 Exploratory Results: Step-Wise Regression

The reader should note that the results reported in this section
are of exploratory nature and data driven. No hypothesis had
been formulated in advance.Additionally, especially “anima-
tion” and “responsiveness” were newly developed scales and
did not undergo a rigorous validation process. Results should
be interpreted with caution because the following results can
also be attributed to random variation. Thus, results here
should not be considered as “findings”, but rather as input
for new hypotheses that have to be investigated in further
experiments.

For the exploratory analyses, step-wise linear regressions
with a forward selection of variables were conducted. This
data-driven approach in several steps results in the best-fitting
model. As a stopping rule of selection, the Akaike informa-
tion criterion (AIC)was chosen. The quality of the interaction
and likability were used as dependent variables. As predic-
tors, animation, responsiveness, anthropomorphism ratings
of the robot (situational), social desirability tendency and the
tendency to anthropomorphize (IDAQ) were included in the
procedure. For likability as dependent variable, the step-wise

2 Grouping together themanipulation checks and the confirmatory anal-
yses, 6 tests were performed overall. FWER was controlled for each
variable separately by adjusting the p value using the Bonferroni–Holm
step-down method. In these analyses presented above, FWER is not
controlled considering all 6 tests. However, by adjusting the p val-
ues with respect to all 6 tests, the difference in social presence ratings
(between the group with robot 1 and the tablet) remained significant
with an adjusted value of p = .01. Since all of the other comparisons
were non-significant before, this was of course true after additional
adjustment—needless to say, that values were even larger (range = [.59,
1.00]).
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procedure resulted in a model including animation (β = .35)
and the tendency to answer socially desirable (β = .19) as
predictors. However, the overall model describes the varia-
tion rather poorly (R2 = .16). For the ratings of the quality of
the interaction, the step-wise procedure resulted in a model
including anthropomorphism (situational) (β = .23) and the
tendency for social desirability (β = .19), too. However, the
coefficient of determination being close to zero (R2 = .09),
indicates that the model describes the variation in ratings of
the quality of interaction evenworse. Considering low values
for R-squared and low β values of the predictors, the models
might be the best fitting ones based on AIC, but cannot be
considered as overall acceptable in predicting the dependent
variables in question.

6 Dicussion

In this study,we tested the social desirability effect in human–
robot interaction. In three groups, participants evaluated the
likability of a social robot and the quality of the interaction,
with the interview being conducted (a) by the same robot
itself, (b) by a different robot, and (c) by a tablet computer.
This study design is very similar to other studies that used var-
ious different devices such as computers [48], websites [33],
virtual agents [28], or smartphones [9] and thus is considered
being a conceptual replication of such an effect. Additionally,
it was expected that the robots evoke a higher level of anthro-
pomorphism and more sense of social presence compared to
the tablet because of displaying more social cues. According
to the CASA assumption and more specifically literature on
anthropomorphic design, ratings of likability and quality of
interaction were expected to be higher if the robot conducted
the interview itself, compared to a different robot or a tablet
computer because the higher feeling of social presence (due
tomore visual social cues and higher emotional involvement)
should lead to more socially desirable responding.

The manipulation in this study was only partly success-
ful, since only the difference in social presence between the
conversation-robot (robot 1) and the tablet was significant,
but not between the other robot (robot 2) and the tablet.
In this study, social presence and anthropomorphism were
not as easily induced by robot appearance as other research
had indicated [47]. A similar failure to induce a signif-
icant amount of anthropomorphism and thus a sense of
social presence with social cues was also reported elsewhere
by finding weak effects [65] or non-significant results [1,
p > .05]. However, this shouldn’t make a difference con-
sidering a social desirability bias according to the CASA
theory. The manipulation check of anthropomorphism and
social presence were explicit measures. According to Reeves
and Nass [51], social norms are applied automatically even
without participants explicitly reporting higher anthropo-

morphism. Similarly, the dual-process theories [74] could
explain how—even without finding a difference in explicit
measures—implicit processes could lead to an automatic
activation of these concepts and thus still lead to (uncon-
scious) social desirability bias. Thus, social desirability
distortion would still be expected, even without explicit
anthropomorphism or conscious perception of social pres-
ence.

Yet, the data of this experiment did not support this claim
either. The ratings of likability and the quality of the inter-
action did not differ significantly, effect sizes were small
and confidence intervals were large. The CASA theory was
not supported by this experiment. Results—the effect size
magnitude—of Nass et al. [48] were not replicated, although
(1) sample size and thus statistical power was higher, and
(2) social cues were expected to be stronger in robots com-
pared to computers. However, the reader should note that the
aphorism “absence of evidence is not evidence of absence”
also should be considered here. The absence of evidence can
have various reasons of which is just one the absence of a
true effect:

1. Of course one reason is that there is no true social
desirability effect in human–technology interaction as
suggested by the CASA hypothesis, or at least it is neg-
ligibly small. Thus the hypothesis that humans would
distort their responses in a social desirable direction
because technology invokes a sense of social presence
is correctly rejected based on the results of this exper-
iment. When reviewing the literature, the effect seems
to vary vastly and did not reliably reveal such an effect.
And indeed, taken into consideration that (1) if there is
no true effect, the p values would be distributed equally
(that means small p values are as likely as large p values),
and (2) publication bias favors positive results, the mixed
picture in the literature could exactly stem from just this:
no true effect.

2. Another explanation of the mixed picture in the literature
and the absence of evidence in this experiment can be that
there is a true effect, it just varies a lot across situations—
including situations where the true effect is very small or
even close to zero. A variation in the literature thus is
caused by the variation of true effect sizes. This variation
can for example be due to variation in suggested factors
such as social cues of the technology-design. However,
there are plenty potential influential factors that lead to
a variation in effect sizes besides design features. The
more advanced three-factor theory by Epley et al. [15]
describes other factors that can account for this vari-
ation. But there might be additional factors, that have
not been explored very much yet. More theory is thus
needed. For example the social desirability effect in a
situation as in this study could have been smaller as

123



International Journal of Social Robotics (2021) 13:1013–1031 1025

in others because of certain-yet-not-known aspects of
the sample or certain characteristics of the interaction.
One aspect is the very specific sample of mainly male,
rather young military students that could behave differ-
ently than more diverse samples. Other aspects concern
the experimental setup. For example, participants could
have rated the researchers’ ability to create a good con-
versation algorithm and in doing so they thought about
the “human behind the machine” instead of the robot
directly and thus it was more a social interaction with the
researchers. However, participants tended to think little
of the programmer (M = 2.54, SD = 1.66 using a 5-
point Likert scale) and onlymoderately about “the human
behind the machine“ (M = 3.30, SD = 1.72 using a 5-
point Likert scale). Another aspect is the conversation
with the robot. The conversation was about 1.5min long
and included topics such as pets, favorite color or short
anecdotes meant to be humorous (painting the labora-
tory walls in glitter-pink). However, there is possibility,
that the conversation was too short in duration and the
topics were not critical enough in order to evoke the
need of socially desirable distortion. It is also possible
that the conversation was actually fine and participants
did not need to distort the response in a positive direc-
tion, because they really meant it. This would result in a
ceiling effect. Indeed, the rating of the quality of the inter-
action was quite high with a small variation. In contrast,
likability was only moderately high and showed larger
variation—based on the given theory onewould thus have
expected a social desirability effect at least in this rating.
The criticality of the interaction is a crucial moderat-
ing factor for social desirability bias to occur in the first
place. Even though the likability-rating was only moder-
ate and we thus would expect the situation to be critical
enough for the bias to be non-zero, the social desirability
effect could still be so small, that sample size and power
were just too low to detect the bias. In conclusion, with
a more controversial conversation or some small errors,
maybe participants would have shown larger response
bias (because of a higher need to distort responses in a
socially desirable direction)—large enough to turn out
significant, or under the assumption of small effects even
larger sample sizes are needed. Reeves andNass [51] pro-
posed Grice’s maxims—four conversational rules based
on high quality, appropriate quantity, high relevance, and
clarity—in order to achieve polite interaction [26]. Thus,
a violation of one of the rules as a manipulation could
be used to achieve a more impolite conversation and thus
more bias.

3. A third concern are the appropriateness of manipulation
and validity issues. The manipulation of appearance and
social involvement was expected to induce enough social
cues in order to trigger the application of social behavior

toward the robot. However, it is possible that manipula-
tion of appearance is not enough in order to obtain effects
that are large enough. A possible solution would be to
installmore social cues in the robot condition, resulting in
a larger difference between groups regarding social pres-
ence. For example, the conversation robot could be given
a name and when evaluating itself, it could actually refer
to itself as “me” instead of “robot 1” as in the other con-
ditions (e.g. “How much do you like me?”). This could
lead to higher anthropomorphism, higher social presence
and therefore to higher social desirability biases. Fur-
thermore it is also possible that the dependent variables
are not valid in this context. For example, the quality
of interaction scale did not undergo an extensive vali-
dation process. And although as a measure of likability
a validated scale was used [53, Reysen likability scale],
it is unclear whether this measure is similarly appropri-
ate for the evaluation of robots. Since the scale had been
developed for human–human evaluation, it is question-
able if it can also be applied to human–robot evaluation.
It probably has to be adjusted. For example, the original
scale includes items such as “I would like this person as a
coworker” (Here: “I would like robot 1 as a coworker”).
However, since the Pepper-robot was developed for pur-
poses of social interaction and not with the purpose to be
used in all kinds of work environments, this item might
not reflect likability as much as when evaluating another
human adult. Moreover, the evaluation might be context-
dependent. For instance, the sample consisted of students
with amilitary background, so a Pepper-robot is probably
not considered a good coworker in military settings, even
if the participants liked it. This might result in a response
pattern that is invalid for measuring likability as a con-
struct since variation in this item does not reflect variation
of likability. Thus, scales might have to be adapted to the
specific context of the evaluation and validated accord-
ingly. This means that even if there is a true effect and
the size of this effect is sufficiently high in this situation,
lacking validity of the measurement methods might have
had the effect that the true social desirability effect was
not reflected by these measures.

4. A fourth cause of variation and null-effects can be the
very same reasons discussed in context of the replicabil-
ity crisis. Even if (1) there is a true effect size, (2) this true
effect size is sufficiently large in the situation of an exper-
iment, and (3) the measurement methods are appropriate
and the manipulations are valid, there is still a variation
that can lead to an effect not being detected: Statistical-
methodological weaknesses such as small sample sizes
and thus under-powered study designs and questionable
research practices.We used amedium to large effect size,
in order to calculate the number of participants needed to
achieve a power of 80% – that is the probability to detect
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an effect under the assumption there is a true effect, or in
other words the probability of correctly rejecting the null
hypothesis given that the alternative hypothesis is true.
However, meta-science clearly suggests that for social
psychology only medium, if not rather small effect sizes
have to be expected on average [54,58]. For example,
an overview of effect sizes in social psychology as a sub-
field showed that the effect size typically is about r = .21.
According to this, the effect size that was expected in
advance, was too optimistic. This can also explain, why
other studies in human–robot interaction failed to find
effects when studying social-psychological phenomena
[31]. Effect sizesmay be simply overestimated [58]. Sim-
ilarly, studies on social desirability in human–computer
interaction expected rather large effects, but data did
not always show such large effects [65]. That means,
many studies based on this assumption [28], including the
experiment reported in this article, are therefore under-
powered. Hence, these studies have a low probability of
finding a true effect and thus produce more false positive
outcomes [8]. Moreover, even when finding a signifi-
cant effect, it is likely that the estimate of the magnitude
of the effect is inflated and thus overestimated—a phe-
nomenon called the winner’s curse [8]. This means that
finding no effect of social presence on socially desir-
able responding, can simply be due to the sample size
being too small (under the more realistic assumption of
a medium to small effect size). For example, calculat-
ing the sample size using the same parameters, but an
effect size of r = .21 as mentioned above, a total of
N = 222 participants would have been needed in this
3-group between-subject design (n = 74 per group). Fur-
thermore questionable research practices as mentioned
in Sect. 2.1 worsen the problem even more, but had been
widely used in the psychological literature. However, in
this experiment we reported all analyses—both confir-
matory and exploratory ones—accordingly (there had
not been further analyses as the ones reported here),
controlled for FWER, did not (secretly) delete single par-
ticipants or whole groups of participants (as we had no
legitimization), and did not control for different variables
a posteriori. We therefore tried to prevent the (subcon-
scious) use of questionable research practices to the best
of our knowledge.

In sum, many concerns were raised that are not only prob-
lematic for this study, but also for other studies in social
robotics. As other studies before [see 9,65], results indicate
limited support for the CASA assumption. Of course this
study reported here hadmany limitations that can account for
not finding an effect such as a rather specific sample size, the
conversation not being critical enough or too few social cues.
However, taken together (1) the overall mixed picture includ-

ing the results of the experiment reported in this article and
other studies in the literature, and (2) the overall low power
in social robotics experiments [see for example 39], chances
are, that the social desirability effect as suggested by Nass et
al. [48] is overesitimated. Note that this does not mean that
the theory does not hold, but it has to be considered that the
effect size might be much smaller on average and that effect
sizes vary to awide degree across situations and persons. This
could mean that such results are real, but oftentimes practi-
cally not meaningful because of small effect sizes. However,
factors need to be identified that lead to strong effects and
define situations in which such a social desirability effect
needs to be considered in evaluation design. For example, the
results from the exploratory analysis show influence of ani-
mation andof a general tendency to answer socially desirable.
Social desirability tendency and also the perception of ani-
mation seemed to influence the evaluation in general. Maybe
in our study, interindividual differences of the participants
had thus more effect on variance than the actual interac-
tion design. However, the effect sizes are negligible small
and as noted before, these results were solely data-driven
and thus interpreted with caution. However, instead of sim-
ply assuming that computers or robots are treated as social
actors, more careful reflection is needed on why and to what
degree this can be expected in a given situation. Therefore,
theories such as the three-factor theory of anthropomorphism
[15], contextual factors and interindividual differences need
to be studied more extensively. Sample sizes should then
be justified based on these theoretical considerations and
effect sizes should rather expected to be small than opti-
mistically large. A social desirability effect in human–robot
interaction would have very practical implications especially
for the evaluation of social robots. If the social desirability
effect is true it would be recommended that a robot or its
service should not be evaluated by the very same robot, but
by a different device instead, in order to achieve an unbi-
ased feedback. However, the evaluation of a robot by itself
after a service would be much easier as no other device is
needed and thus saves costs, effort and time. The results
of this experiment and other results in the literature show
only mixed support for social desirability bias. It was argued
that the effect could be overestimated and in fact could be
rather small for many situations and thus a robot evaluating
itself can provide still acceptable estimates. In such situa-
tions, a bias that small could be practically negligible and a
correction would not be worth the extra costs and effort of
installing another device. Although we did not find effects of
social cues, following anthropomorphism theories, an eas-
ier strategy to reduce social desirability bias (at least a bit)
could be to change the interaction into a different less socially
appealing more mechanic mode. For example, while during
the service a social robot could appear more as a social actor
through gesturing, friendly voice style and natural-appearing
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conversation (i.e. making jokes, referring to itself as “me”),
in the evaluation mode these social cues could be reduced in
making the robot more mechanic by not showing gestures,
mechanic voice and more neutral language (i.e. referring to
itself in third person as “robot”)—so even if it is the same
robot it appears more distanced maybe even almost like a
different device. To sum up, we want to stress once more to
not overgeneralize the results in this study, because finding
no effect, is not evidence that the social desirability effect
does not exist or is only small. And thus, if it is possible
and if it does not take much effort, we would recommend to
stick with the more safer conclusion to expect a social desir-
ability effect in HRI and use different devices for service
evaluation—especially if the accuracy of the evaluation is of
high importance. On the other side taken together the results
of this experiment and other experiments in the literature the
social desirability effect seems not to be very large—if not
even small – in many situations. Therefore, evaluations by
the technology itself (which might be more convenient) can
provide acceptable estimates.
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Appendix A

Self-developed scales for anthropomorphism (situational),
social presence, animation and responsiveness. All items
were rated on a 5-point Likert scale ranging from “not al
all” to “very much”.

Anthropomorphism (situational)

How much do you agree with these statements? Please
answer spontaneously—we are interested in your opinion,
therefore there are no correct or incorrect answers.

[Device name] had…

1. …intentions.
2. …consciousness.
3. …emotions.
4. …personality.
5. …free will.
6. …a mind of its own.

Social presence

How much do you agree with these statements? Please
answer spontaneously—we are interested in your opinion,
therefore there are no correct or incorrect answers.

1. Howmuch did you feel like interactingwith an intelligent
being?

2. How much did you feel like being alone?
3. How much did you feel connected to [device name]?
4. How much did you feel that [device name] was sensitive

to you?
5. With [device name], howmuch did you feel that someone

else was in the room with you?
6. How much did you feel [device name] was with you?
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Animation

How much do you agree with these statements? Please
answer spontaneously—we are interested in your opinion,
therefore there are no correct or incorrect answers.

[Device name] was…

1. …artificial.
2. …technical.
3. …natural.
4. …lively.
5. …human-like.

Responsiveness

How much do you agree with these statements? Please
answer spontaneously—we are interested in your opinion,
therefore there are no correct or incorrect answers.

[Device name] was…

1. …active.
2. …apathetic.
3. …absent-minded.
4. …real.
5. …distanced.
6. …interested.
7. …bored.
8. …involved.
9. …impersonal.

Appendix B

Transcript of the dialogue.

[The situation starts with the Pepper robot in a bent over
position to make a sleeping-like impression. As the interac-
tion starts the robot awakes bygoing fromabent over position
to an upright position. The robot looks a round by moving
its body and head to the left and right before orienting and
looking to the participant.]

Robot:Welcome to the experiment!Nice to have you here!
I’d like to have a conversation with you. My name is Robot
1. What is your name?

Participant: [answers]

Robot: Great. One day, it will bemy destiny to help people
and keep them company. Do you have a robot at home?

Participant: [answers]

Robot: That’s too bad [it was assumed that the partici-
pants’ answer is “no”]. I’m still new at the institute and only
a few months old. I wonder how old you are?

Participant: [answers]
Robot: I see. I’m not so comfortable in this room. [looks

around the room by moving his head] It is a little bare, isn’t
it? Color would be good for it. What’s your favorite color?

Participant: [answers]

Robot: That’s a nice colour too! My favorite color is
glitter-pink [it was assumed that the participants would not
choose glitter-pink as favorite color]. I wish I had a glitter-
pink fish. Do you have any pets?

Participant: [answers]

Robot: Okay, how time flies. The experimenter should
be back in a minute. Thank you for the nice, albeit brief,
conversation. It was great to meet you! [The robot is bending
over to make the impression it is on stand-by]

[End of conversation.]
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